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Abstract

Mutual-imitation games among artificial birds arc studicd. By employing a variety of mappings and game rules,
the cvolution to the edge between chaos and windows is confirmed. Some other general features are observed,
including punctuated equilibria, and successive alternations of dominant specics with temporal complexity. It is also
shown that diversity of species is drastically enhanced if the songs are represented by discrete symbols.

1. Introduction

The evolution of species in mutually interact-
ing systems has been a problem of interests in
many branches of science. Is there a trend to
increase the complexity? Is there a characteriza-
tion for an cvolutionarily favorable state? The
determination of such a state is generally a
complicated question involving a certain balance
among several factors, such as costs to adopt a
strategy and behavior, and gains of adopting it.

The recent “‘dogma’ for the characterization
may be the “edge of chaos™ scenario. This
concept has been emphasized in many contexts
such as cellular automata. Boolean networks or
CML [1-4]. To the authors’ knowledge, how-
ever, there was no clear example presenting the
evidence for evolution to the edge of chaos in
the exact sense of dynamical systems theory.

In a recent communication, we have proposed
a minimal model for the cvolution to the edge of
chaos, based on the dynamical systems theory

[5]. The model was motivated by the observed
complexity of bird songs: It is known that a bird
with a complex song (with a large repertoire
based on combinations of simple phrases) is
stronger in defending its territory, as is observed
by Krebs with the help of loudspcaker experi-
ments [6,7].

So far the reason why a complex song evolves
is unknown, although there is the hypothesis that
a complex song may give the impression of a
crowd, thus being efficient for defense [7]. This
hypothesis, however, has no experimental evi-
dences.

On the other hand, there are some reports of
obscrvations that birds try to imitate cach other's
songs for the defense of territory [6]. Combining
thc above two observations, the following hy-
pothesis has been put forward for the explana-
tion of the complexity of bird songs: Birds join a
battle for defense of territory through mimicking
each other’s songs. In other words, if a bird A
can imitate bird B’s songs better, then A can
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intrude B’s territory and share food. A is advan-
tageous in the battle for survival.

It may be expected that a complex song is
difficult to imitate. Hence we may expect the
evolution to a complex song. Despite a lack of
direct experimental support for this scenario, the
concept of mutual-imitation game itself deserves
much attention, as a novel problem of game
theory and as a general framework for the
evolution to complex behavior.

In the abstract imitation game, we assume that
songs of an artificial bird (or player) are gener-
ated by a nonlinear map. Birds play imitation
games with each other. We assume that the
winner of the game is fitter for the survival,
which is taken into account by the population
dynamics as a growth rate or by a simple replace-
ment of losers by winners. Mutational changes of
parameters for the song dynamics are introduced
in the coursc of replication (see Section 2 for
modeling details).

We have to emphasize two advantages of our
modecling here.
® Since our artificial birds generate their songs

by nonlinear mapping, songs can have a

complexity generated with real numbers. In

most game theory, strategies are chosen from
discrete sets, while the strategies (songs) here
are chosen from continuous sets.

® Since our parameters have a clear meaning in
the nonlincar mapping, the meaning of the
edge of chaos is quite clear in the exact sense
of dynamical systems theory.

Since all players are labeled by continuous
parameters, no clear speciation is given in ad-
vance. Judging from the result of simulations,
however, it seems justifiable to divide players
into several specics.

With high mutation ratcs, the coexistence of
several species has been observed, while, by
lowering the mutation rates, we have explicitly
shown the evolution to the edge of chaos, in the
exact sense of nonlinear dynamics. In addition,
the evolution occurs towards the borderline
between a window and chaos, not to the first

onset of chaos. This observation leads to the
hypothesis of the evolution to the border be-
tween observable and invisible chaos. Some
other features emerge through the evolution,
such as punctuated cquilibria and abrupt, com:
plex alternations of dominant species.
In the previous report [5], we have adopted
¢ the logistic map as a song generator,
¢ a Euclidean criterion for imitation,
e an “infinite dimensional” lattice (ail-to-all
game),
(see the meanings of these terms in Section 2).
Here we report studies on several variants of
the model to test the validity of the results and
the argument in the previous communication [5].
For example, we put birds on a 2D square
lattice, allowing only fights among the players on
the nearest neighbor sites. In most cases, the
results in the previous paper [5] are reproduced,
implying the universality of the concept of the
“edge of chaos”, and the “edge of windows™.
Furthermore, we find several exotic phenomena
such as the diversity (or coexistence) of species
assisted by discrete symbolization of birds’ songs.
This paper is organized as follows. In the next
section, we present the details of our modeling.
In Section 3, we survey the results of the model
with the “Euclidean criterion”, parts of which
were also reported previously [5]. These results
provide basic notions and a framework for later
sections. Characteristic features of the imitation
games are shown there. We will give some
intuitive reasons why the system evolves to the
edge between chaos and a window. Moreover, it
will be shown that our “edge of chaos” scenario
is stable against the choices of the topology of
players. In Section 4, wc present some results,
obtained with the use of digital symbol repre-
sentation of songs, “LR criterion”. Such symbol
representation of dynamics is shown to lead to
an increase of fluctuations, resulting in the di-
versity of species. In Section 5, we resume the
problem of the priority of the edge between
chaos and a window by changing the birds’ song
generator (to the tent or the circle map). In
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particular, we will confirm its priority by simulat-
ing a system with the coexistence of two distinct
types of song mappings with and without win-
dows (i.e., the logistic and tent maps). In Section
6, we will discuss the complex dynamics of the
imitation games by allowing for different dy-
namics for the “song generation” and imitation
processes. A summary and discussions are given
in Section 7.

2. Modeling

Our model consists of three stages: the song
generation process, a 2-persons’ imitation game
and reproduction. We will discuss these three
procedures separately.

2.1. Song generation (song dynamics)

As a “song”, we use a time series generated
by a nonlinear map. In the previous report (5],
the logistic map

X4y =1-ax’ (1)

n

was adopted for this purpose, since it is one of
the most thoroughly investigated maps and a
standard model in nonlinear physics. A bird, say,
the ith bird, posscsses its own parameter a(i).
We regard the time series (x,({). x,(i),...)
generated by the map, as the ith bird’s song.

In simulations here, the logistics map is again
chosen, while other maps for a bird's song
generator are also used to test the universality of
our results. Here simulations with the use of the
tent map or the circle map will be given in
Section 5.

2.2. 2-persons imilation game

Three factors are involved in defining the 2-
persons’ game: topology of players, imitation
and game processes (or criterion for winners).
Here we give a detailed explanation of each
process separately.

2.2.1. Topology of players

In the previous report [5], players are assumed
to fight against all other players. In the sense of
statistical physics, players live on an infinite
dimensional lattice. Spatial information is not
included in this modeling. Here we also investi-
gate cases where the players live on a two-
dimensional square lattice with periodic bound-
ary conditions. For most simulations, we adopt a
lattice of 30 x 30.

2.2.2. Imitation process: choice of an initial
value for song imitation

Each bird player has to adjust the initial
condition for its song so that the time series by
its own dynamics can imitate the other player’s
song better. Here we use the following imitation
process for simplicity. Each player generates its
song starting from a random initial value (within
|=1,1]) and first repeats its own dynamics T
times to eliminate transients. Then, for a given
transient time T, player 1 (mimicker) modifies
its dynamics with a feedback from player 2
(singer):

X, (1) = £l (1= €)x, (1) + ex,(2)] - )

Here € is a coupling parameter for the imita-
tion process. After repeating this imitation pro-
cess for T, iterations, player 1 uses its own
dynamics x,, (1) = f,[x,(1)]. In other words, the
above process is used as a kind of initial con-
dition for the imitation of the other player’s
dynamics. The coupling parameter € also varies
by players. However, the distribution of this
parameter seems “irrelevant”, as far as we judge
from our numerical results. Thus we will skip the

discussion on this parameter.

2.2.3. Game

After player 1 completes the above imitation
process, the two players are decoupled and
generate songs by their own dynamics. Then we
calculate a quantity D(1,2) measuring the dis-
tance between the imitated time scries {x,(1)}
and the singing one {x,(2)}. By changing the
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role of two players, D(2,1) is also measured. If
D(1,2) is smaller than D(2,1), player 1 imitates
the other’s song better and wins this 2-persons’
game (and vice versa). The definition of the
distance D(i,j) gives a criterion for the winner
and may be crucial in the game. Here we adopt
either of the following two criterions:

(1) Euclidean distance. As the measure, we
choose D(1,2)=X"_ |x,(1)—x,(2)]> over a
certain time 7. This choice is just a normal
Euclidean distance. (Of course, the distance
should be cordial for the circle map, since x is on
a circle).

(2) LR-code. Instead of using real numbers
{x,(#)} for the criterion, it is often useful to
represent them by some discrete set of symbols.
The time series of the logistic map, for example,
can be traced by two symbols, represented by R
(x>0) and L (x<0) [10]. By using such sym-
bolization, the distance between two trajectories
is measured by the number of unmatched sym-
bols over some iterations. In the above sym-
bolization for the logistic map, the distance is
thus defined by

D(1,2)= mZ IS(x,,(1), x,,(2)) , 3)

where IS(a,b) =1 if ab <0 and 0 otherwisc.

2.3 Reproduction

The fitness of the players is given by the
results of the games. Offsprings are produced
according to the results of fights. We adopt either
of the following two for this process:

(a) Replacement. This might be the simplest
way; the parameters of losers are replaced by
those of winners at every game. We adopt this
replacement rule for players on a 2D lattice.

(b) Score. After cach game, the winner gets W
points, while a loser gets L points (W > L)
(Both get L(W + L) in the case of a draw.) After
a large number of games, the population dis-
tribution is updated proportionally to the score

of the players, with the further restriction that
the total population be constant.

At both of these reproducing stages, we in-
clude mutational errors in the parameters; the
parameters a and € arc changed to a + 8, € + 4/,
respectively, where variables 6 and 8’ are ran-
dom numbers chosen from a suitable distribution
(we use a homogeneous random distribution
over [-m,p], or a Lorentzian distribution
(P() =1/{u[1 + (6/x)*]}). The latter choice is
often useful, since the former choice inhibits a
large jump of parameters and often the parame-
ter values are trapped at intermediate values,
while the latter can provide a wider range of
““species’.

These three processes define our model. We
will sometimes specify a model by its sets of rules
such as [2D lattice, logistic, LR, score, 5 X 107*],
which means that players are on a 2D lattice,
and generate songs by the logistic map, that the
distance between two songs is measured by the
LR symbolic scquence, and that the population
is updated proportionally to player’s score with
the mutation rate u =35 X 107%,

Throughout this paper one time step is defined
such that every player gets one turn, where one
turn is a game with one of the neighbors in the
lattice case and a game with all in the all-to-all
case. Thus there are in total N games for N
players for the lattice case, and JN(N—1)
games for the ali-to-all case.

3. Basic results: simulations with the Euclidean
criterion

Let us start our presentation by giving numeri-
cal results with the Euclidean criterion for dis-
tance.

First, we present the results of a game with
high mutation rates. The model is defined by [2D
lattice, logistic, Euclidean, replacement, 0.001].
In Fig. 1, we present the distribution of the
logistic parameter a after 10 time steps. It clearly
shows the coexistence of two species; one is
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Fig. 1. Snapshot distribution of the logistic paramcter of the
players after 10 time steps. The mutation parameter g is
0.001, and the lattice size is 30X 30. Initially a set of
parameters {a.e} for a bird is assigned randomly from
[0.6,1.1] and [0,0.5], respectively. Two peaks corresponding
to special points for the logistic map are observed (see text).
Unless otherwise mentioned, we set 7,=T,,=T=30
throughout the present paper.

around a = 0.75 and the other is around ¢ = 1.75.
The former corresponds to a bifurcation point
(period-1— period-2) while the latter corre-
sponds to the edge between the period-3 window
and chaos. The snapshot configuration is de-
picted in Fig. 2, where dark dots mean players
with a~ (.75 while bright dots give those with
a ~1.75. This cxample already shows the charac-
teristic phenomenon that advantageous states are
near bifurcation points (in other words, the
“edge of something™).

To investigate the fitness of the players we
switch to a model with all-to-all games [infinite,
logistic, Euclidcan, score|, as presented in the
previous communication, since it serves as a
prototype for our models.

The average score of players is plotted as a
function of the bifurcation parameter a (Fig. 3).
By taking a high mutation rate, we allow for the
existence of players with a wide range of param-
eters a. We can sec many peaks which corre-
spond to the the bifurcation points from period-2
to period-4, and from period-4 to period-8, and
to the edge of the period-3 window, period-5
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Fig. 2. Snapshot pattern of the configuration of distribution
of the logistic paramcter, corresponding to Fig. 1. Here a
bright (dark) pixel corresponds to a player possessing a ~
1.75 (0.73), respectively.

window, period-4 window, and so forth. This
score landscape is rugged as is often discussed in
spin-glass type models in biology [8,9]. Here this
landscape is not implemented as a model itself
(like the energy function in spin-glass type
models [9]), but is emergent through the evolu-
tion. Indced this landscape dcpends on the
population distribution at the moment.

To see the advantage of the “edge of chaos™ in
the score, we have plotted the score as a function
of the Lyapunov cxponent A (Fig. 4). As is
shown there, the score has a clear peak around
A=0. Indeed this peak stems from the edge of
the period-3 window and chaos (¢ ~=1.75), and
the edge of the period-4 window and chaos (a =
1.94).

A high mutation rate, however, leads to large
fluctuations, which make it difficult to identify
each ‘“‘species” precisely. Let us therefore con-
centrate on low mutation rate cases for the rest
of the present paper.

In Fig. 5, the temporal evolution of the aver-
agc of the parameter a over all players is plotted.
Plateaus are observed successively, providing an
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Fig. 3. Emergent landscape: Average score for the players
with parameters within [4,, 4, + A] is plotted for a,= —1 + /A,
with the bin size A = 0.001. We have adopted W=10, L =1,
Timi =255 and T'=32. The simulation is carried out with the
rule [infinite, logistic, Euclidean, score, 0.1], starting from
the initial parameter a = 0.6 and € =0.1. Sampled for time
steps from 1000 to 1500, over all players (whose number is
fixed at 200). (Adapted from [5].)

explicit example for punctuated equilibrium [11].
In a temporal domain with a plateau, the devia-
tion from the average value is typically very
small. Each plateau corresponds to a bifurcation
point or an edge of chaos as mentioned for the
score landscape. Finally, the birds reach the
parameter for the edge of the period-4 window
(a=1.94) and stay there .

Thus we have seen the priority of the “edge of
chaos”, and the evolution to it. To be more

"The averaged score plotted as a function of the Lyapunov
exponent A has a broad peak around A = 0, which extends to
the region A <0 rather decply. The scorc shows a sharp drop
at the side of A >0, on the other hand. With the increase of
T, the peak slightly shifts in the positive direction while the
drop for A <0 gets sharper.

Averaged Score {a.u.)
6.60 . | o

6.40

6.20 -

6.00

5.60

A -
A

500

480

r T
-4.00 -3.00 =200 -1.00 0.0
Lyapunov Exponent

Fig. 4. Average score of the game versus Lyapunov expo-
nents. The simulation is carried out with the rule [infinite,
logistic, Euclidean, score, 0.02], 7, =255 and T=32. We
have adopted W= 10, L = 1, starting from the initial parame-
ters ¢ =0.9 and € =0.1. Average scores are obtained from
the histogram of Lyapunov exponents, for which we use a bin
size of 0.01 for —1 <A <1, while it is set at 0.1 for A< —1
(since the sample there is rather sparse). Sampled over time
steps from 500 to 750 over all players (whose number is fixed
at 200).

precise, we have to note that our edge state lies
between a window and chaos. In windows, the
logistic map can provide chaotic transients be-
fore the dynamics settles down to a stable cycle.
Thus the existence of transient chaos should be
useful to imitate a dynamics of a different
nature. A window at a higher nonlinearity re-
gime includes a variety of unstable cycles, as
coded by Sharkovskii’s ordering [10]. Therefore
it can provide a larger variety of dynamics, as
transients. This might be the reason why the
edge of windows is strong in our imitation game.
The above speculation suggests the importance
of transient chaos, besides the edge of chaos, for
the adaptation to a wide range of external
dynamics.
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Fig. 5. Two examples of the temporal evolution of the average of the parameter a: The simulation is carried out with the rule
[infinite, logistic, Euclidean, scorc], and with mutation rates 5 X 10™* and 8 X 107, T, =200 and T = 50, starting from the initial
parameters a = 0.6 and e = 0.1. Averages of the parameters a over all players are plotted versus the time. The total population is

fixed at N = 200.

Let us incorporate again the lattice structure,
by taking the model [2D lattice, logistic, Eucli-
dean, score, 8.7 X 107°]. The temporal evolution
of the average logistic parameter value a is
plotted in Fig. 6. Again we see the evolution to
the edge of chaos (windows) after punctuated
equilibria. Thus the previous model with an all-
to-all game can be regarded as a good mean field
theory for our problem. The lattice structure
enhances the fluctuations as is seen by comparing
the flatness of the plateaus in Figs. 5 and 6 or
noticing the lack of some plateaus herc. To get
some spatial information, we measure the dis-
tribution of the maximum connected cluster sizes
of a species, since admissible parameter regions
are separated enough to be regarded as distinc-

tive species. We have plotted the temporal
changes of the maximal cluster sizes around the
time steps for abrupt changes of the mean
logistic parameter (Fig. 7). Successive transitions
of dominant species are clearly visible.

An interesting question here is if the lattice
structure helps the coexistence of species or not.
In Fig. 7, both species with @ =~ 1.75 and a = 1.86
increase their populations together, which seems
to suggest a kind of symbiosis. This example,
however, is not so decisive to claim that spatial
differentiation supports the coexistence of
species. Further studies are necessary.

The examples in the present section show that
the “‘edge of chaos” concept is valid irrespective
of the topology of players. We stress again the
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Fig. 6. Temporal evolution of the average logistic parameter
a for [2D lattice logistic, Euclidcan, replacement, u =8.7 X
107%] (as mentioned in the text, one time step =900 2-
persons’ game). Initial values for a are chosen randomly from
[0.6,1.1.]. Punctuated equilibria at @ ~0.77 and ~1.94 can
clearly be seen. The platcau at 1.94 continues after 3500
steps, as far as we have observed.
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Time Step
Fig. 7. Temporal evolution of four connected clusters in the
vicinity of the change of the average logistic parameter in

Fig. 6. Around the time steps [2700,2800], two clusters
(~1.74 and (~1.86) seem to grow simultaneously.

significant role of the windows, which will be
further addressed in Section 5.

4. Symbolization induced complexity and
diversity; LR criterion

Next we study the case with the use of the
distance in terms of discrete symbolic codes. The
motivation for this choice is the examination of
the effect of symbolization in communication
codes: Does representation by a discrete set of
symbols lead to an increase or decrease of
diversity and complexity?

The temporary evolution of the average logis-
tic parameter is given in Fig. 8. In this case,
advantageous players have such parameters that
the symbolic sequence changes its pattern there,
e.g.,a=1,13,.... It is not difficult to see that
the dominant species lie again at window values
for long intervals. Clearly, this example shows
the stability of the “edge between chaos and
window” scenario against the choice of criterions
in the 2-persons’ game. ‘

Judging from the amplitudes in Figs. 7 and 8,
we conclude that the fluctuations here are larger

2 T T T
1.8 \ -:
" i it
§n1.4 .
1.2 .
! .
(1. J P S SRS SR BT

0 2000 4000 6000 8000 10000

Time Steps

Fig. 8 . Temporal cvolution of the average logistic parameter
a for |2D lattice, logistic, LR, replaccment, u = 1.25 x 1074].
Alternations between states at a ~ 1.77 and ~1.94 are seen.
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than in the Euclidcan criterion case. In the
lattice version, the average values of a go up and
down temporally with some transient “disor-
dered” intervals. No “final” parameter exists
here, in contrast with the case of the Euclidean
criterion, where a = 1.94 is robust and is reached
from any initial distributions of parameters. The
parameters switch (almost) forever. After stay-
ing at the edge between some window and chaos,
the parameter switches to another edge or to a
bifurcation point. In the example of Fig. 8,
successive transitions between a =1.75 (period-
3) and a=1.94 (period-4) are observed. Such
complex alternations between ‘“‘ordered states”
are typically seen in the chaotic itinerancy |12],
although the present switching process may be of
a stochastic (nondeterministic) nature.

Moreover, coexistence of different species
(paramcters) in the LR case is strongly cn-
hanced, compared with the Euclidean case with
the same mutation rate. See Fig. 9 for snapshots
of the distribution of players with respect to
distinct sets of the logistic parameter a. The
diversity is enhanced for the symbolic criterion.

The increase of diversity is also seen in simula-
tions with the all-to-all game. Roughly speaking,
players with a=1.75 (period-3 window) are
rather robust and occupy a large ratio of the
population. (As the fluctuations incrcasc, a win-
dow with a larger interval (such as the period-3
one) is more robust, which is also true of a
model with a high mutation rate with the Eucli-
dean criterion [5].) Still, we have seen coexist-
ence of other parameters such as a = 1.94 besides
the above group. When the average is plotted
versus time, it fluctuates around a =1.75~1.78,
while thc variance of the fluctuations remains
large even in a very small mutation rate regime
(say 107%).

Summing up the present section, we have
found the symbolization enhances complexity of
dynamics and diversity of species. We have found
coexistence of two groups, and successive swit-
ches of dominant species forever.

250
(a) ]

200

150 |

100 L

distribution - a

50 ¢+

0.7 0.83 0.95 1.08 1.2

range-a

o 350
)
300 | l—

250

™)
2

150

distribution - a

100 |

50

0 = —L.—.I_I.I—I

1.6 166 173 179 185 191 198

range-a

500

o
e

400 |

300 ¢

distribution - 2

200 |

100 ¢

oLllln bl

1.7 176 183 189 195 201 207

range-u

Fig. 9. Successive snapshot distribution of the logistic param-
cter at time steps 1000. 5000, 7000. The parameters of the
model arc taken identical to those in Fig. 8.
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What is the origin of this diversity and com-
plexity? One possible guess is the following. By
the binary symbolization, playcrs with a certain
range of the logistic parameter come to possess
an identical temporal pattern in singing, whereas
fine structures within the paramecter interval are
distinguished in the Euclidean (or analogue)
measure. Thus a “strong” pattern of time series
which was observed only in some very narrow
widow rcgime may be stabilized and cxists in a
wider parameter regime. The specics, for exam-
ple at a~1.63, can have a larger chance for
survival,

By the above mechanism of symbolization,
effcctive strength of players is further averaged
out. The difference between two songs in the
game is much weaker than the Euclidean case .
Relationships between two players with diffcrent
edges arc more subtle, and no robust parameter
exists. The switching dynamics and the coexist-
ence may reflect this averaging effect by the
symbolization.

If this scenario of diversity is universal, it
suggests the importance of discretization to sym-
bols, for the diversity. Why is the human lan-
guage so diverse? Is the diversity caused by our
ability to represent analogue vocal signals by a
discrete (digital) set of symbols?

5. The priority of the edge between a window
and chaos

Here we examine the scenario in Section 3, by
choosing a few different mappings for the song

? Another way of wcakening the difference (but keeping an
analoguc criterion) is the use of a modified definition for the
distance measure; D(1,2) = L7 _ |x,.(1) — x,(2)]”. with y < 2.
We have studied the case y =1, which also enhances the
fluctuations and the instability of the dominance of a species.
similarly to the LR criterion. Such a modification may be
rather superficial. however, as is immediately seen by consid-
ering the extreme limit y ~0.

dynamics. In this section, we will usc the tent
map and the circle map as thc song generator.
The results support our hypothesis on the priori-
ty of the windows, as discussed in Section 3.

5.1. Tent map

We choose the following tent map parame-
terized by one parameter,

x",_|=a(%_|%_x,,l). (4)

as the song dynamics. Thus cach bird possesses
two parameters a(i), €(i) as in the case of the
game with the logistic map. In the tent map,
there is no window structure. With the increase
of a, chaos appears at @ =1, which is the only
edge of chaos. For a > 1, no bifurcation structure
cxists.

Numerical results of the evolution of the
imitation game show that the average value of
the parameter a cvolves to 1, the onset of chaos
for the tent map (Figs. 10,11), irrespective of
criterions. Since g = 1 is the only edge, this result
is expected.

For the logistic map, we have given a possible
explanation to the priority of windows in Section
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Fig. 10. Temporal evolution of the average tent parameter.
The rule is given by [30 X 30 lattice. tent, Euclidcan, replace-
ment, 6.1 X 107°]. Initial values for the tent parameter a are
chosen randomly from [0.3,0.4]. The deviation from 1 is very
small after the equilibrium is established.
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Fig. 11. Temporal evolution of the average tent parameter
with the LR criterion. The rule is given by [30 x 30 lattice,
tent, LR, replaccment, 8x 107*]. We have also simulated
smaller u cases, but the fluctuations remain still larger than
those from the Euclidean criterion (given in Fig. 10).

3. Is this edge of window stronger than the above
onset of chaos in the tent map? Since no window
exists in the tent map, it is interesting to study a
system where birds with the logistic map and
with the tent map can coexist and compete. Here
we slightly modify the logistic map to

xn+1 =2ax,,(l—x,,) (5)

so that the variables (paramcters a) in both maps
take values in a same range [0,1] ([0,2]). We put
players on a 2D square lattice, and adopt the
critecrion by a discrete set of symbols (L for
x <0.5 and R for x >0.5). Initially, a bird’s song
takes either the logistic or the tent map random-
ly with equal weights. By starting from the
population with small ¢ values, the mean value
of a for logistic birds evolves to a punctuated
cquilibrium value a ~ 1 after a few steps (see Fig.
12). At this equilibrium state, the ratio of the
birds with the logistic map to those with the tent
maps remains almost constant ~8:1. Then the
logistic parameter shows an abrupt change to the
value corresponding to the period-3 window (or
the period-4 window, depending on system size).
During the change, the birds with tent maps are
completely exterminated, which means that the
onset of chaos in the tent map is defeated by the
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Fig. 12. Temporal evolution of the average value of the
logistic parameters ¢ (thin line) and the population of
adopting a logistic map song. Here the lattice size is 32 X 32
(in total 1024 players) and u =7.5 X 107>, Around time step
4000. birds with logistic maps cover the total lattice and those
with the tent maps arc exterminated.

windows in the logistic map. This result may
serve as support for our hypothesis on the
priority of the windows’ edge.

5.2. Circle map

We have also studied the case with the use of
the circle map

X,,,=x,+asin(mx,)+d, modl 6)

as the song generator [13]. Now each bird
posscsses three parameters a(i), d(i), e(i). We
determine the rule for the 2-persons’ game by
measuring the cordial distance between two
trajectories of maps as noted previously. Nu-
merical results again show abrupt changes of
paramcters with successive punctuated equilib-
ria. Synchronized temporal motions between
average values of a and d arc clearly seen in Fig.
13. The average of d seems to take an “‘equilib-
rium” value of either ~0 or ~0.5, resulting in a
shift of the origin of the variables {x,({)}. On the
other hand, the average a lies again at window
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Fig. 13. Temporal evolution of the average value of a (thin
line) and d (broken line) values for [30 x 30 lattice, circle,
Euclidean, replacement, §x 107°].

values (to be precise, those with d ~0) a~ -2,
-1.5, 1.5, etc. .

Summarizing this section, the significant of the
window structures in the imitation game, dis-
cussed in section 3, is further confirmed by
changing the generator for birds’ songs.

6. Dual dynamics

Before closing this report, let us present an
example stressing clearly the aspect of dynamical
complexity in the imitation game.

Let the logistic map be again the song genera-
tor. This time, however, we assign two parame-
ter values for the logistic map to each player so
that it can use a different value in imitating and
in singing. This is not an irrelevant complication
of the model. Rather, there is no a priori reason
to belicve that a bird should use an identical

"To see the role of d, we also have carried out some
simulations fixing d = 0 with same choices for other parame-
ters. In this case, the magnitude of average ¢ seems to be
increasing monotonously with the punctuated equilibria at
windows ~ ~§, -7, .. Thus d is not irrelevant, but plays a
role in suppressing the magnitude of the temporal variation
of a.

parameter for the two processes. For imitation
games with one parameter, the restriction of
using an identical parameter in singing and
mimicking may be a cause to achieve an optimal
value of either singing or mimicking, and lead to
an edge. In the two-parameter game it may be
possible that each process evolves to its own
optimal value. Then one might expect that the
results of the two-parameter games would be
either of the following: (I) the paramcters in
singing and imitating evolve to the same “‘edge
of chaos” value; or (II) the parameter in singing
reaches a value for a fully chaotic state (~2.0)
while the imitating value also evolves to a highly
nonlinear region.

Surprisingly, the observed result supports nei-
ther of these. For the Euclidean critcrion, the
singing parameter again stays around a =1.94,
the edge of the period-4 window, while the
imitating parameter stays around some other
windows’ edge (e.g., a =1.75) or other bifurca-
tion points (e.g., a =0.75, bifurcation point from
period-1 to -2), depending on the mutation rate
and the topology of the game.

The results with the symbolic criterion are
much more complex. Let us take an example
with [2D lattice, logistic, LR, replacement, 5 X
107). The singing parameter switches among
a~177, 1.94, 2, in synchronization with the
changes of the imitating parameter a ~1.1, 1.3,
1.77, (Fig. 14). This switching continues forever
as far as we have checked.

The above result may be interpreted as fol-
lows: Optimal values for singing and imitating
parameters are not unique, but there may be
several local minima. Thus optimal values for the
singing parameter depend strongly on the popu-
lation distribution of the mimicking parameter at
that time, and vice versa. A small disturbance is
cnough to change both the optimal values and
the  population  distribution  completely.
Synchronized changes between the two parame-
ters reflect such a subtle balance.

As stressed in Section 3, the fitness function is
not given a priori but emerges through the



windows. The evolution to the edge of windows
is commonly observed irrespective of topology of
players, criterions for winners in a fight. It is also
universally observed, independent of the choice
of the map as a song generator (as is confirmed
in the simulations with logistic and circle maps).
We believe that our conclusion is universal for all
dynamical systems (maps or differential cqua-
tions) as a song, as long as they show chaos and
windows with their parameter change.

The priority of the edge of windows is clearly
demonstrated by the dominance of the window’s
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Fig. 14. Temporal evolution of the averages of the logistic
parameters for singing (broken) and imitating (thin) in dual
dynamics, with LR criterion. The lattice size is chosen to be
30x30, and g =7.5x107"

evolution. For one-parameter games, however,
the landscape is rather stablc oncc the system
evolves to the “edge of chaos”. In the dual
dynamics game, the landscape, besides its rug-
gedness, varies in quite a complex manner. Thus
the model provides an illustration of a novel
problem: cvolution of a system with a dynamical-
ly changing rugged landscape.

Let us sum up the present section. The evolu-
tion to the edge between chaos and windows is
still valid in dual dynamics, but the population
dynamics is more complicated with successive
alternations of dominant specics and synchron-
ized changes between the two parameters. This
example illustrates that static (or “cquilibrium™)
characterizations are not enough for imitation
games, and that the understanding of the dy-
namics is essential.

7. Summary and discussions

In this report, we have examined the cvolution
of imitation games. Beside the confirmation of
the evolution to the “edge of chaos” we have
given a support to the priority of the edge of

edge of the logistic map over the onset of chaos
in logistic and tent maps. Though birds with both
maps can cocxist with parameter values around
the onset of chaos, the players with the tent map
are completely exterminated with the abrupt
change of the logistic parameter to the period-3
window’s valuc.

Thus we propose an additional scenario here;
the evolution towards the edge between chaos and
window. This edge corresponds to the border
between observable and invisiblc chaos. In a
window, there is topological chaos in the dy-
namics. Although the final attractor is a periodic
cycle for almost all initial conditions with a
probability measure 1, there are chaotic orbits
from nonmeasurable initial conditions (on a
Cantor set). In connection with this topological
chaos, there are chaotic transients before an
orbit is attracted to the periodic cycle.

The existence of topological chaos assures a
variety of unstable periodic orbits. Thus a player
with a window parameter can imitate a large
variety of periodic orbits, showing its dominance
over players with periodic dynamics without
topological chaos (@ <1.4011 ... in our logistic
map). By the transient chaos, the dynamics has
an ability to imitate chaotic time series roughly
up to the length of transients, which diverges at
the edge.

As a song generator, dynamics at a window
parameter can provide a large variety of orbits as
transicnts. Since the transicnt length diverges at
the edge, a high varicty of songs is maintained.



J. Suzuki, K. Kaneko | Physica D 75 (1994) 328-342 341

Thus gencrated songs are not easily imitated by
periodic or chaotic dynamics.

Summing up, our window’s edge scenario is
based on the ability of creating complexity
through topological and transient chaos. Tran-
sicnt chaos has a potentiality to adapt a wide
range of external dynamics, while the orbit of
the attractor is not complicated. Transient chaos
may be important in a wide area of biological
information processing, and our window's edge
scenario may be applied universally in cvolution
and adaption.

Besides the characterization of the evolution-
arily advantageous states, we have discussed the
origin and maintenance of diversity of species,
with representation of songs by a discrete set of
symbols. and in dual dynamics for songs and
mimicry.

If there is a given fixed fitness landscape, it
would be reasonable to expect that the fittest
species would dominate the world. Indeed, with-
out any mutations or changes of the environment
the diversity of specics may not be sustained.
There can be several possibilities for the origin
of diversity. A simple answer may lie in the
spatial differcntiation mechanism. Indeed our
simulation shows the cocxistence of some species
in a 2-dimensional topology. The diversity in-
creases in the spatial game.

Howcver, a more interesting discovery in the
present paper is symbolization induced diversity.
By adopting a criterion with a discrete set of
symbols, the diversity is enhanced drastically. At
some stage of information processing in the
brain, representation by discrete symbols is often
adopted. Thus we may expect that symbolization
induced complexity can be one origin of the
diversity in signals and languages .

For the criterion with discrete symbols, the
population dynamics is also complicated. It
shows successive punctuated cquilibria forcver.

*Did God destroy the Tower of Babel by giving us the ability
of symbolization?

The complexity is further enhanced with the
choice of dual dynamics for songs and imitations.
A varicty of window’s edge states appear succes-
sively, providing temporal complexity. In a large -
system size, this complexity is easily expected to
lcad to spatial diversity, since the successive
changes of dominant species cannot be synchron-
ized over all lattice regions. Diversity induced by
temporal chaos is recently discussed as the
homeochaos scenario [14], where the population
dynamics of species shows weak and high-dimen-
sional chaos. Our window’s edge scenario shares
the notion of “weak chaos™ with the homco-
chaos scenario. In homeochaos, we have also
seen successive switches among ordered states,
noted as chaotic itinerancy [15.16]. Detailed
study of dynamical mechanisms of the successive
switching in our casc will be necessary in the
future.

Our imitation game provides a universal route
to the evolution to complexity. The pressure to
cscape from being imitated gives a trigger to the
evolution to complexity. Conceptually, it can
also be scen in many examples in biological or
social evolution, besides our original motivation
of a bird song. Such examples may include the
evolution of a communication code (“secret
code™), Batcsian mimicry [17] and social
structure °.
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