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Slowing down of the relaxation of the fluctuations around equilibrium is investigated both by stochastic
simulations and by analysis of master equation of reversible reaction networks consisting of reactions between
a pair of resource and the corresponding high-energy product that works as a catalyst for another resource-
product reaction. As the number of molecules N is decreased, the relaxation time to equilibrium is prolonged
due to the deficiency of catalysts, as demonstrated by the amplification compared to that by the continuum
limit. This amplification ratio of the relaxation time is represented by a scaling function as h=N exp�−�V�, and
it becomes prominent as N becomes less than a critical value h�1, where � is the inverse temperature and V
is the energy required to the transformation from resources to the corresponding products.
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I. INTRODUCTION

The study of reaction processes in catalytic reaction net-
works is generally important to understand the dynamics and
fluctuations in biochemical systems and their functionality.
Obviously, understanding the generic features of equilibrium
characteristics and relaxation to equilibrium is the first step
toward gaining such an understanding. Indeed, such reaction
systems often exhibit anomalous slow relaxation to equilib-
rium due to some kinetic constraints such as diffusion-
influenced �limited� reaction �1� and formations of transient
Turing patterns �2�. In this paper, we consider a mechanism
to realize such a slow relaxation in catalytic reaction net-
works, where the discreteness in molecule number that may
reach zero induces drastic slowing down.

Most intracellular reactions progress with the aid of cata-
lysts �proteins�, whereas catalysts have to be synthesized as a
result of such catalytic reactions. Indeed, reaction dynamics
in catalytic networks have been extensively investigated. In
most such studies, a limiting case with a strong nonequilib-
rium condition was assumed by adopting a unidirectional
reaction process �i.e., by neglecting backward reactions�. To
understand the basic properties of biochemical reactions,
however, it is important to study both equilibrium and non-
equilibrium characteristics by including forward and back-
ward reactions that satisfy the detailed balance condition.
Such a study is not only important for statistical thermody-
namics, but it also provides some insight on the regulation of
synthesis or degradation reactions for homeostasis in cells.

Recently, we discovered a slow relaxation process to equi-
librium, which generally appears in such catalytic reaction
networks, and we proposed “chemical-net glass” as a novel
class of nonequilibrium phenomena. In this case, relaxation
in the vicinity of equilibrium is exponential, whereas far
from it much slower logarithmic relaxation with some bottle-
necks appears due to kinetic constraints in catalytic relation-
ships �3�. In this study, we adopted continuous rate equations
and assumed that the molecule number is sufficiently large.

In biochemical reaction processes, however, some chemi-
cal species can play an important role at extremely low con-

centrations of even only a few molecules per cell �4–6�. In
such systems, fluctuations and discreteness in the molecule
number are important. Indeed, recent studies by using a sto-
chastic simulation of catalytic reaction networks have dem-
onstrated that the smallness in the molecule number induces
a drastic change with regard to statistical and spatiotemporal
behaviors of molecule abundances from those obtained by
the rate equation, i.e., at the limit of large molecule numbers
�7–20�. In these studies, the strong nonequilibrium condition
is assumed by taking a unidirectional reaction.

Now, it is important to study the relaxation process to
equilibrium by considering the smallness in the molecule
number. Does the discreteness in molecule number influence
the equilibrium and relaxation behaviors? Is the relaxation
process slowed down by the smallness in the molecule num-
ber? To address these questions, we have carried out several
simulations of the relaxation dynamics of random catalytic
reaction networks by using stochastic simulations. Numerical
results from several networks �21,22� suggest that the relax-
ation time is prolonged drastically when the number of mol-
ecules is smaller. Usually, the temperature dependence of the
relaxation time follows the Kramers form exp��E�, where �
is the inverse temperature and E is a certain energy, depend-
ing on the system. When the discreteness in molecule num-
ber is relevant to the relaxation, this energy deviates from the
value at the continuum limit, as the molecule number is de-
creased. The deviation of the relaxation time from the con-
tinuum limit is expressed by the factor exp���E�. If �E is
positive, it is considered as the effective additional energy
required to pass through the bottleneck due to the discrete-
ness in molecule number.

In this paper, we analyze such slowing down of a reaction
process to equilibrium that is induced by the smallness in
molecule numbers. Instead of taking complex reaction net-
works, we choose simple networks or network motives to
estimate the relaxation time analytically. In fact, complex
networks are often constructed by combining a variety of
simple network motives with simple branch or loop struc-
tures. We focus on the relaxation dynamics of reversible
catalytic reaction systems with such simple network motives
as a first step toward understanding the general relaxation
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properties in complex catalytic reaction networks.
In Sec. II, we introduce two network motives, where the

synthesis of a product from resource molecules �and its re-
verse reaction� is catalyzed by one of the other products.
Here, we note that some specific network motives may ex-
hibit incomplete equilibration when the molecule number de-
creases, and the average chemical concentration in the steady
state deviates from the equilibrium concentration derived by
the continuous rate equations.

In Sec. III, we show relaxation characteristics from the
stochastic simulations. The relaxation of the fluctuation
around the steady state slows down as the molecule number
is decreased below a critical value. The increase in the relax-
ation time is represented by a scaling function by using

h = N exp�− �V� ,

where N is the molecule number and V is the energy gap
between a product and a resource. In Sec. IV, we present an
analytical estimate for this relaxation suppression due to the
smallness in molecule number by using a suitable approxi-
mation for master equation. In Sec. V, we present a summary
and discuss the generality of our results.

II. MODELS

Here, we consider reversible catalytic reaction systems
with two simple network structures, cascade and loop sys-
tems, as shown in Fig. 1, which may function as network
motives for complex reaction networks. These systems con-
sist of 2S chemical species, S product chemicals, and S re-
source chemicals; and each product is transformed to the
corresponding resource, and vice versa, by the catalyzation
of one of the other products. Here, we assume that each
product chemical can catalyze at most one of the other
resource-product reactions. �Instead, we can interpret that
there exist S chemical species with excited and nonexcited
states, and chemicals in an excited state can catalyze an ex-
citation reaction of one of the other molecules.� Here, we

label a pair of resource and the corresponding product Ri and
Pi by the following manner:

First, we choose and label a resource and the correspond-
ing product as R1 and P1. Then there is one product that
catalyzes this R1-P1 reaction. We label this product as P2 and
the resource corresponding to this product as R2. Next, the
product which catalyzes the P2-R2 reaction and the corre-
sponding resource is labeled as R3 and P3, and so forth.
Here, we define the rate of the reaction from Pi to Ri and that
from Ri to Pi proceeded by the catalyst Pi+1 as kPi,Ri

and
kRi,Pi

. If all chemicals are catalyzed by one of them, we can
write the reaction as

Pi + Pi+1 �
kRi,Pi

kPi,Ri

Ri + Pi+1

for i=1,2 , . . . ,S−1, where

PS + P1 �
kRS,PS

kPS,RS

RS + P1,

which leads to the loop system �Fig. 1�b��. When there exists
a product which does not catalyze any reactions and we label
such a product and the corresponding resource as P1 and R1,
the cascade system in Fig. 1�a� is obtained, where

PS �
kRS,PS

kPS,RS

RS.

�By neglecting cases in which some pair of resource and
product is totally disconnected from others, the loop and cas-
cade systems are the only possibilities.�

The reaction rates kPi,Ri
and kRi,Pi

are set so that they sat-
isfy the detailed balance condition. We assume that the en-
ergy of the chemical Pi is larger than that of Ri, and set
kPi,Ri

=1 and kRi,Pi
=exp�−�Vi�, where Vi is the energy gap

between Pi and Ri and � is the inverse temperature. We
define pi and ri as the numbers of molecules of the chemical
species Pi and Ri, respectively. We fix the total number of
molecules as SN, and pi+ri=N holds for each i. The state of
the system is represented by a set of numbers �p1 , p2 , . . . , pS�.

In both the systems, it is noted that for N→� �i.e., the
continuous limit�, �pi� /N→pi

eq /N=e−�Vi / �1+e−�Vi� and
�ri� /N→ri

eq /N=1 / �1+e−�Vi� hold at the equilibrium distri-
bution, which is reached at t→�. The derivations of these
equilibrium concentrations from the rate equation will be
given in Sec. IV.

For finite N, however, there is a difference between the
distributions of the cascade and the loop systems. In the cas-
cade system, the average of the equilibrium chemical con-
centrations is identical to the continuum limit and is given by
�pi� /N=e−�V / �1+e−�V�, that is, they are independent of N
and �. This is because all the states �p1 , p2 , . . . , pS� �0� pi
�N� are connected by reactions and the above equilibrium
distribution is the only stationary solution for the master
equation.

On the other hand, in the loop system, there is a deviation
in the steady chemical concentration from the continuum
limit, which becomes more prominent as N becomes smaller.
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2 R
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. . .
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(b) Loop
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FIG. 1. Illustration of �a� cascade and �b� loop systems. Solid
arrows indicate reaction paths �their width indicates the transition
tendency� and dashed arrows indicate catalyzation.
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This is because the state �p1 , p2 , . . . , pS�= �0,0 , . . . ,0� cannot
be reached from other states, whereas the state cannot move
to any other states. Hence, the steady distribution from the
initial conditions without �p1 , p2 , . . . , pS�= �0,0 , . . . ,0� devi-
ates from the continuum limit. This deviation becomes
prominent as N becomes smaller. For example, for N=1 and
Vi=V, the distribution from the initial condition without
�p1 , p2 , . . . , pS�= �0,0 , . . . ,0� is given by �pi�=e−�V

�1+e−�V�S−1 / ��1+e−�V�S−1�. Note that �pi� tends to 1 /S with
an increase in �.

III. SIMULATION RESULTS

In this section, we present the results of stochastic simu-
lations and show the dependence of the relaxation process on
the number of molecules N and the inverse temperature �.
For simplicity, we consider Vi to be uniform for all species
�=V�; however, this assumption can be relaxed.

Numerical simulations are carried out by iterating the fol-
lowing stochastic processes. �i� We randomly pick up a pair
of molecules, say, molecules 1 and 2. �ii� Molecule 1 is trans-
formed with its reaction rate �if it is P, it is transformed to R,
and vice versa� if molecule 2 can catalyze the reaction of
molecule 1. In the cascade case, there is a reaction that
progresses without a catalyst and, in this case, if molecule 1
is the one that reacts without a catalyst, then it is transformed
with the reaction rate independently of molecule 2. Here, a
unit time is defined as the time span in which the above
processes for catalytic reactions are repeated SN times. In
each unit time, each molecule is picked up on average to
check if the transformation occurs. In the following, we fo-
cus on the behavior of the system after a sufficiently long
time from the initial time where the numbers of each mol-
ecule pi and ri are set randomly from �0,N� under the con-

straint pi+ri=N and �p1 , p2 , . . . , pS�� �0,0 , . . . ,0�.
Now, we define the autocorrelation function c�t� as c�t�

= ��i	�pi�t�− pi
eq��pi�0�− pi

eq�+ �ri�t�−ri
eq��ri�0�−ri

eq�
�, by
scaling so that c�t�=0 when the equilibrium is reached. By
further normalizing the function, so that it takes unity in the
initial distribution, we define C�t��c�t� /c�0�. Figures
2�a�–2�e� show C�t� of the cascade system �Figs. 2�a�–2�c��
and the loop system �Figs. 2�d� and 2�e�� for some S and N
with �=3. As already discussed, C���→0 in the cascade
system, whereas C���→0 for large N but C����0 for small
N in the loop system. Here, the value C��� in the loop sys-
tem starts to deviate when h=Ne−�V becomes less than 1.
Hence, we have plotted C��� of the loop system as a func-
tion of h in Fig. 2�f� for �=1 and 3. As shown, C����0
holds for h�1 independently of �. On the other hand, in
both systems, the relaxation to the equilibrium value C��� is
drastically slowed down for small N, as compared to that for
large N when S�2, whereas the relaxation for small N is
faster when S=2.

To observe the dependence of the relaxation time on N,
we measured the integrated relaxation time defined as �
=�0

�	�C�t�−C���� / �1−C����
dt. Figures 3�a� and 3�b� show
� as a function of N for �=3 with S=2,3 ,4 for the cascade
�Fig. 3�a�� and loop �Fig. 3�b�� systems. For S	3, the relax-
ation time � increases by several orders of magnitude with a
decrease in N in both systems. On the other hand, � for S
=2 does not exhibit any drastic change with the decrease in
N in both systems.

This prolongation of � for S�2 becomes more prominent
as � is increased. From several data, � is suggested to in-
crease as a function of exp��V�. Combining N and � depen-
dencies, we introduce a parameter h=N exp�−�V�. The dis-
creteness effect is dominant when h=N exp�−�V� is less
than unity. Figures 3�c� and 3�d� show 
=� /�N→� as a func-
tion of h for the cascade �Fig. 3�c�� and loop �Fig. 3�d��
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FIG. 2. �Color online� C�t� of cascade systems with �a� S=2, �b� S=3, and �c� S=4, and loop systems with �d� S=2 and �e� S=3 for
several N with �=3. �f� C��� as a function of h in loop systems for several � and S. CODE indicates the autocorrelations given by Eq. �4�
in �a�–�c� and Eq. �3� in �d� and �e�. C�=exp�−e−�Vt� in �d�, and C�=exp�−�e−2�V /2�t� in �b� and �e� with �=3 �V=1�.
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systems for several values of � and S=2,3 ,4. For S�2, the
deviation of 
 from the continuum limit �
=1� becomes
prominent when h is below unity in both systems. The in-
crease in 
 appears to become steeper with an increase in S.
On the other hand, 
 for S=2 does not exhibit a drastic
increase with a decrease in h.

IV. ORIGIN OF SLOW RELAXATIONS AND CROSSOVER

A. Relaxation processes for N\� and N=1

Now, we analytically estimate the enhancement in relax-
ation time and explain its representation in the form h
=N exp�−�V�. For this purpose, we compare the estimate by
master equation analysis for small N and compare it with that
from the continuum limit N→�.

In the continuum limit, the reaction dynamics are repre-
sented by the following rate equation:

ẋi = xce−�V�1

S
− xi� − xi� , �1�

with xi= pi /SN. Here, xc=1 for i=S in the cascade system,
xc=x1 for i=S in the loop system, and xc=xi+1 for i�S in
both systems. xi→xi

eq=e−�V / �S�1+e−�V�� holds for t→�.
When the deviation from equilibrium �xi=xi−xi

eq is small, its
evolution for the loop systems obeys the following linearized
equation:

�ẋi = −
e−�V

S
�xi. �2�

For the cascade system, this equation is also valid for the
elements i�S, whereas �ẋS=−�xS. Then, the autocorrelation
function of a small fluctuation of pi around pi

eq is obtained as

C�t� = exp�−
e−�V

S
t� �3�

for the loop system, and

C�t� =
1

S
exp�− t� +

S − 1

S
exp�−

e−�V

S
t� �4�

for the cascade system. Indeed, these agree quite well with
the simulation results for a sufficiently large N �e.g., N
=1024 in Fig. 2.�. Thus, the characteristic time of the relax-
ation is estimated as �L�S��Se�V for the loop system and
�C�S�� 1

S + �S−1�e�V for the cascade system, which are con-
sistent with the simulation results shown in Fig. 3.

As the other extreme limit, consider the case with N=1.
In this case, the relaxation dynamics are dominated by a
completely different process induced by the absence of cata-
lysts whose number can often go to zero. In such cases,
states are trapped at some local energy minimum that ap-
pears due to the deficiency of catalysts. Then, the hopping
processes among them play an important role in the relax-
ation dynamics, as shown below. In the following, we focus
on the cases with S=2 and 3 to clarify that such an effect is
induced by discreteness in the molecule number. Note that,
as shown in the last section, the behavior for S	3 is distinct
from that for S=2; in the former case, the relaxation time is
enhanced by the decrease in N, in contrast to the latter case.

First, we study the loop system. When S=2, the system
realizes three states from the initial conditions—�p1 , p2�
= �1,0�, �0,1�, and �1,1�—as shown in Fig. 4�a�. In this case,
the transition rate from the state �1,0� to �1,1� is estimated as
follows: for this transition, a pair of molecules from the
product of the first species and the resource of the second
species has to be chosen. This probability is given by 1

2
1

2−1 ,
while the reaction rate is given by e−�V. In unit time, this
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FIG. 3. �Color online� � as a function of N in �a� cascade and �b� loop systems, and �C�S� and �L�S� for �=3 and S=2,3 ,4. 
 as a
function of h in �c� cascade �d� loop systems with S=2,3 ,4 for several �.
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process is iterated two times. Hence, the rate is given by 2
�

1
2

1
2−1e−�V=e−�V. Then, the characteristic time of the corre-

lation of each pi is given by �e�V, which is consistent with
the results shown in Fig. 2�d�.

On the other hand, for S=3, the system realizes seven
states—�p1 , p2 , p3�= �1,0 ,0�, �0,1,0�, �0,0,1�, �1,1,0�, �1,0,1�,
�0,1,1�, and �1,1,1�—as shown in Fig. 4�b�. The characteris-
tic time of the correlation of each pi is given by the transition
time among the three branches including lowest-energy
states, �1,0,1�-�1,0,0�, �1,1,0�-�0,1,0�, and �0,1,1�-�0,0,1�.
Here, in order to hop from one branch to another, the system
must go through the highest-energy state �1,1,1� due to the
restriction by the catalytic relation. Thus, the escape rate
from each branch is estimated by � 1

2e−2�V, and the charac-
teristic time of the correlation of each pi is estimated as
�2e2�V �see Appendix A�. Because the relaxation time in the
continuum limit is proportional to exp��V�, the deviation 

from it increases with exp��V�, which is consistent with the
results shown in Fig. 2�e�. Thus, the enhancement of the
relaxation time from the continuous case is explained.

Essentially the same argument is also valid for the cas-
cade systems. When S=2, the system can realize transitions
among four states—�0,1�-�1,1�-�1,0�-�0,0�—as shown in Fig.
4�c�. Here, �0,1� is a metastable state and �0,0� is the lowest-
energy state. The relaxation is characterized by the escape
rate from a metastable state, which is given by �e−�V. Thus,

the characteristic time of the correlation of each pi is given
by �e�V.

On the other hand, for S=3, the system realizes eight
states—�p1 , p2 , p3�= �0,0 ,0�, �1,0,0�, �0,1,0�, �0,0,1�, �1,1,0�,
�1,0,1�, �0,1,1�, and �1,1,1�—as shown in Fig. 4�d�. The
slowest characteristic time of the relaxation is given by the
transition time from the branch �1,1,0�-�0,1,0� since the sys-
tem must go through the highest-energy state �1,1,1�, which
is a limiting process for this case. Then, in a manner similar
to the loop system with S=3, the characteristic time is ob-
tained as �2e2�V. This gives the characteristic time of the
slowest motions of the system. This estimation fits well with
the numerical result shown in Fig. 2�b�.

B. N and � dependencies of C(�) and relaxation time

Next, we extend the argument of the last section to ana-
lyze the N and � dependencies of C��� and the relaxation
time in greater detail. In particular, we explain why h
=N exp��V��1 gives a critical value and how the amplifi-
cation of relaxation time depends on h for h�1. Because of
the simplicity due to the symmetry in the catalytic relation-
ship, we only study loop systems; however, the argument
presented below can be extended to cascade systems.

Figure 5�a� shows the transition diagram of the loop sys-
tem with S=2, where each circle indicates each state �p1 , p2�
and the arrows indicate possible transitions. Generally, for
any values of S, the transition rate from a state
�p1 , p2 , . . . , pi=n , pi+1 , . . . , pS� to a state �p1 , p2 , . . . , pi=n
+1, pi+1 , . . . , pS� per unit time is estimated as follows. For
this transition, a pair of molecules from the resource of the
ith species �Ri� and the product of the �i+1�th species �Pi+1�
has to be chosen. This probability is given by ��N
− pi� /SN��pi+1 / �SN−1��, and the reaction rate is given by
e−�V. Hence, the transition rate per unit time is given by

Wn→n+1
i =

�N − n�pi+1

SN − 1
e−�V.

Similarly, the transition rate in the opposite direction is given
as

Wn+1→n
i =

�n + 1�pi+1

SN − 1
.

If the molecule number is so large or � is so small that
h=Ne−�V�1, Wn→n+1

i �Wn+1→n
i holds for small n and

Wn→n+1
i �Wn+1→n

i holds for large n. Then, the dominant
states of the system are located in an intermediate region in
the phase space �0,N�. For example, the intermediate gray
�blue online� region in Fig. 5�a� indicates such dominant
states for S=2. Under such conditions, xi= �pi� /SN obeys Eq.
�1� for a sufficiently large value of N �see Appendix B�.

On the other hand, if N is so small or � is so large that
h1, Wn→n+1

i Wn+1→n
i holds for all i and n. Thus, pi for all

i tends to decrease to zero. Then, there exist SN metastable
states—�n ,0 ,0 , . . . ,0�, �0,n ,0 , . . . ,0�, . . .,
�0,0 , . . . ,0 ,n ,0 , . . ,0�, . . ., and �0,0 ,0 , . . . ,n� �1�n�N�.
Among them, the following S states, �1,0 ,0 , . . . ,0�,
�0,1 ,0 , . . . ,0�, . . ., and �0,0 ,0 , . . . ,1�, have the lowest en-
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FIG. 4. �a� Illustration of transition diagrams of �a� loop system
with S=2, �b� loop system with S=s, �c� cascade system with S
=2, and �d� cascade system with S=3, where arrows indicate pos-
sible transitions and the values next to them specify the transition
ratios.
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ergy. For example, in the cases with S=2, the states �0, p�
and �q ,0� �p ,q�0� are metastable states and �1,0� and �0,1�
are the lowest-energy states.

It should be noted that the lowest-energy states are the
dominant states for h1. The probability to realize these
lowest-energy states tends to 1 /S with an increase in �.
Thus, with the increase in �, �pi� approaches 1 /S for small
N, which indicates C���=const�0 for small N and large �.

Moreover, for h1, the transitions among lowest-energy
states contribute dominantly to the relaxation process. Then,
we estimate the characteristic time of the fluctuations of the
system for h1 by considering the transition processes from
one lowest-energy states such as �0,0 , . . . ,0 , pj =1,0 , . . . ,0�
to the other lowest-energy states such as �0,0 , . . . ,0 , pj
=0,0 , pj�=1,0 , . . . ,0�. In the following, we consider only
the cases with S=2 and 3. We only focus on the dynamics of
pj under the constraint that pj has only 0 or 1, because h
1.

First, consider the case with S=2. Figure 5�b� shows a
detailed transition diagram around the region where pi
�i=1,2� is only 0 or 1. The escape rate from �1,0� and �0,1�
is given by � N

2N−1e−�V. Thus, the characteristic time of the
correlation of each pi is given by

�d
L�2� �

2N − 1

N
e�V, �5�

which is consistent with the results shown in Fig. 6�a�.
Next, we study the case with S=3. The transition diagram

of the states �p1 , p2 , p3� is shown in Fig. 5�c� when pi
�i=1,2 ,3� takes only 0 or 1. Similar to the N=1 case, the
characteristic time of the transition among the three branches
including lowest-energy states, �1,0,1�-�1,0,0�, �1,1,0�-
�0,1,0�, and �0,1,1�-�0,0,1� through the state �1,1,1�, is con-
sidered. In a manner similar to the N=1 case, the transition
rate from each branch is estimated by ��Ne−�V / �3N
−1���Ne−�V / �1+Ne−�V��=N2e−�2V / ��3N−1��1+Ne−�V��.
Thus, the relaxation time of the fluctuation of p1 is estimated
as the decrease with N as

�d
L�3� �

�3N − 1��1 + Ne−�V�
N2 e2�V. �6�

Considering the e�V dependence of �N→�, the above estimate
is consistent with Fig. 6�b�.
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FIG. 5. �Color online� �a� Illustration of the transition diagrams
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=3, where bold arrows indicate the focused transitions in the text.
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For S larger than 3, the transition diagram becomes rather
complicated. However, a similar analysis should be possible
to estimate the prolongation in the relaxation time.

V. SUMMARY AND DISCUSSIONS

In the present paper, the slowing down of the relaxation in
reversible catalytic reaction networks induced by the small-
ness of molecule number is investigated as a general prop-
erty of catalytic reaction networks. This prolongation of re-
laxation is a result of bottlenecks in reactions; these appear
due to the deficiency of the catalyst required for a reaction.
The number of molecules can be so small that the number of
catalysts becomes zero. In this case, a pair of a substrate and
the corresponding catalyst molecule species can hardly exist
simultaneously. Such a constraint makes it difficult to realize
a specific configuration necessary for the relaxation. The
probability for realization is given by exp�−�Eb�, with Eb as
the corresponding effective energy barrier to realize such
rare conditions, or the sum of such energy barriers. This
bottleneck energy is generally different from the energy gap
in the continuum limit that is obtained from the relaxation
time of the rate equation �ordinary differential equation�.
Thus, the relaxation time at a small molecule number devi-
ates from the continuum case by the factor exp���E� with an
appropriate effective energy difference �E.

By considering the models of simple catalytic reaction
networks consisting of resource chemicals of S species and
the corresponding products, we have demonstrated this de-
viation of relaxation time from both direct simulations and
analysis by using master equation. From the numerical and
analytical estimates, V�Eb�2V and 0��E�V for S=3,
where V is the energy gap between the resource and the
product chemicals. For S�2, in general, the prolongation of
the relaxation time becomes prominent when h=N exp
�−�V� is less than unity, and its amplification ratio from the
continuum limit is represented as a function of S and h. Note
that the cascade system in the N=1 case is equivalent to the
“asymmetrically constrained Ising chain” �ACIC�, hierarchi-
cally constrained Ising model, or east model, which are stud-
ied as simple abstract models for glassy states �23–25�. Fol-
lowing the interpretation therein, the increase in relaxation
time at h�1 as a result of the decrease in N or temperature
may be regarded as a type of glass transition. According to
the recent studies on ACIC, the correlation time of the mo-
tion of p1 �not the relaxation time of the total system� is
estimated as �1��1+2e�V�k, where the integer k obeys
2�k−1��S�2k �24,25�. In cases with S=2,3 ,4, this fact is
consistent with our estimate of the relaxation time of the
cascade system with N=1. The estimation of �E as a func-
tion of S and h for general cases both for cascade and loop
systems is an important issue that should be studied in the
future.

In addition to the slowdown in relaxation, the equilibrium
distribution deviates in a network called a loop system,
where all the reactions are catalyzed by one of the products.
The constraint that the numbers of a certain pair of chemical
species cannot simultaneously be zero leads to the deviation
of the average distribution of molecule numbers from the

continuum limit. Again, this deviation becomes prominent
when h is less than unity.

Although we have adopted simple network motives to
analyze the relaxation, the prolongation of relaxation time is
quite general in catalytic reaction networks. Catalytic bottle-
necks often appear as the number of molecules is decreased
in a large variety of reaction networks in which catalysts are
synthesized within �21,22�. The present study can provide a
basis for the general case with complex networks, as the
motives here are sufficiently small and can exist within such
complex networks.

Biochemical reactions generally progress in the presence
of catalysts that are themselves synthesized as products of
such reactions. These reactions form a network of a variety
of chemical species. Here, the molecule number of each spe-
cies is generally not very large. Hence, the slow relaxation
process and deviation from equilibrium discussed in this
study may underlie intracellular reaction processes. More-
over, the present network motives are so simple that they are
suggested to exist in biochemical networks. We also note that
the resource and product in our model can be interpreted as
nonexcited and excited states of enzymatic molecules. In-
deed, many molecules are known to exhibit catalytic activity
only when they are in an excited state, which can help other
chemicals to switch to an excited state. In fact, such net-
works with mutual excitation are known in signal-
transduction networks �26–28�, where the present slow relax-
ation mechanism may be relevant to sustain the excitability
of a specific enzyme type over a long time span. It is impor-
tant to pursue the relevance of the present mechanism in
cell-biological problems by considering more realistic mod-
els in the future.

We also note that not only the discreteness in the mol-
ecule number but also the negative correlation between a
substrate and the corresponding catalyst within a reaction
network or in a spatial concentration pattern suppresses the
relaxation process �2,3,21,22�. The present mechanism due
to discreteness may work synergetically with the earlier
mechanism to further suppress the relaxation to equilibrium.
The construction of reaction networks to achieve slower re-
laxation together with the network analysis will be an impor-
tant issue in the future.
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APPENDIX A

We define the probability that the states in the branch
�1,0,1�-�1,0,0� are realized as Q1,0,0. Then, the probability to
realize the state �1,0,1� is given by �e−�V / �1+e−�V��Q1,0,0.
Here, the transition rate from �1,0,1� to �1,1,1� is given by
e−�V /2. Then, the probability current from the branch
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�1,0,1�-�1,0,0� is estimated by ��e−�V /2��e−�V /
�1+e−�V��Q1,0,0�1 /2e−2�VQ1,0,0 �e−�V1�. Because of the
symmetry among the catalytic reactions, the probability cur-
rents from the other branches are obtained in the same way
to get the same form. Thus, the escape rate from each branch
is estimated by � 1

2e−2�V.

APPENDIX B

We define the probability that pi=n as Qn
i , and the joint

probability to realize pi=n and pi+1=m as Qn,m
i . Here, Qn

i

=�m=0
N Qn,m

i and Qn,m
i =Qn

i Qm
i+1. Then the time evolution of

Qn,m
i follows

Q̇n,m
i =

m

SN − 1
	�N − �n − 1��e−�VQn−1,m

i + �n + 1�Qn+1,m
i

− nQn,m
i − �N − n�e−�VQn,m

i 
 . �B1�

Then, we obtain

Q̇n
i =

�pi+1�
SN − 1

	�N − �n − 1��e−�VQn−1
i

+ �n + 1�Qn+1
i − nQn

i − �N − n�e−�VQn
i 
 , �B2�

where �pi�=�n=0
N nQn

i ��pi+1�=�m=0
N mQm

i+1�. Using this equa-
tion, we obtain the time evolution of �pi� as

�ṗi� =
�pi+1�
SN − 1

�− �pi� + �N − �pi��e−�V� . �B3�

This implies that xi= �pi� /SN obeys Eq. �1� for a sufficiently
large value of N.
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