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Evolution of mutation rates is studied. in a population model with mutation of species coded by bit sequences and
mutation of mutation rates. Even without interaction among specics, the mutation rate is initially enhanced to seurch for
fitted specics and then is lowered towards zero. This enhancement opens a possibility of automatic simulated anncaling.
With the interaction among specics (hosts versus parasites), high mutation rates are sustained. The rates go up with the
interaction strength abruptly if the fitness landscape is rugged. A large cluster of species, connected by mutation. is formed
by a sustained high mutation rate. With the formation of this symbiotic nctwork resolved is the paradox of mutation rates:
paradox on the stability of a rule to change itself. Population dynamics of each species shows high-dimensional chaos with
small positive Lyapunov exponents. Stability of our symbiotic network is dynamically sustained through this wcak
high-dimensional chaos. termed “homeochuaos™.

1. Introduction

A mutation rate can change itself through evolution. We can think of various mechanisms to regulate
the mutation ratc [1]. The best known example is the prool-reading mechanism [2]. In the process of
replication of DNA, differences between the original and its copy are detected and the errors are
corrected. This proof-reading mechanism is widely found in living species and must have been developed
in the course of evolution. In principle, (he mutation ratc can be dccreased by elaborating the
proof-reading mechanism.

In the present paper we study the evolution of a mutation rate. It is often erroneously believed that
the evolutionary process always sclects a lower mutation rate, and that the reason for the existing large
mutation rate is just the overload of proof-rcading. In other words, a more accurate prool-reading
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mechanism requires a longer time for replication. which leads to a lower rate of replication. The existing
mutation rate could be determined through the balance of an intrinsic tendency to lower the mutation
rate and the overload of proof-reading.

This argument is true for the evolution in fixed environment, but not necessarily so in a fluctuating
cnvironment or in a system where there is interaction among species. For example, both immune systcms
and viruses change their phenotype to adapt the interaction with each other, by adopting a strategy to
enhance their mutation ratcs.

In the present paper we discuss the evolution of mutation rates, focusing on the mechanisms that
sustain a high mutation rate through intcractions among species (typically host vs. parasite, prey versus
predator or host versus virus, or immune system versus virus, and so on)*!.

This problem of evolution of mutation rates is important not only in biology, but also in physics and
the genetic algorithm [5]. In the genetic algorithm, bit strings with messages are subject to evolution
dynamics with mutation and splicing, where one has to control the mutation rate in advance. In a
problem of optimization, simulated annealing has been devcloped as a powerful method, where the
temperature for the Monte Carlo simulation is slowly cooled down according to a schedule fixed in
advance. The temperature here plays the same role as the mutation rate, since both give an error rate of
replication of a bit string. Our evolutionary dynamics gives a spontaneous change of mutation rates.
Indced we shall demonstrate that our evolutionary dynamics gives a spontaneous simulated annecaling
method. Even without an explicit interaction among spccics, the mutation rate in our dynamics is initially
enhanced, leading to a global search for an optimized solution (fitted species). Once such a solution
(species) is produced, the mutation rate is lowered automatically, leading to the increase of the
population ratio of such speciecs. Our dynamics of mutation rates leads to an innovation in genetic
algorithm and simulated annealing.

Biological background

1. Proof-reading mechanism: In DNA replication, an enzyme reads base sequences and corrects them
by removing wrong bascs. This mechanism enhances the accuracy of DNA replication over 102 to 10?
fold [1]. There can be various levels of proof-reading, leading to a control of mutation rates [2]. Thus
mutation rates arc not given, fixed numbers, but are themselves variable by mutation.

2. Immunc systcm: A mutation ratc in an immunc system is enhanced to increase the diversity of
antibodies, which face with an unknown antigenetic site [6]. The proof-rcading mechanism may be
operationally broken in a B cell as is reported by Rajewsky and his group [7]. This high mutation rate
may look natural as for the level of a whole immune system. However, each antibody itself is a replicating
unit. Many antibody species compete with cach other for replication. Darwinian selection acts for each
antibody.

If a state with a high mutation rate is sustained, however, it leads to a paradox, similar to the
“self-referential paradox™ [8]. Let us consider the following rule:

“Rule: This rule should be changed ™.

#'The evolution of recombination rate or the origin of sex is studied in connection with interaction with parasites. Sce e.g..
ref. [3).

During the completion of the manuscript the authors have been informed of ref. [4], where the evolution of mutation rate is
discussed in connection with the intcraction of species. Although some of our motivation are common with theirs, the modelling
and the point of view on the mechanism of high mutation rate are diflerent.
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As onc can easily see, this rule has a paradox with self-reference. if the rule itself remains unchanged.
One simple way to avoid the paradox is to change the above rule from “should™ to “should not™.

A state with a high mutation rate is subject to the above paradox. The above simple solution, of
course, means decreasing the mutation rate towards zero. As will be seen, a high mutation rate, however,
can be sustained throughout the course of evolution. Here we study how evolutionary systems find a way
to live with the paradox, by introducing a model population dynamics.

Mathematically, a self-referential paradox is resolved without its removal by climbing up to a “meta”
level, as has been clarified in Godel's theorem [8, 9]. In the present paper we present an example in
which the dynamics automatically leads to a meta-level description. Borrowing from the terminology of
the dialectics, we may call this kind of dynamics “sublation dynamics™.

In our model of the evolution, the original level is the survival of each individual species. The more
identical offspring an individual reproduces that survives, the fitter it is in the evolution. Within the
logical level of individual species, a sustained high mutation rate, i.c., a strategy to change itsclf, is a
paradox. In our numerical results, the above paradox is resolved by a jump from the level of individuals
to that of enscmble of species. Our system keeps the population in a network of species. In the level of
ensemble of species, the rule to change the replication of cach individual is no longer paradoxical. A high
mutation ratc in an immune system is also subject to the same paradox, since each antibody species is
rcgarded as a self-replicating unit of a Darwinian system.

In the present paper we suggest that interaction of species may lead to a state with a high mutation
rate. Generally spcaking, there are three basic types of interactions among species; (1) host—parasite (or
prey-predator) (2) cooperation, and (3) competition for a niche. In the first interaction type (host—para-
site), one species gains through the interaction, while the other is damaged by it. In the cooperation, both
specics gain through the interaction, while both are damaged by the interaction in the competition. In
the present paper we only consider the interactions (1) and (3). The inclusion of the cooperative
interaction [10] to our studies is an interesting future problem, since recent studies suggest that the
self-organization of the cooperative behavior depends strongly on mutation rates [11].

We assume that the inherent population dynamics of cach host species is subject to the fitness
landscape. In addition to the above interaction, the population change of each species depends on the
fitness attached to it. The fitness is often thought to depend in a complex manner on the gene sequence,
with many local hills and valleys. We study the dependence on the landscape also, using a spinglass
model or flat (ncutral) landscape.

The present paper is organized as follows. In section 2, our basic model is introduced, which consists
of a population dynamics and a Monte Carlo algorithm for mutation*2. The dynamics includes the
interaction among hosts and parasitcs, suppression of population due to the competition, and the natural
growth or decay, depending on the fitness of each spcecies. Section 3 is devoted to a simple case,
evolution of mutation rates without interaction between specics. As is expected, the mutation rate goes
down finally, but a transient increase is often observed. The possible relevance to automatic simulated
annealing is also discussed.

In section 4, the evolution of mutation ratc is discussed with host-parasite interaction, where the
mutation rate of the parasite is fixed. If the coupling is large, the mutation rate is sustaincd at a high
level.

”Throughout the present paper we focus only on point-mutation. By the term “mutation’”, we refer only to point-mutation. Any
other mutation mechanisms are not discussed.
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A mechanism of this sustained high mutation ratc is attributed to the formation of an oscillatory
network in section 5. In the mutation induced population dynamics, a non-zero population is preserved
in a network, competing in a host—parasite interaction. We introduce a term “oscillatory symbiotic
network™ (symbionet), since all species cocxist within the network. The oscillation turns out to be
chaotic. The ensemble of species is maintained only through chaotic change of cach population. Indeed,
a lixed-point or periodic state is unstable. The final persistent state is sustained by chaos. This
observation introduces a novel and important notion, homeochaos —sec scction 6. In homeochaos. the
strong instability in low-dimensional chaos is smoothed out, and the dynamic stability is sustained in
high-dimensional hyperchaos.

In section 7 we study dependence of mutation rates on the environmental landscape. If the evolution is
neutral, a sustained high mutation rate is again observed, where the size of oscillatory network is large.
In the ncutral case, no sharp transition is observed. Up to section 7, the mutation rate of parasites is
fixed. In section 8, we study a model in which both the mutation rates of hosts and parasites vary. Again,
we find a state with high mutation rates for both species. Section 9 is devoted to discussion of our results
in possible connection with real biological networks.

2. Modelling

We assume that there are host (prey) species and parasite (predator) species. Both species of hosts and
parasites are coded by a bit string ¢;, whosc length is fixed at k. In the paper we choose & =7 unless
otherwise mentioned. For example, the species 42 has a bit string 0101010. Each spccies is further
classified with respect to its mutation rate, so that it is coded by two variables. We denote each species by
(i, j). whose population is given by s(Z, j) and p(i, ), for a host and a parasite, respectively. Here i is a k
bit word dcfining the species, while j is the mutation level. Qur cvolutionary dynamics thus consists of
the population of h(i,j) and p(i,j). Possible mutation rates arc discretized into 13 levels, in an
exponential scale. The mutation rate of the species (i, j) is given by u, =2/"" (j=1,...,13)*%.

Introducing an cnscmble of species, we carry out the following processes for the evolutionary
dynamics:

(i) mutation: {o,,05,....0;,...,09} > {0, 05,...,1 = @,,...,04). Here we assume that there occurs at
most only a single-point mutation for cach sequence. The rate of this single-point mutation error is given
by its mutation rate u,.

(i) mutation of mutation rates: We assume that the mutation rate (du ;/dt) of mutation rate (u) is
also controlled by the same mutation rate (u,) itself. This is the source of sclf-referential paradox. At
each step, a mutation rate can mutate either upwards or downwards with equal probability. Practically
we adopt the following algorithm; take a random number r € [0, 1). If 7 is larger than 1 — u the mutation
from the species (i, j) to (i, j + 1) occurs, while that from (7, j) to (i, j — 1) occurs, if r is less than . (At
J=13 or I, only downward or upward mutation occurs, respectively.)

(iti) Host—parasite interaction: The interaction between hosts and parasites is of the Lotka—Volttera
type, which, we assume, is given by a function of the Hamming distance between their bit strings. As the
simplest coupling between a host and a parasite, we adopt a perfect matching. Only a parasite with the

#3 . . . . . .
There is no explicit reason that the matation rate should be in an exponential scale. For example, we assume that the mutation
level j codes the number of times of proof-reading, and each proof-reading reduces the error rate to half.



410 K. Kaneko. T. Ikegami / Homeochaos: dvnamic stability of a symbiotic ..2twork

same bit string as a host exploits the host. The population of the host is decreased by the interaction
whilc that of the parasite is increased.

(i) Reproduction or death (in a flat or rugged landscape): Besides the interaction among specics,
diffcrent species may have different fitness generically. 1f the evolution is neutral [12], the fitness function
is flat (constant) for all species. Generally the fitness depends on the genetic scquence in a complex
manner. If the fitness is plotted as a [unction of the sequence, the landscape there may have many hills
and valleys, as is often called rugged landscape. In the present paper we treat only the following two
cases: (a) both the mutations of hosts and parasites are neutral. The fitness landscape is flat. (b) mutation
of parasites is neutral, but that of hosts is not. The fitness for hosts have “rugged landscape™ [13].

In a rugged landscape, the fitness has a complex dependence on the genetic sequence (bit string). A
spinglass model gives a simple example for such a rugged landscape. In a spinglass, energy is assigned to
a binary sequence [;]. A typical model is the Sherrington—Kirkpatrick (SK) model [14]. In this model the
encrgy is given by £ =1%J, ;S;S,. where S;=20;— 1 takes | or —1, and /,; is a fixed random value
distributed over positive and negative values. We take the distribution to be homogeneous over [ -y, y).
The model is known to provide many metastable states in a rugged landscape [14]. As the parameter y is
increased, the height of hills and valleys increases, lcading to the increase of ruggedness. We use the SK
model for the fitness function; fitness is given by exp[ E, — E(i)] [15, 16]. A specics with lower “energy”
has higher fitness. For a neutral casc we take £(i) = 0 for all specics.

For parasitcs, we assume that the fitness function is intrinsically ncutral. Only the host—parasite
interaction term depends on species. Including the natural death, the population at the next step decays
by a factor d with d < 1.

(v) Competition among individuals: Therc is strong competition within same species or in a group of
species with the same niche. Indeed, this interaction suppresses the divergence of population in most
models, such as in the nonlinear term in Verhulst—-Malthus equation (dx/dr = ax — bx?).

In the present paper we choose the following two types of suppression. For parasites we assume the
first suppression type (type-1), competition only within the same species: this effect is introduced through
the suppression term 1/[1 +g):jp(i,j)] in the population dynamics. The term reduces the population
when the total population outgrows {e.g. ¥;p(i.j) > (1/g)). Since all species with same bit string have
the same phenotype, without respect to its mutation level j, the above summation over a whole mutation
level is required.

The other casc (suppression-type-11) is used for the suppression of hosts; the competition within all
species. In other words, all species compete for the same niche. By taking the same type of coupling as
the first case, we choose the suppression term (i, j)/[1 +gL; ;G )] here. If the total population is
larger than 1 /g, the suppression is effective.

Combining (i)-(v), the population dynamics consists of successive operations of the mutation algorithm
Lo, j) ki, 1= [ p"G, ), B, /)] and then the following dynamics:

hyoiinj) = Int((exp[lz’o—b‘(i)] —c,,Zp"(i,k))h"(i.j)/(| +g,,Zh"(i,k))}, (1)
k f.k
Poai(if)= lnt{(d +C,,Zh”(i‘/<))p"(,"j)/(| +g,,Zp"(i,k)}), (2)
S k

where Int{...} is the integer part of {...). This completes the dynamics [p,(i,j), k(i )] —
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[P, (i i)k, (L ) Starting from an ensemble of species, we first apply the mutation algorithm for the
population of hosts and parasites using Monte Carlo methods, to get the intermediatc population p” and
K. The populations at the next time step are given by egs. (1) and (2). This completes the first time step.
We continuc these procedures for many time steps.

Initial condition: We typically choosc cither of the following two initial conditions. (1) only one or two
species of hosts and parasites with matched strings have non-zcro population. (2) Many host and parasite
pairs have cqual non-zero population. We mostly assume that initial mutation levels arc concentrated on
a single level.

As far as we have checked, the initial condition dependence is not crucial. Basins of attraction for
states which we show in later sections are rather large. Attractors do not seem to be unique, but for most
macroscopic quantities such as the final mutation level or the total population, initial condition
dependence is rather small, in so far as we have scen, as long as our system does not go to a statc of
“extinction”.

Indeed. for some parameters or for somc initial conditions, global extinction of all hosts or parasites
may occur. This extinction statc itsclf is stable. There is no creation of species from the extinct state, of
course. We believe that possible extinction is a feature of natural evolutionary system, but it is not
included in most other evolutionary models [3, 4], where the total population is often kept constant.

3. Evolution of mutation rates without interaction between host—parasites

Before starting to describe our main results, let us briefly survey simulations without host—parasite
interactions.

In fig. 1, temporal change of average mutation level is plotted for a system without any parasites. As
has been expected. the mutation rate ultimately goes down with time. Once a species with a higher
fitness is selected. species with lower mutation rates have more offspring, independent of the population
distribution, since the population dynamics of one specics does not directly depend on the population of
the other species. This argument is truc after the species finds a string with a high fitness in the
landscape. In the transicnt time, the mutation rate can increase, if the initial ensemble does not include
species of high fitness (sce fig. 1). After the transient, the mutation rate decreases towards zero.

The above transient increase of mutation rates is casily explained. Species with higher mutation rates
are faster in the search for larger fitness. Once the species with large fitness appcars, it is then better to
have a strategy to reproduce the species with a smaller error. Their mutation rate starts decrcasing.
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Although the above example is rather simple, this mutation of mutation rate opens a possibility of
automatic simulated annealing. In the conventional simulated anncaling [17], one has to change the
temperature (“mutation rate™) externally. Initially the system should be put in a high temperature, to
search effectively for many local minima, and then the temperature is lowered externally as the system
finds a configuration with lower energy. In the simulated annealing, onc has to give a schedule of
temperature decrease in advance, which depends on a problem to optimize.

Our algorithm with mutation of mutation rates automatically enhances a mutation rate initially and
then lowers it as the system finds a lower encrgy. During the time steps with enhanced mutation rates,
lower energy is globally searched for, while the mutation is deercased once a species of very low energy is
found. Thus one can rcach optimal sequences very effectively, with this inclusion of mutation of mutation
rates. We note that our algorithm docs not require any external change of mutation (temperature) rates.
Everything goes spontaneously, oncc an initial condition is given. Our modcl dynamics can provide a
novel algorithm, by which the conventional simulated annealing may be replaced [18].

The use of evolution in optimization problems is popular now, as genetic algorithms (5). In a genelic
algorithm, mutation rates are usuvally fixed. Qur cxample shows that the inclusion of mutation of
mutation rates gives an innovation in genctic algorithm, compiling with the automatic simulated
annealing.

4. Maintenance of a high mutation rate through the interaction among species

For the following four sections, we assume that the mutation ratc of parasites is fixed at g ,. Only a
mutation rate of a host is variable by mutation. The main control paramcters in our model arc u, ¢,
and ¢,,. Fig. 2 gives an cxample of temporal evolution of the averaged mutation rate for host species. If
the couplings ¢, and ¢, are large enough, the average mutation level suddenly climbs up to a higher
value, and it is stably sustained aftecrwards. The level often overshoots as in fig. 2a, and then is lowered
down to the final value. When an initial mutation level is too large, the level monotonically decreases
down to the (same) final level and stays there. On the other hand, the average mutation rate gradually
decreases towards zero if the couplings are weak.

i |L . _
AN ¢y, =0.03
N
8
i < -
£ g ¢, = 0.0025
g ERE ‘
3 E]
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g g b
o @i Zlo g
time 2000 Lime 000

Fig. 2. Temporal change ol average mutation level of host species. Initially a single species (19 with mutation level 7) is put.
g, =0.0001, g,=0.1, ¢, =0.008, d =09, u, =005 (a) ncutral case (L= 0.5, y = 0). (b) rugged landscape (£,=04. y =0.2).
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Dependence of final mutation level on couplings is shown in fig. 3. Here we change the strength of
coupling (¢,). damage of a host by the parasite of the same bit sequence. The mutation level increases in
a stepwise way with the coupling strcngth. As a host is damaged more by a parasite, the mutation level is
lifted up to a higher value. On the other hand, the final mutation level of hosts depends more weakly on
the mutation rate of parasitcs.

The sustained mutation rate depends on the landscape. As the valley height y is increased in the
landscape. the transition gets sharper (fig. 3). In a flat landscape (neutral evolution y = 0), the transition
is smooth and consists of successive steps, as will be discussed in section 7.

Temporal changes of populations of species are remarkably different in thc low and high coupling
regimes. For the low coupling regime with decreasing mutation ratcs, the population dynamics ap-
proachcs a fixed point with small fluctuation. This small fluctuation originates in the stochastic nature of
mutation. Besides this fluctuation, a fixed landscape is attained through cvolution, which is consistent
with decrcasing mutation rates. If the mutation rate is small enough, the dynamics of each species 7 is
essentially separated from other species §. Then the dynamics here is governed by the following globally
coupled two-dimensional map:

hu-(- I(I) = [(1(!) - Chpn(i)]hn(i)/(] +gh Z/I"(i))’ (3)

Praili) = [d+c,h (D] p(D][1+2,p()]. (4)

where a(i)=expl E, — E(i)]. The fixed point of the above map is given by p(i)* =((a) - )¢, -
O =d)g,)/(c,c;, +g,8.) + (ali) = (a)) /¢, and h(i)* =(1 —d)/c, +g,p(i)*/c, which is unstable un-
der the following condition (see appendix):

cr > 2,(2 = (a)) /21 —d)[l 1 +40—dyg /e, (2 - <a)) | (5)

where {a) is the average growth rate given by (@) = ¥, exp[ £, — E())]/L;1. This incquality states that
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the fixed point is unstable in the strong coupling rcgime, as is consistent with our observation. For the
sustained mutation state, the population of hosts and parasites oscillates in time. At thc onscl parameter
of this state. this oscillation is very weak, although it is aperiodic. As the coupling is increased, the
amplitude of the aperiodic oscillation increases.

Mutation levels are not necessarily the same within an entire species. When the average mutation level
is low (or going down), the distribution ol mutation level is concentrated on its average. The mutation
level is restructed to almost a single level for species with large cnough population. If the valley height of
energy is not high, the distribution of mutation level is again rather sharp for each species. if the coupling
is not too large (see fig. 5a). The distribution is concentrated on a single level, with very little spreading
to the neighboring levels. As the valley height of landscapce is increased, the distribution gets broader. If
the final state has a larger mutation rate with large fluctuation, the mutation level differs by species.
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When the valley height of landscape is high (i.e., the ruggedness of landscape is strong), the distribution
of mutation Icvels has two peaks as is seen in fig. 5b. Different species split into two groups with distinct
mutation levels. As the coupling ¢, is increased, the peak at the higher level gets larger. Although the
distribution slightly depends on initial conditions, its main structurcs, such as the number of peaks and
their position are invariant with the choice of initial conditions, as is seen in fig. Sc.

The average mutation level is plotted as a function of energy of specices in fig. 6, when the distribution
has two peaks**. Some specics have high mutation rates, while others have lower ones. One can sce the
tendency of increasing of the mutation level both at a smaller energy and a larger energy*®. The latter
increase is duc to “unstable” species which exist only as paths between metastable specics. A higher
mutation rate of species with a small ¢nergy results from these oscillations in its population. Since the
increase rate expl £, — E(i)] is large enough to lead to an increase of parasites, the species would become

#$When there is only a single peak for the distribution of mutation (in a weak coupling regime), the plot corresponding to fig. 6
is almost flat, although there is again a weak tendency of increase of a mutation level both at larger and smaller energies.

“S1n figs. 6 and 8, we have plotted only the data with E(i) < 0. There are some species for positive energy, whosc population,
however, is very small and exists only through rare mutation.
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extinct by the attack of parasites, if there was no mutation. The large mutation at a small energy comes
from this strong (chaotic) oscillation. This obscrvation Icads to the picture of oscillatory network in the
following section. Among species with middle energy, there are some groups of species with a much
lower mutation level. These groups form a chain circuit of species connected by mutation (see fig. 7 for a
connection nctwork by mutation).

For comparison, the average population is plotted in fig. 8. The population increases roughly linearly
with £, — E(i) from a threshold E_, except at very low energy. For very small energy. it is deviated to a
lower population if the landscape is too rugged.

5. Formation of oscillatory symbiotic network

By what mechanism is a high mutation rate maintained? First, we recall the dynamics of population of
cach species. For the sustained statc with a high mutation rate, the populations of hosts and parasites
oscillate in time. Through the host—parasite interaction, host species i with large population is largely
exploited by the parasite species i. Then (he population of parasite i increases, leading to the decrease of
that of host i. Through the mutation, there is flow of population {rom species i to other species. There
remain somc populations in the species reached by a single point mutation from this damaged species i,
even if the attack by the parasite is very strong. After the population of host i is largely decreased, that
of parasite i starts to decrease, since the gain term L/A(i, j) p(i) from the interaction gets very small.
After this decrease of population of parasite i, flow to the host i through mutation raises the population
of host . This oscillatory scenario is possible only if the mutation rate is not too smail.

5.1. Oscillation network

In a Darwinian selection system, we naively tend to belicve that it is a better stratcgy to have more
offspring with the same gene sequence. Howcver, with the interaction among species, this strategy is not
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nccessarily possible in the level of each individual species. Instcad of being kept in each species, the
population is kept in an ensemble of specics, connected as a network through mutation. In other words,
the system assumcs a higher logical type (meta-level), from individual species to network of species. This
formation of an oscillatory nctwork resolves the self-referential paradox without erasing it.

Host specics coexist in this nctwork. The existence of other species is cssential for the survival of each
species. In this sense, we call the above network as symbiotic network, or symbionet, in short. The
network is sustained through the oscillation among specics. Connection through a network comes from
successive population changes among species, due to mutation and host—parasite interactions.

5.2. Percolative behavior

In a strong coupling regime, the average mutation level increases rather abruptly when we start from a
low mutation regime (sec fig. 2a). After this temporal transition, a high mutation rate is stably sustained
by the strong coupling. This transition shares a common feature with percolation phenomena. The
sudden increase of mutation level is also seen with the change of coupling ¢, especially when the valley
height () of landscapc is high (see fig. 3b). In order to check this percolative nature, we introduce the
following “mutation cluster™.
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Fig. 9. Temporal change of maximal mutation cluster size (a.b) and corresponding change of the number of independent clusters
{c,d) for hosts (solid lines) and parasites (broken lines). In (a) and (c) simulation is carried out with thc parameters y = 0.2,
E,=04, and ¢, =0.03, where an averaged mutation rate abruptly climbs up around 350 steps. Parameters for (b) and (d) are
y=02. Fy=04, and ¢, = 0.0025, where the mutation rate gradually decays. The increase of the maximal cluster size simultane-
ously occurs with that of the mutation rate. In (d), the number of clusters is not large, since few species survive.
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A mutation cluster is defined as an enscmble of species connected by ongoing mutation. Since many
possible specics do not have any population, all existing specics are not necessarily connected by
mutation. Each species of a host—parasitc pair may be isolatcd. Many disconnected clusters coexist,
whose size is unity or very few. In a strong coupling regime, on the other hand, many spccies may be
connected through mutation to form a large clustcr, in which a high mutation rate is stably sustained by
itsclf. A host damaged by a parasite is immediately compensated by other host specics through mutation
within the cluster.

In practice, we carry out the following procedure for a mutation cluster. First define a mutation How
from a species i by an actual event of population flow from the specics. 1l there is at least a singlc cvent
of mutation from the species i, it is delined as a node of a mutation cluster. A cluster by dcfinition is
“connected”, i.c., ¢very node of the cluster has its ncarest species as a node (c.g. a species with a
Hamming distance 1 from that node).

Before the transition o a high mutation regime, therc arc many independent clusters, members of
which may change in time. Each cluster has very few (often a single) numbers of species. The avcrage
cluster size of network is close to unity in the low coupling regime. With time, the cluster size suddenly
increases, accompanied by the transition to a high mutation rate. A large mutation cluster (network of
species) is formed. At and after the transition, those independent clusters stick together, generating one
big cluster. The size of cluster increases from #(1) to #(2%), which also implies that the number of
clusters decreases to #(1) (sce fig. 9). Species connected by mutation are “percolated”*¢ in the whole bit
space of 2% species.

This formation of a large percolated cluster is also scen with the change of coupling. As the coupling is
increased, the size of cluster increases from #(1) to #(2%). while the number of clusters decreases (o
#(1). The transition is rather sharp, as is typical in percolative behavior.

6. Homeochaos

Let us focus on a dynamical aspect of the network in the prescnt scction. Before the transition to a
high mutation rate, a few host—parasite pairs or a small sct of few species form isolated nodes of clusters.
Population dynamics of cach independent cluster (e.g. a few degrees of treedom) can be chaotic. The
total dynamics. then, is approximated by a direct product of independent low-dimensional (chaotic)
dynamics of host—parasitc pairs. On the other hand, population dynamics in the high mutation regime is
essentially high-dimensional chaos, since all populations within the cluster are coupled, and the above
direct-product picture is no longer valid.

Since the exact calculation of Lyapunov spectra including the mutation part is rather difficult, we
compute, for simplicity, the eigenvalues of the product of Jacobi matrices of the population dynamics;
that is, thc Jacobian matrix for hosts and parasitcs (sec appendix). From the cigenvalucs of the product
of the Jacobi matrices, onc can obtain Lyapunov spectra which give a rough measure for the chaos.

In the weak coupling regime with decreasing mutation rate, Lyapunov exponents are broadly dis-
tributed. Some have very large positive cxponents, while some others have negative ones, as are shown in
fig. 10. This bchavior is expected since the dynamics of each host—parasite pair is roughly scparated

"This kind of **percolation”-like behavior is often seen in network formation, as is discussed in the autocatalytic network,

immune network, and so on.
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Fig. 10. Lyapunov spectra obtained by the method in the text after discarding initial transients (solid lines for hosts and broken
lines for parasites). They are obtained through the products of Jacobi matrices for time steps from 4000 to 5000 (a), (¢) and trom
2000 to 3000 steps (b). Parameter for (a) and (b) arc given by y =0.2, £,= 0.4, and ¢, = 0.03 (a) or ¢, = 0.005 (b). (¢) is obtained
for a neutral case with £, =04 and ¢, = 0.03.

(cxcept the saturation term in the denominator), and dynamics of each two-dimensional map has a large
variety ranging from strong chaos to a stable fixed point, depending on its ecnergy E().

In the strong coupling regime with a high mutation rate, the Lyapunov spectra have a platcau at a
slightly positive value. By forming a large connected cluster, the system exhibits high-dimensional chaos.
The exponents are concentrated on small positive values (see fig. 10). This observation confirms our view
that the high mutation rate is sustained under weak chaotic oscillation. For the ncutral landscape, we
again have a plateau of positive exponents for a high mutation regime.

We have also studied the distribution of eigenvalues of the Jacobi matrix of the population dynamics
for one time step*”. During the initial transients of evolution, eigenvalues arc dispersed over (0.5 to 5.
The amplitude of population oscillation is large reflecting the dispersed distribution. For the weak
coupling regime, eigenvalues concentrate below 1 after initial transients; a fixed point solution of the
system is stable. On the other hand, eigenvalues concentrate around (just above) unity tor the strong
coupling regime: A fixed point solution becomes unstable, but the instability is not so strong as in the

“TSec appendix for analytical estimates of the eigenvalues around the Hopf bifurcation of the fixed point solution.



K. Kancko, T. tkegami / Homeochaos: dynamic stability of a symbiotic network 421

!
( N
5¢ - A o | &0 __‘_I
| -
[ |
50 40 I 1¢
| | H
i | w0
30 il 30 I
I\‘ |
il sl o ’
R ' e 20
il o i
i !
10 'Hl oy |} 10 I
il i '
R | \
! ) a Db {b) L (c)
— #mx ] IR , o I —
0 1 2 3 4 o 0 | 2 4 & 0 1 2 U 1 )
eigen values cigen values cigen values

Fig. 11. Distribution of averaged eigenvalues of Jacobian matrix, which are computed trom the first 100 steps and the last 100
steps after the mutation rates settle down to final values (), (¢), whilc we use the first 10 and last 10 steps for (b) since the
convergence is rather rapid there. Parameters are chosen o be y = 0.2, E, = 0.4, and ¢, = 0.03 for (a): and y =02, E, =04, and
¢;, = 0.0025 for (b). (¢) uses a neutral landscape with £, =0.5 and ¢, = 0.03.

initial transicnts (see fig. 11). Also note two separated parts of the distribution of exponents (see fig. 11).
This separation corresponds to the double peak distribution of mutation levels in section 4.

A weak chaotic motion suppresses the amplitude of the population oscillation. Although the oscillatory
behavior is related with the formation of network, too large an oscillation may be (atal to our system,
since many species may dic out. Through the evolution of mutation rates there is a tendency of decrcase
in oscillation amplitude. If a cluster is small, each host is largely damaged by parasites. This kind of
host—parasite (prey—predator) interaction leads to a large amplitude oscillation. Through the evolution
of mutation rates, the cluster gets larger, and thc number of species involved in this interaction increascs,
leading to the decrease of the amplitude of the population oscillation, as is clearly seen in fig. 12.

In short, our system has a tendency (o evolve towards a state with weak chaos with a farge number of
degrees of freedom. In the term “weak™, we mean that the maximum Lyapunov exponent is not so large,
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Fig. 12. Oscillation of total populations for hosts (solid line) and parasites (dashed line). (a) y = 0.2, F,, = 0.4, and ¢, = 0.03; Initial
chaotic oscillations with large amplitudes are suppressed simultancously with an abrupt increase of averaged mutation rate around
320 time steps. (b) y = 0.2, L, =04, and ¢, = 0.0025, The population dynamics approaches a tixed point with a gradual decay of
mutation ratcs.
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and that the amplitude of oscillation of each species is small. In the term “large number of degrees of
freedom”, we mean that the number of positive Lyapunov exponents is large. Chaotic modes are shared
with many species connected by our symbionet.

It has often been discussed that the stability of population dynamics is lost with increasing number of
species [19]. This argument does not hold for chaotic processes. Our result suggests that an cvolutionary
system with many spccies maintains its stability at a weak high-dimensional chaotic state, rather than in a
fixed point or in strong chaos. We may call this homeodynamic*® state as homeochaos.

As a working hypothesis of homeochaos, we stress the following three points:

(i) Dynamic stability. Homeochaos provides a dynamic stability of a complex network whose elements
are temporally updated through their interaction. Examples are found in biology, economics. sociology.
and so on. )

(i) Weak chaos. Homeochaos suppresses strong chaos. The maximal Lyapunov exponcnt is positive,
but is close to zero. The oscillation amplitude is not so large. This weak chaos, for example, is essential to
avoid a too violent change or extinction in the population dynamics.

(iii) High-dimensional chaos. Homeochaos is high-dimensional chaos. There are many positive Lya-
punov exponcnts, although their magnitude is small. The involved degrees of freedom is large.

The above three features are strongly interrelated. The stabilily is attained by the suppression of
strong instability given by (ii). By (iii), strong chaotic instability is shared by many modes, implying the
weak chaos per degrees of freedom (point (ii)).

The notion of homeochaos is independently discussed by Tsuda in the studics of ncural dynamics®?,
where the point (i) is stressed as a functional possibility of chaos. The point (ii) (elimination of strong
chaos) reminds us of the phrase “adaptation towards the edge of chaos’ by Packard [22). He has pointed
out the importance of weak chaos in the biological information processing. In some examples of “edge of
chaos™, the degrees of freedom there may be rather high, implying that such state can be an ilflustration
of homeochaos.

7. Flat versus rugged landscape

How does our scenario of a homcochaotic symbionet depend on the landscape? As has been seen in
the previous scctions, the valley height of fitness landscape is rather important. Here we summarize
results for a flat landscape (neutral evolution), to see the role of landscape.

In a flat landscape (y = (0 in our model), a state with a high mutation rate is morc casily attained. As
has alrcady been shown in fig. 3, the transition is not sharp. and the resulting mutation Ievel smoothly
changes with coupling parameters.

Mutation in a flat landscape lcads to frce Brownian motion within all possible binary scquences. All
species are easily connected through a single-point mutation, to form a large network. Thus the final
cluster size is almost 2%. There is no threshold for percolation for the coupling. The mutation level
increases gradually with the coupling (see fig. 3). Temporally, the cluster size shows a transition to 2*
with the increase to a high mutation rate, and it is sustained at the large value later on. Since the whole

**The importance of homcodynamics is discussed as homeokinests by Iberall.
#9Tsuda has also proposed the notion of homeochaos in relation with neural dynamics [21).
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connected species adjust the population depending on the parasite populations, the oscillation of each
species is not strong. Its Lyapunov exponent is highly concentrated on a small positive value. The motion
shows very weak chaotic oscillation. Number of positive exponents is very large, meaning high-dimen-
sional weak chaos.

In a flat landscape, the distribution of average mutation levels is quite sharp. Even in a very strong
coupling, where the mutation levels fluctuate with time, their averages are almost identical by species.
There is no splitting of species into distinct mutation levels as is seen in a rugged landscape.

Even though the fitness is same for the whole species, the phasc of oscillation is different by species.
Some species oscillate in phasc, others do out of phasc (sce fig. 4d). The species show spontaneous
clustering into a few set of specics by the phascs of oscillations. Clustering may be a common leature in a
nonlinear system with a global coupling [23]. In our model, there are a global coupling and a connection
by mutation organized in a binary network. The latter connection may bring about a novel feature of
clusterings, different from the previous studics [23)].
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8. Intrinsic formation of sustained high mutation rates

One might assume that the sustained high mutation rate is possible only if the mutation of either host
or parasite is extrinsically set at a non-zero constant, o avoid its decrcasing®'®. This is not truc.

We have simulated a model with mutation rates variable both for hosts and parasites. Here we treat
only with the ncutral landscape®!!. Temporal changes of mutation levels are shown in fig. 13, whilc the
dependence of final mutation levels on the coupling ¢, is given in fig. 14. Again, both of thc mutation
rates are sustained at high levels, if the coupling of the interaction is large. The mutation rates for
parasites and hosts are not necessarily identical. The average mutation levels again increase with the
coupling in a stepwise manner.

As for the dynamics, we note that the increase of mutation rates of parasites precedes those of host
specics (sec fig. 13). After this transient, the mutation level of hosts follows (and exceeds), while the level
of parasites decreases till both the levels settle down to finite average levels.

The formation of oscillatory behaviors of symbionct is again obscrved cssentially in the same manner
as in the previous case. The oscillations of hosts and parasites are weakly chaotic. Initial large-amplitude
oscillation is again climinated through the evolution of mutation rates.

9. Summary and discussion

We have studied the evolution of mutation rate, by introducing a population model with mutation and
intcraction among species. In particular, we have simulated a model with interaction among hosts and
parasites. Each species is coded by a bit sequence, and its fitness has a rugged or flat (neutral) landscape.
The interaction is assumed to depend on the Hamming distance between the bit sequences of hosts and
parasites.

#10yWe have also simulated a model with a variable mutation rate for parasites and a fixed one for hosts. Again, we have found a
sustained high mutation rate with symbionet, consistent with other results throughout the present paper. As the coupling is
increased, mutation rates of parasites increase. to form a connected network.

#”Throughoul only this section we take the bit length & = 6.
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First we note that the mutation rate is initially cnhanced and then is lowered in a rugged landscape if
there is no host—parasite interaction. This observation opens a possibility of automatic simulated
annealing.

When the interaction between hosts and parasites is introduced, the mutation rate of hosts can be
sustained at a high level. This sustained level depends on the coupling between hosts and parasites. If the
landscape is rugged, the level goes up quite abruptly, as the coupling cxceeds a threshold. This increase
is percolative in nature. Indeed, a large cluster of specics, connected by mutation, is formed through a
sustained high mutation rate. This formation of symbionet is a key (o resolve the paradox in mutation of
mutation rates; paradox of the stability of a rulc (o change itself. As a level of cach species, it is a
paradox that a rule to change itsclf docs not change to a rule not to change itself, i.e., a low (vanishing)
mutation rate. In the level of cnsemble ol species. however, changing a rule to reproduce cach species is
no more paradox. All species live together in a network to keep their population with some mutational
changes among species.

Note that the nctwork is dynamically sustaincd. Population of each specics oscillates chaotically in
time. This is in contrast with previous arguments on the instability of a fixed point in a complex network.
The oscillation is high-dimensional chaos with small positive Lyapunov exponents. If the mutation rate
were zero, dynamics of cach species would be essentially disconnected. Then some host—parasile pairs
would show strong chaos, whilc some others would show periodic or fixed point dynamics. By sustaining a
high mutation ratc, chaotic instability is shared by almost all spccics, lcading to weak high-dimensional
chaos. This dynamic stability with high-dimensional chaos is termed “homeochaos™.

When the fitness is neutral, mutation ratcs arc more casily sustained at a finite level. The final
mutation level increases gradually with the coupling. Although the fitness is same for all specics, there
appears spontaneous diffcrentiation. Oscillations of population are not synchronized, but have some
clustering of phases.

These results also hold cven if we assume that the mutation rate of parasites can also mutate. Both the
mutation rates of hosts and parasites arc sustained at a high level, again depending on coupling of the
interaction of hosts and parasites.

The behaviors presented through the paper are generally observed in our model with a wide range of
paramcters and initial conditions, as long as the whole species of hosts and /or parasites arc not extinct.
With the increase of couplings. we have always seen the percolative increase of mutation rates in a
rugged landscape. Thus we believe that our maintenance of mutation rates through the self-organization
of homeochaotic symbionct is general in an cvolutionary system with interaction among species.

Formation of network (rom a level of individuals is important in various fields in biological science. Let
us briefly survey possible relevance ol our results to biological networks.

(1) Autocatalytic nctwork: This problem is studied in rclation with the problem of origin of life [24].
Although the percolative aspect is similar to ours, their model leads to a fixed-point type solution. There
is no prey—predator-type interaction which lcads to the oscillation in our case. Our model belongs to a
diftecrent class from their studies.

(2) Immune network: antibody-antigen intcractions are essentially of the same type with our
host—parasitc intcraction. An antigen is damaged by “matched” antibodics. An antibody is again
damaged by a specific class of antibodics. Jerne [25] proposed a formation ol antibody-antigen network.
Percolative formation of networks is found in a model simulation of bit string matching [26]. In an
immunc system, we note a very high mutation rate for antibodies. Oscillation of antibody concentration
and immunc activitics is also discovered. These features arc common with our formation of symbionet
with a high mutation rate. If our symbionct is valid to the immunc nctwork, it provides a possible
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mechanism of the existing high mutation rate in the immune system. We also cxpect that the population
of antibody species may exhibit a homeochaotic oscillation. Of course, our model is not realistic enough
to allow for detailed comparison with an immune system, and it is an important future problem to cxtend
our model by including antibody-antibody interaction and ring formation of antibodies [27], and so on.

Another intcresting problem in a somatic evolution is the formation and maintenance of a society of
dificrentiated cells [28], as is also important in the origin of multicellular organism. By cell division. each
cell reproduces itself with differentiation and possible mutational changes. Symbiotic ccll society is
formed from self-reproducing cells, as is similar to our formation of symbionet. Although dynamical
aspects arc rather different between the two, and the interaction among cells is much morc complicated
than our host—parasite interaction, it is intcresting in future to construct a simple model for cell socicty,
starting from our viewpoint of symbionct.

(3) Ecological network: Of course, our model is originated in the ecological network. The importance
of symbiosis with many species is stressed by Margulis and Lovelock [29]. Prey-predator-type interaction
is common in the ecology. Then, can we find a homeochaotic symbionct there? We believe so. The
stability of a complex ecological system is only sustained dynamically. A fixed point or a periodic state for
many specics is usually unstable [19]. A typical ¢xample of complex ecological nctwork is seen in the
specics in rain forest. The ecological dynamical system of rain forest has following features [30]#'°:
(i) there are a huge numbcr of species; (ii) populations of somc species are very few; (iii) temporal
variation of population of each species is rather large; dominant species may change in time, and
extinction and appearance of new specics seem to be more frequent than in the temperate zones.
Indeed. features (i)-(iii) are also seen in our homeochaotic symbionet in a strong coupling regime. If our
argument is relevant to the dynamics in rain forest, it is important (o confirm the feature (iii) from real
data and to check the dynamical change of each species, which, we belicve, is homcochaotic. We also
hope the observation of the mutation rate itself, which we may expect to be larger than the normal level.
If this is the case, we may assume that the coupling among species is effectively larger than in the
temperate zoncs.

(4) Neural net: The Darwinian viewpoints have been presented in the evolutionary epistemology. In
the studies of neural dynamics, the idca of evolution with selectivity and variation is emphasized by
Edelman [31]. In Edelman’s neural Darwinism, neuronal groups arc under sclcctive pressurc at a somatic
level. “*Mutation” comes from synaptic plasticity. So far, interactions among ncuronal groups arc not
fully considered. If we introduce our idea of mutation of mutation rates to neural Darwinism, it may be
possible to change a rule of synapticity itself, through, for example, control of chemical concentration. In
a psychological level, this “plasticity ol plasticity” may be related with the learning of “how-to-learn”.

(5) Complex adaptive systems in general: Our model provides a prototype dynamics for a network
system such that (i) the number of involved units is large, (ii) the dynamics of variables attached to the
units (c.g., population) depends on the mutual interaction and that (iii) the dynamics itself can change in
time following some inherent dynamics (e.g. mutation of mutation rates in our case). Indeed, such
network systems are gencrally scen in a wide-ranged ficld in biology, sociology, economics. computer
science, and the engineering. We believe that our formation of symbionet through homeochaos is a
common feature for such network systems. The dynamic stability is attained with cooperation of
individual units, in many existing network systems such as social networks. the economics of interacting
many agents, the ccology of computer networks, and chemical network in our body. Our homeochaos

#17Connell [30] discusses the fuct that the diversity in tropical rain forests are maintained only in a nonequilibrium state. Qur
homeochaotic state provides such maintenance of a non-equilibrium state.
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provides the key principlc for the formation of the cooperation and the dynamic stability required in such
systems.

For long time homeostasis was thought to be an essential mechanism for the survival of organisms in
the fluctuating cnvironment. Recently, the importance of oscillatory behavior has been appreciated in
most fields in biology. Stability of a biological system is not sustained in a fixed point, but in a dynamical
state. In our example, formation of weak high-dimensional chaos is essential to keep a system away from
extinction. Population in our model is sustained not at a static state, but through homeochaos. There, too
violent change is rcmoved through high-dimensional dynamics. This elimination of strong low-dimen-
sional chaos may be one possible rcason for the abscnce of low-dimensional chaos in a wild ecological
system [32]. We believe that homeochaos is essential to keep the dynamical stability of complex biological
networks in general.
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Appendix. Evaluation of eigenvalues

In this appendix, we evaluate the stability for the fixed point of our dynamics (1) and (2). The Jacobi
matrix for egs. (1) and (2) is given by

Dy, D, Dy - .__l— i

I +g,pf 1 +g,p"
Dy Dy : : . D= g,,}: g,,p; 5,
D}l . _C/rhi 1 ghhi

1 +g,0hF T 1+g,LhF

at the fixed point (pf, #%). The fixed points have the following forms:

({a) = 1)c,— (1 -d)g, + a(i)y —<{a)
CpCh +gpg;: Ch

p(i)* =

and

(@) =gy + (1 =d)ey  gy(ali) = (@)

h(i)* = ;
cp('h + gp En <y Cp

where {(a) = £, expl £, — E())]/Z,1 and g}, =g,L,1.
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In order to get the analytical form of the eigenvalues, the following approximated matrix is studied:

# G
V—g,p® ¢,pf

Dy = —¢,pF | 0+ 5?(8,}.‘4;,}

For the neutral landscape, eigenvalue A is shown to satisfy the relation

-+ 4g ) =2 (] —
(ImA)2+[C1n+ gl,)[RC/\—l—I-C,‘((a) ]) 7gl'(1 d)

- =07,
: ¢t dg, ]

I

F24

where 027 =[e (a = IXa —d) = (I - dYgpl/c, +4g,. When [A| exceeds 1, a Hopf bifurcation to peri-
odic oscillation scts in, with the emergence of chaotic oscillation through the further increase of
couplings. Stability condition for the fixed point is given by [A] <1, in terms of ¢

en> 82— (ad) /21 - d)[l 140 —d)g /e, 2 <a)y].

The critical value of ¢, breaking the lincar stability is estimated as ¢, = 0.053 under typical parameter
values of our simulation (g, =g, =0.01. ¢, =c, =001, <a =17, d=0.9). This value is approximately
coincident with the obscrved value. If the ruggedness of the landscape is not large (a(i) — {a) < |).
essentially the same condition is obtained for the stability.
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