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A high-dimensional dynamical system with global couplings that can serve as a prototype for systems with
very large numbers of attractors like memory is investigated and shown to be controllable by external inputs.
By changing the duration that noise is added, final attractors are selected as the number of degrees of freedom
of the nonsynchronized elements decreases one by one over time. Furthermore, it is found that this selection of
attractors is also possible by controlling the sweeping speed of a parameter. The mechanism for this controlled
selection is explained and shown to be rather general. Applications to attractor switching are given.
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I. INTRODUCTION

High-dimensional dynamical systems with many degrees
of freedom are often characterized by large numbers of at-
tractors. The ability to control and select these attractors is of
great importance, not only from a fundamental point of view,
but also for wide-ranging practical applications.

Consider, for example, memory. In neural network stud-
ies, it is often represented as an attractor in a dynamical
system with a large number of attractors. The recall of a
memory can then be thought of as due to an externally trig-
gered attractor switch �1�. In other words, the input acts as an
external control that leads to the selection of an attractor that
is output as a memory. In the case of neural networks �be
they artificial or natural�, memory is directly related to infor-
mation processing. However, controlled attractor selection is
not only relevant in this particular context. An example of
another kind of memory is given by cell states that can be
represented as attracting chemical reaction dynamics �2,3�.
Quite generally, as long as a memory can be considered an
attractor, the selection of this attractor by external inputs and
hence external control is important.

An interesting concept regarding phase space structures
and the selection of stable states was recently proposed in
relation to protein folding. It is the notion of phase space
funnels. The question of how proteins form a folded state
�with a specific function� is studied in the field of protein
folding and the concept of funnels was introduced to under-
stand a selection process where the minimum state is reached
through a series of metastable states whose energy landscape
is organized in a funnel-like manner �4�. The key point being
that the ordering of the metastable states according to their
energy levels is strongly related to the ordering of attractors

in phase space. If such an ordered structure exists in a high-
dimensional system, even if it does not directly contain a
quantity that can be considered an “energy,” it should be
suitable for attractor control since the addition of a simple
input signal or of some noise could lead to the successive
selection of attractors according to the ordering. How far it
will proceed in this successive selection will then depend on
the duration and amplitude of the input or noise.

It is therefore of significant interest to study the switching
of attractors in high-dimensional systems by external opera-
tions, and this has been discussed, e.g., in the context of
Boolean networks �2,5�, neural networks �2�, cellular au-
tomata �6� and open-flow coupled map lattices �7,8�. Here
we consider a dissipative high-dimensional system with
many attractors and investigate how attractors can be se-
lected just by adding noise.

Levels of organization among huge numbers of attractors
have been studied in depth in globally coupled maps �GCM�
�9–13� that share many properties with spin glasses like
those in the Sherrington-Kirkpatrick model �14�, which is a
thoroughly investigated thermodynamical system displaying
many different metastable states. On the other hand, the rel-
evance of multiple attractors and of the chaotic itinerancy
observed in GCM to neural dynamics has been discussed
over a decade �15�.

Externally triggered attractor switching as well as basin
structures were previously also studied in a standard type of
GCM, but the behavior turned out to be too complicated for
controlled attractor selection �16–18�, while a study investi-
gating the influence of noise on the preference of attractors in
a highly multistable system was carried out for a low-
dimensional model �19�.

Nevertheless, owing to their proven usefulness as tools
for analyzing complex phenomena, it is of great interest to
find a prototype GCM in which attractor switching can be
controlled. In this paper it will be shown that this can be
achieved by a well-motivated modification of a generally
studied globally coupled map. Thus, we believe that the
model described here can serve as a prototype for attractor
switching in high-dimensional systems.
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This paper is organized as follows: in Sec. II we describe
the model studied and introduce its four basic phases. The
suprising influence of noise on where these phases occur is
presented in Sec. III, and an application of this finding as
with regards to attractor control in Sec. IV. The mechanism is
investigated and explained in Sec. V while the conclusion is
given in Sec. VI.

II. MODEL

In general, a globally coupled map can be expressed as

xn+1
i = �1 − ��f�xn

i � +
�

N
�
j=1

N

g�xn
j � , �1�

with f�xn
i � the local map and g�xn

i � a map applied to the
elements coupled to. The subscript n and superscript i indi-
cate the discrete time and element, respectively, while N is
the system size and � the coupling constant. The case where
g�x�= f�x� has widely been studied �9–13�, but, as such, f and
g need not be identical.

Indeed, when g� f , the fundamental relationship between
coupling and instability can be reversed from the case when
g= f . When g= f , the coupling term has a stabilizing effect
and consequently a single element in isolation is more cha-
otic than the coupled system �9�, whereas when g� f , as will
be shown here, a single element or the synchronized state
can be periodic while the coupled system is chaotic.

As an example of such system where g� f , we take the
simple case g�x�=x, a model that has occasionally been stud-
ied in the context of synchronization �see, e.g., �20��. For f
we choose the logistic map f�xn�=xn+1=1−�xn

2, with � the
nonlinearity.

As usually done for globally coupled maps, elements are
grouped into clusters that oscillate in unison, taking �nearly�
identical x values. The clusters Nj are numbered from large
to small such that N1 is the largest cluster, and one has
�N1 ,N2 , . . . ,Nk� with � j=1

k Nj =N. With regards to the clusters,
the main phases that exist for the various parameter regimes
are as follows: a synchronized phase where all the elements
oscillate in unison, an ordered phase characterized by a small
number of large clusters, a partially ordered phase in which
some large clusters coexist with many small clusters, and a
turbulent phase where the average cluster size is one. In
other words, the phases are defined in the following way:
k=1 �coherent phase�, 1�k=o�N� �ordered phase�,
k=O�N��N �partially ordered phase�, and k=N �turbulent
phase�. Typical examples of these phases are shown in Fig. 1,
where the x axis denotes an element’s index and the y axis its
value. As the coupling in Fig. 1 is global, the spatial ordering
of the sites is, of course, arbitrary. Nevertheless, it is useful
to be able to see all the x values at once, as it can reveal a
possible underlying structure �like, e.g., remnants of the local
map’s band structure�.

III. PHASES AND NOISE

In order to find out where the basic regimes are located in
parameter space, phase diagrams with and without the tem-

porary addition of noise are shown in Figs. 2�a� and 2�b�.
After preparing the system with random initial conditions x
� �−1,1�, a transient of 104 time steps was discarded before
either temporarily adding noise and then determining the
number of clusters k, or determining the number of clusters
right away.

Unless mentioned otherwise, the temporary addition of
noise is carried out in the following way: After the transient,
first noise is added for 103 time steps and then the system is
evolved for another 103 time steps in order to allow it to
reach a possible attractor. For each time step that the noise is
applied, equiprobable random numbers between plus and mi-
nus the noise percentage are added to all the elements xi,
subjected to the condition that −1�xi�1.

As such, the phase diagram of Fig. 2�a� does not differ
much from that of the standard GCM where g�xn

i �= f�xn
i �, but

in the standard GCM case the phase diagram �corresponding
to Fig. 2�b�� changes only very little when noise is added
temporarily. By contrast, the difference between Figs. 2�a�
and 2�b� is striking. In particular, the coherent phase region
expands drastically �roughly by a factor 10� when noise is
added. Indeed, the remarkable fact is that noise enhances
rather than impedes synchronization.

Next it is investigated how this selection of attractors de-
pends on the duration that noise is applied. Figures 3�a� and
3�b� show the number of clusters in the final state versus the
number of time steps that noise is temporarily added to the
system.

It can be seen that, on average, almost any time duration
significantly decreases the number of clusters. In particular,
after some time, the number of clusters of the selected
attractor decreases one by one with time over a rather long
interval.

Basically, the scenario of reaching the synchronized state
is as follows: When noise has been added only for a short
time, some big clusters are formed that coexist with a very
large number of small clusters or desynchronized elements.
Then, while the time the noise is added increases, the num-

FIG. 1. �Color online�. The four main phases of the model for
�=1.8 and N=60. Fifty consecutive time steps are overlaid after a
transient of 105 time steps. �a� Synchronized phase: �=0.5,
N1=60; �b� ordered phase: �=0.25, N1=34,N2=26; �c� partially
ordered phase: �=0.14, N1=21, N2=13, N4–28=1; �d� turbulent
phase: �=0.06, N1–60=1. It should be noted that the x axis does not
represent space and merely represents the element index.
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ber of large clusters gradually decreases, even though the
total number of clusters may spike in between when the state
changes, e.g., from a state with five large clusters to a state
with four large clusters. Besides contributing to the remain-
ing clusters, the disappearing cluster may split into many
small clusters, until each of its elements is desynchronized
�Nj =1�. Eventually, for �=1.77, there is a single large clus-
ter coexisting with many desynchronized elements �i.e.,
�N1 ,1 ,1 ,1 , . . .1��, while for �=1.70, two large clusters co-
exist to form �N1 ,N2 ,1 ,1 ,1 , . . . ,1�. After these states are
reached, desynchronized elements are absorbed into a large
cluster one by one with the help of noise. In the former case,
this successively leads to switches �N1 ,1 , . . . ,1 ,1 ,1�→ �N1

+1 , . . . ,1 ,1�→ �N1+2 , . . . ,1�, while in the latter case,
switches occur yielding either �N1+1 ,N2 ,1 ,1 , . . . ,1� or
�N1 ,N2+1 ,1 ,1 , . . . ,1�, and when all the small clusters are
gone, N1 and N2 merge so that eventually a single coherent
cluster is left.

Inevitably, the amount of noise added will have some in-
fluence. Figure 4 shows the average number of clusters ver-
sus the nonlinearity for various noise levels given a coupling
strength where the noise levels distinctively influence the

dynamics ��=0.14�. As clearly can be seen, the application
of 10% noise yields almost the same results as applying no
noise at all while a level of 5% noise strongly reduces the
number of attractors for a fairly large interval of the nonlin-
earity. Indeed, from around ��1.63 to around ��1.71,
the addition of 5% noise guides the system to the coherent
attractor.

That this phenomenon is not restricted to some very spe-
cific values of the coupling strength � can be seen in Fig. 5,
where the average number of clusters versus � is plotted for
two values of the nonlinearity �. In Fig. 5�a�, �=1.7 was
chosen; as for this value of the nonlinearity the difference
between 5% and 10% is particularly big in Fig. 4, while in
Fig. 5�b� �=1.85 was chosen, since it is roughly the smallest
value for the nonlinearity beyond �=1.6 for which the noise
levels make no difference in Fig. 4.

FIG. 2. �Color online�. �a� Phase diagram without the temporary
addition of noise. �b� Phase diagram with the temporary addition
of 5% noise. The major regions are indicated by �1� synchronized
phase �red�, �2� ordered phase �blue�, �3� partially ordered
phase �green�, and �4� turbulent phase �yellow�. The phase is
derived by counting the total number of clusters k and making the
following correspondences: k=1→synchronized phase, 1�Nk

�10→ordered phase, 10�k�30→partially ordered phase,
k�30→ turbulent phase. �More strictly speaking, k�N in the tur-
bulent phase. However, as the case for k�30 should not be counted
as a partially ordered phase but should not be ignored either, it was
grouped with the turbulent phase�. The system size was set to
N=60. Elements are considered to be in the same cluster when their
values differ by no more than 10−5.

FIG. 3. �Color online�. The number of clusters versus the time
the noise is added. The phase was determined, and the noise added
in the same fashion as for the phase diagram, Fig. 2�b� �except that
the duration the noise is added is given by the x axis�. The number
of clusters was determined every 4th time step by making a copy of
the state of the system and evolving it for 1000 time steps before
determining the number of clusters. N=60. �a� The average of 103

runs was taken for each data point and the noise level was 5%. �b�
Two individual runs. For �=1.7, 4% noise was added and for
�=1.77, 5% noise was added. In order to illustrate the long tail, a
relatively large system size of N=25 000 was used for this part of
the figure.

FIG. 4. �Color online�. The average number of clusters versus
the nonlinearity � for various noise levels applied in the same fash-
ion as in Fig. 2�b�. The noise level �5%� that yields the greatest
overall reduction in the final number of clusters is marked by dia-
monds, while for comparison the case without added noise is
marked with circles. The coupling strength was set to �=0.14 and
the average of 103 runs was taken for each data point.
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It can therefore be concluded that the drastic effect of
temporarily adding noise displayed in Fig. 2�b� is not limited
to a very specially tuned miniscule parameter region but oc-
curs in a reasonably large region of parameter space.

IV. ATTRACTOR CONTROL

The results of the last section suggest that by adding suit-
able amounts of noise for some time, one can switch attrac-
tors such that the cluster number is eventually reduced one
by one. Conversely, by adding a larger amount of noise, it is
possible to desynchronize the elements and increase the clus-
ter number. Thus controlled attractor selection is possible by
just changing the noise strength and its duration.

To illustrate this, we have carried out the numerical ex-
periment depicted in Fig. 6: After starting from random ini-
tial conditions and allowing for a transient of 105 time steps,
a short “down-level” noise burst is applied for ten times ev-

ery 103 time steps, and then from time 1.3�104 on, a short
“up-level” noise burst is applied six times. The line marked
with the circles represents the average number of clusters
just before and just after applying the noise bursts over 103

runs. The “down level” for the noise is 5% and the “up level”
is 9% while the “down-burst time” is 25 time steps and the
“up-burst time” 5 steps. The solid black line shows a single
run with the number of clusters determined at every time
step. Again noise bursts are applied as for the averaged case,
except that the “burst-up” time was five time steps and the
“burst-down time” two time steps. An important point is that
the noise is only required for the switching of the attractors
and not for sustaining them once selected.

While individual runs in Fig. 6 may differ depending on
the initial conditions, the binary switching depicted in Fig. 7
is completely independent of the state the system is in. That
is, the switching is completely deterministic and hence
could, in principle, be used for digital logic. This is achieved
by applying the temporary noise long enough to assure that
all the elements are either on the coherent attractor �5%
noise� or mostly in the turbulent phase �10% noise�. It should
be noted that in this case too the noise is only necessary for
the switch and not for the sustaining of a state.

As is known from the phase diagram Fig. 1 and can be
seen from Figs. 4 and 5, the cluster number not only depends
on the amount of noise, but also on the parameters. Conse-
quently, instead of selecting an attractor by adding noise, one
can also attempt to deterministically select attractors by
changing �sweeping� parameter values. Indeed, Fig. 8 shows
that this is possible and that the inverse of the sweeping
speed corresponds to the noise duration time �i.e., a fast
sweeping speed corresponds to a short noise burst�. The de-
pendence on the sweeping speed is relevant in applications
since in experiments a change in an external condition re-
quires some time before its effects are fully felt, and clearly
systems in nature generally cannot jump from one parameter
value to another. Furthermore, in this case, the attractor se-
lection can be done without adding noise which may be es-

FIG. 5. �Color online�. The average number of clusters versus
the coupling strength � for various noise levels applied in the same
fashion as in Fig. 2�b�. The noise level �5%� that yields the greatest
overall reduction in the final number of clusters is marked by dia-
monds, while for comparison the case without added noise is
marked with circles. The nonlinearity was set to �=1.7 in �a� and
�=1.85 in �b� while the average of 103 runs was taken for each data
point.

FIG. 6. �Color online�. Noise-induced attractor switching for
�=1.77, �=0.14, and N=60. The attractors are controlled by apply-
ing short noise bursts of 5% for reducing the cluster number and of
9% for increasing the cluster number.

FIG. 7. �Color online�. Deterministic binary switching of attrac-
tors. �a� depicts the level of applied noise while �b� graph shows the
system’s response. The arrows indicate the points where the attrac-
tor switches. The nonlinearity was set to �=1.85, the coupling
strength to �=0.15, and the system size is N=60.
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sential, as noise may not necessarily be available as a con-
trolling factor.

V. MECHANISM

In a globally coupled system, the dynamic behavior of an
attractor changes according to the clustering of its elements.
Indeed, the change in the number of elements in a cluster is
sometimes represented by a bifurcation diagram, as dis-
cussed in Ref. �9�. In that case, the stability decreases when
the number of elements in the dominant cluster increases.
However, in the model studied here, overall, the stability
increases when the number of elements of in a synchronized
cluster increases. This is illustrated in Fig. 9, where the split
exponent, given by ln�1−��+1/T�Tf��xi� �9�, is plotted ver-
sus the size of the largest cluster N1. The increase in the size
of N1 is achieved in the same fashion as for Fig. 6 by apply-
ing a short noise burst every 1000 time steps. For the calcu-
lation of the split exponent, after every noise burst, a copy of

the system state is made and, after identifying a synchro-
nized or desynchronized element, evolved for 105 time steps
only if N1 is the only cluster while all the remaining elements
are desynchronized. In case there is more than one cluster
Nj �1, the copy is discarded and the split exponent not cal-
culated. Overall data are collected from 105 runs. In Fig.
9�a�, the increase in stability when N1→N can clearly be
seen, however in Fig. 9�b� �the same parameters as for Fig.
6�, the stability appears to decrease. This is due to the fact
that the periodicity of the band structure changes. In �a�,
from N1=46 to N1=51, the=periodicity is four; then at
N1=52 there is a transition to period two where the synchro-
nized elements are somewhat more chaotic, and from
N1=53, the periodicity of the band structure is clearly two. In
�b�, on the other hand, the transition from the period-four to
the period-two band structure is more extended, ranging
from N1=52 to N1=59, and hence the final increase in sta-
bility is only found from N1=59 to N1=60. However, it can
also clearly be seen that the split exponent of the desynchro-
nized elements increases over the entire range depicted, in-
dicating that these elements become more chaotic as the N1
cluster becomes larger.

The increase in stability when N1 approaches N can
be understood by first considering the coherent map xn+1
= �1−��f�xn�+�xn. It is easily shown that this map is in fact
just a variable and parameter transform of the single logistic
map such that

xn+1 = �1 − ��f�xn� + �xn, �2�

⇔x�n+1 = 1.0 − ��xn�
2,

x� = kx + d ,

d =
− 2�

4��1 − ��2 − �2 − ���
,

k =
4��1 − ��

4��1 − ��2 − �2 − ���
,

�� = ��1 − ��2 −
1

4
�2 − ��� . �3�

Hence, in the completely synchronized case, the coupling
reduces the effective nonlinearity ��. When the system is not
completely synchronized, Eq. �2� for the synchronized ele-
ments and its corresponding effective nonlinearity can be
expressed as

xn+1
Sync = �1 − ��f�xn

Sync� +
N1

N
�xn

Sync + � , �4�

�� = ��� + �1 − ��2 − ��� −
1

4
�2 −

N1

N
��N1

N
� , �5�

where � is the contribution of the remaining �desynchro-
nized� terms. Hence, the closer N1 gets to N, the smaller the
effective nonlinearity.

FIG. 8. �Color online�. Effect of the � sweep speed on the num-
ber of clusters in the model, Eq. �1�. The x axis indicates the num-
ber of steps between �start=0.05 and �end=0.14. The nonlinearity is
set to �=1.77. At �start, a transient of 103 time steps was discarded.
The average of 105 runs was taken for each data point indicated by
a circle.

FIG. 9. �Color online�. Split exponents versus the size of the
largest cluster N1. The lines with the diamonds indicate the split
exponent of the elements belonging to N1, while the lines with the
circles give the average of the split exponents of the desynchronized
elements. N=60. �a� �=1.67, �=0.14, noise=6%, burst time=20;
�b� �=1.77, �=0.14, noise=5%, burst time=26.
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Summing up, as N1 increases, the effective nonlinearity of
the synchronized state decreases and the instability of the
desynchronized elements increases. This provides one part of
the explanation as to why the system can step through suc-
cessive attractors when increasing N1.

In order to further investigate the mechanism underlying
the reported behavior, bifurcation diagrams for Eqs. �1� and
its coherent version are plotted in Figs. 10�a� and 10�b�.

In this context, it should be emphasized that in the param-
eter region we have studied for attractor selection, given the
present type of coupling, the synchronized state is noncha-
otic �i.e., it is of period 2, 4,…�, and that chaos appears only
in many-cluster states. Indeed, this can be seen clearly in Fig.
10, where the globally coupled map, Fig. 10�a�, bifurcates
well before the synchronized map, Fig. 10�b�.

The simplest nonuniform states are obtained when ele-
ments are attracted to different temporal phases of the uni-
form period-two state. When starting from random initial
conditions, one would expect roughly half the elements to be
attracted to each of the two temporal phases. This allows us
to construct the two-band map defined as

xn+1 = �1 − ��f�xn� +
�

2
�xn + yn� ,

yn+1 = �1 − ��f�yn� +
�

2
�xn + yn� , �6�

whose bifurcation diagram is given in Fig. 10�c�.
The bifurcation diagram of the two-band map is found to

qualitatively overlap well with the bifurcation diagram of
model Eq. �1� and thus leads to the following explanation of
the observed phenomena.

The unequal maps applied to the local and coupled terms
lead to a relative shift between the bifurcation cascades of
the synchronized and nonsynchronized systems such that the

synchronized system still has periodic attractors when the
nonsynchronized system falls into a multiband chaotic re-
gime. As the chaotic bands are separated by a repellor, a
multiband attractor cannot move toward the more stable syn-
chronized attractor. With the addition of a sufficient amount
of noise, however, sites can occasionally cross the repeller
and the number of sites in the same band increases �these
crossings can, of course, be both ways, however, as the dis-
tances between the attracting and repelling orbits are un-
equal, there will be a bias�. Once the sites are in the same
band and the noise is switched off, they will rapidly synchro-
nize. Since an orbit has to cross the repeller for the switch-
ing, the noise magnitude needs to exceed the distance be-
tween an orbit of an element and the repeller. On the other
hand, if the noise is too large, the asymmetry mentioned
above is rendered irrelevant. Hence, in order to obtain a
switch to a state with more synchronized elements the noise
needs to be larger than the distance between the repeller and
one of the bands while smaller than the distance between the
repeller and the other band. The 5% noise discussed in Sec.
III is such an optimal noise strength. When switching to a
more desynchronized state, the noise needs to exceed the
distances between the repellor and both bands. For this a
good value is 10% noise, but of course this value can be
made larger.

Above we found that when, for a given set of parameters,
a stable synchronized state exists, an attractor consisting of
synchronized elements and desynchronized chaotic elements
will show a decrease in orbital instability as the number of
elements in the synchronized cluster increases �given that the
periodicity of the band structure is equal�. In the globally
coupled map, Eq. �1�, these features are expected to hold
when �1−��f�x�+�g�x� has a stable fixed point or is periodic
and �1−��f�x� is chaotic. This was verified by investigating
some variations of the maps employed thus far.

First, the logistic map was replaced by a sine map of the
form

xn+1 = f�xn� = sin�2	xn� �7�

which, as opposed to the logistic map’s single local maxi-
mum, has two local maxima and two local minima for xn
� �−1,1�. The relevant bifurcation diagrams are shown in
Fig. 11, and indeed noise-induced synchronization can again
be found �e.g., for �=0.15� for parameters where the com-
posed map has chaotic multiband attractors and the coherent
map temporally periodic attractors.

Second, the linear coupling was replaced such that a dif-
ferent map is applied to the coupled terms than to the local
term. In other words, the model was modified to become

xn+1
i = �1 − ��f�xn

i � +
�

N
�
j=1

N

sin�2	

3
xn

j� , �8�

where sin��2	 /3�xn� is a sine-type map that is nearly linear
around xn=0 and has a small local minimum and maximum
at xn=−2/3 and xn=2/3, respectively. Again, noise can be
used to switch a chaotic multiband attractor to the synchro-
nized nonchaotic attractor �e.g., for �=1.8, �=0.18, and a
noise level of 3%�.

FIG. 10. Bifurcation diagrams of Eq. �1�, its coherent version,
and Eq. �6�, where the local map is the logistic map
f�xn�=1–2.0xn

2. �a� depicts the linearly coupled logistic lattice Eq.
�1�; �b� depicts the coherent version of Eq. �1�; and �c� depicts the
two-band map, Eq. �6�.
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Therefore, it is conjectured that the observed behavior is
rather general for systems where the dynamics of the single
element f�xn

i � is chaotic and the coupling leads to desynchro-
nization with chaos. Indeed, one could expect that it may
also be common in systems of globally coupled ODEs, or in
experiments. For example, the experiment of globally
coupled chaotic chemical oscillators by Hudson et al. �21�
might be modified in such a way that noise-induced coherent
synchronization of potentially chaotic elements can occur.

VI. CONCLUSION

As discussed in the Introduction, the selection of specific
attractors in multiattractor systems by inputs is important in

biological problems like neural networks, cell states given by
gene networks, and so forth. The attractor selection presented
here is simply achieved by the strength and duration time of
noise, or by the speed of sweeping parameters. No tuning
mechanism is required. Considering the generality of the
mechanism, it will be interesting to see possible applications
of the mechanism to biological problems, as well as applica-
tions to information processing.

To conclude, while in the earlier studies of GCM chaotic
instability is strong when elements are synchronized, here
the scenario is reversed as the synchronized dynamics is non-
chaotic and chaotic instability is introduced through the cou-
pling term. A striking consequence of this setup is that
attractors can effectively be controlled by external inputs.
The underlying mechanisms are found to be quite generic
and the introduced model can therefore serve as a simple
prototype for controlled attractor switching in high-
dimensional systems.

Indeed, we surmise that in general the following circum-
stances should be sufficient in order for a globally coupled
system to display the dynamics described in this paper: the
coexistence of a stable nonchaotic synchronized state with a
chaotic desynchronized state such that the global coupling
term enhances the orbital instability.
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