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Abstract

By introducing a mean-field version of the tile automaton model introduced in earlier works, growth of molecules through
chemical reaction networks is studied with explicit consideration for molecule shape as a “tile”. Tiles are picked up randomly
to collide, and with a certain rule they react to form new tiles. A non-trivial growth pattern, called joint growth is found, with
which tiles grow by combining tiles successively. This joint growth leads to a power-law distribution of tile sizes, by forming
a positive feedback process for reproduction of tiles through cooperative relationship among large tiles. This effective growth
is achieved by spontaneous differentiation of time scales: quick process for an autocatalytic network and a slower process with
joint growth. We also discuss the relevance of the present results to the origin of life as a loose set of reproducting chemicals.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

While chemical activity of biological molecules are
well studied, it is still unclear how the chemical evo-
lution has progressed: especially, we are interested in
the origin and evolution of the metabolic system.

The metabolic system is sustained by enzymes,
which establish the specificity of the chemical re-
action network against side reactions. However, a
high specificity from the first stage of life is rather
unlikely. Hence, we assume that early life (or a
pre-biotic chemical reaction network system) is based
on non-specific chemical reactions and its flexibil-
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ity allows for the search of a reaction with higher
specificity, efficiency, stability, or complexity.

In the present paper, we try to realize such evolution
by modifying the tile automaton models[14–16]. In
the model, the reaction pathways depend on the shape
of molecules and configuration (i.e., the angle of colli-
sion). Then, diverse pathways are potentially included
by making use of the combinatorial variety of shapes.
We think that this diversity played an important role
in early chemical evolution.

Here we take a model with a well stirred “soup” by
adopting the random collision rule and disregard spa-
tial variation, in contrast with the original tile model,
where “mechanical” behaviors emerge through the
spatial arrangement of molecules (i.e., tiles)[16]. The
spatial aspect is included only as the shape of tiles
and the collision angles.
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Note that the possible number of configurations
increase rapidly as tiles become larger and their shape
become more complicated. Then, we expect that
some pathways are spontaneously selected through
the reproduction of molecules, depending on the
chemical network. As we will show, we find the
formation of cooperative relationship among large
tiles to maintain their growth against decomposition
(see Section 3.4.2), which may correspond to the
emergence of enzymatic function.

This feature may correspond an exploitation of
combinatorial complexity, since we expect that the
number of possible configurations and of the reaction
pathways increases as large tiles are formed. The algo-
rithmic chemistry by Fontana[5,6] discusses a similar
problem. In Fontana’s models, a formula ofλ-calculus
resembles a chemical molecule and the application
between two “molecules” stands for the chemical re-
action. Then the combinatorial variety of calculus is
used and the result of reaction can be diverse. The most
remarkable difference between Fontana’s models and
our models lies in the assumption of the time scale
of the reaction. In Fontana’s model, the reaction is
allowed to take infinite time (i.e., until the calculation
ends) and large modifications of molecule shape is al-
lowed. In other words, this model assumes relaxation
for each reaction. In contrast, in our model, only local
changes of shape are applied and a short time scale is
assumed for each reaction. Relaxation is not assumed
and single reaction in our model corresponds to the
intermediate stage of Fontana’s models. Then by our
model, it is possible to see the dynamical aspect of the
reaction.

As a result, an interesting feature is found in our
model with explicit consideration of the shape; while
the polymerization in a well-mixed medium is thought
to be difficult since alignment is rarely satisfied, the
growth of molecule is obtained in our model. As de-
scribed later (seeSection 3.4), such growth in size can
be realized as a side effect.

Note that there are autocatalytic pathways among
tiny tiles. Such small tiles work as depolymerizing
agents and any large tile can be decomposed. It fol-
lows that the growth of tiles against decomposition
is not easy. The most important driving force for

the growth, as we will find, comes from the forma-
tion of a “cooperation” between large tiles. Unlike
Kaufmann’s autocatalytic network[12], this cooper-
ation is not based on pre-defined catalytic pathways,
but depends on specific shape and configuration (i.e.,
angle of collision). Also, this cooperation emerges
from diverse patterns of reactions and has a non-trivial
positive feedback process, unlike the pattern-matching
catalysis of Bagley et al.[1,2].

The organization of this paper is as follows.
Section 2describes the model. The behavior of the
model is given inSection 3. In Section 4, we dis-
cuss the mechanism for the growth and cooperative
relationship. Finally, conclusion is stated inSection 5.

2. Model

The tile, which represents a molecule, is repre-
sented as a set of connected unit squares (i.e., cells).
No internal state in a molecule is considered. All
tiles are kept in a “soup” and random collision is
adopted.

Chemical reactions are represented as a change of
tiles’ shape and size, induced by collisions. Tiles are
selected randomly to collide and the configuration for
the collision (i.e., angle of collision) is also chosen at
random. As described below, the outcome of a reaction
is given by the application of deterministic transition
rules, similar to cellular automata.

The protocol of the model is shown inFig. 1. Af-
ter tiles are chosen and a complex of random config-
uration is formed, the overlapping length is checked.
Complex that are too dense are not allowed to react.
This reaction rule is based on the previous tile automa-
ton models[14–16].

We assume that a period of time is required for re-
action and dissolution of a complex. Complexes wait
in the tank in an intermediate state. Note that the com-
plexes may collide again (i.e., be chosen again) dur-
ing this wait, and a three-body reaction is possible.
It follows that a densely packed complex can react
through multiple collisions. After the reaction or dis-
solution of a complex, the tiles are put back to the
soup.



254 T. Yamamoto, K. Kaneko / Physica D 181 (2003) 252–273

Fig. 1. The protocol of the model. See text for detail.

Boundary conditions are chosen as follows. There
are upper limits for both population and density, to
keep approximate chemostat condition. Also, tiles
no larger than 5 are preserved, once they appear. We
suppose such tiles are supplied as input flux. Since
this model is not based on population dynamics but
on individual population, amplification is required to
support the evolution of pathways. The effect of this
feature is discussed later (seeSection 3.4.1).

We assume there are only a few small tiles in the
beginning. The typical initial condition consists of tiny
tiles only (size 1 or 2). For more details of the model
and parameters, seeAppendix A.

Fig. 2. (a) The colliding side and the reacting zone are shown. The reacting zone is the nearest neighbor of the colliding side. (b) When
there are more than one colliding side, the corresponding reacting zones are simply joined.

2.1. Reaction rule

The reaction is restricted by the reacting zone
(i.e., the neighborhood of colliding sites), as shown
in Fig. 2. The use of local reaction rules allows for
the extension of single body reactions to multibody
reactions, by simply joining the reacting zones.

Similar to the tile automaton model, the rule of reac-
tion inverts the states within the reacting zone (see ex-
amples inFigs. 3 and 4). Here, each cell has a state of
either 0 (empty space) or 1 (occupied by a cell). Note
that the total area is not conserved by the reaction.

The tiles are rearranged after the reaction. Depend-
ing on the configuration, the tiles may join, break, or
new tiles may be created.

2.2. Rate rule

The occurrence of the reaction could be suppressed.
After a complex is formed, the overlapping length is
evaluated by the rate rule and reaction is prohibited
when the length is big (i.e., densely packed). The over-
lapping length is represented by the “cell ratio” (the
ratio of occupied cells in the reacting zone) and upper
limit is adopted for allowing the reaction.

This rule suppresses the decrease of total mass of
tiles, because the production rate is given by the ratio
of occupied cells in the reacting zone. The upper limit
of the cell ratio (rH) is usually 0.55, where decrease
of total area is allowed.
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Fig. 3. Before the reaction. The areas covered by the reacting zones vary, depending on the configuration.

Fig. 4. After the reaction. Differences on the configurations result in a large difference. (a) A rectangle is reproduced. (b, d) The total area
is conserved and tiles are also conserved, though rotated. (c) The total area decreases. (e, g, h) The total area is conserved, but L-shape
is broken. (f) An L-shape is extended. Note that from all possible configurations of an L-shape and a square, only one case preserves a
curved shape. The importance of L-shape area is shown in case (i), where two tiles join.

Examples are shown inFig. 5. Note that the ratio
depends on configurations, in the cases (a)–(e), the
difference of configurations give different respective
cell ratios. Besides, in (d) and (e), the reaction is sup-
pressed in the case (e) and whether a reaction occurs
or not is controlled by a small tile on the left hand side.

3. Results

3.1. Overview

A typical snapshot of the simulation of our model
is shown inFig. 6. While specific shapes of tiles that

are created depend on the initial conditions including
random seeds the diversity of size of tiles is almost
same. The average size of the largest tile is about 120.
The growth of tiles is generally observed (seeFig. 8),
and sustained in the presence of random elimination
of tiles.

The population sizes of “tiny” tiles (size 1 or 2, see
below for the definition) are large, which replicate by
autocatalytic process as will be shown. Tiles of size
3–5 cannot reproduce by themselves, and are supplied.
We show later that, according to the present rule, there
is no autocatalytic pathway except the tiny tiles of size
1–2 (seeSection 3.2).
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Fig. 5. The cell ratio depends on the configuration. The cell ratios are, respectively (a) 1/3, (b) 7/8, (c) 2/3, (d) 1/3 and (e) 10/17. When
rH is 0.5, the reaction is allowed for (a) and (d). Since the tiles are identical for (a)–(e), respectively, the reaction pathway largely depends
on the configuration. Also, on (d) and (e), the position of an L-shaped tile determines if the reaction occurs or not.

When a large tile reacts by colliding with a tiny
tile, it is more likely to be decomposed (seeFig. 11)
than grow. If there is no input flux, any tile is decom-
posed into tiny ones and only tiles of size 1–2 remain.
In other words, the system relaxes to an equilibrium
state consisting only of tiny tiles. Hence, the growth
of tiles is not a trivial process. Later, we see that
there are two different mechanisms for growth: one is
the “joint growth”, growth by joining large tiles (i.e.,
larger than about 20) where a cooperative relationship
among them is observed. The other is the aggregation
process by adding tiny tiles in a step-by-step man-
ner, as an independent process for each growing tile.
Of course, collision with a tiny tile is most frequent
and aggregation is widely seen for all kinds of tiles.
However, such collisions may lead to decomposition.
Hence the growth by aggregation is rather slow, as
shown later (seeSection 3.4.2). In contrast, the config-
urations of collisions resulting in joint growth is lim-
ited, and patterns of joinable shapes are also limited.
While the speed of joint growth is significantly faster
than that of aggregation, once achieved, the probabil-
ity of occurrence of a configuration or distribution of
tiles that allows for joint growth is small. Indeed, the

growth of tiles is accelerated by achieving the distribu-
tion of tiles, so that they survive from collisions with
tiny tiles. Joint growth works only for large tiles.

Now we examine the conditions for joint growth.
Conditions are satisfied and maintained only if the dis-
tribution of large tiles reaches some level, and joint
growth has a threshold-type dependence on the input
flux of small tiles (seeSection 3.4.1). In Section 3.4.2,
we will show that this threshold-type behavior is origi-
nated in “cooperative” relationships among large tiles,
leading to a positive feedback process that produces
larger tiles.

Although the growth itself looks similar to what is
observed by Bagley et al.[1,2] in an autocatalytic net-
work, there is an important difference. Bugrey et al.
explicitly implemented the catalysis in advance, so
that the growth was possible. In our model, since the
shapes change by reactions, and the product of each re-
action does not necessarily continue further: the larger
the tiles grow, the less prone against decomposition
they become, and a cooperative relationship (i.e., joint
growth) among large tiles emerges. In fact, this dif-
ference in the growth mechanism leads to a drastic
change in the distribution of tile sizes. In our case the
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Fig. 6. A snapshot of simulation. The tiles are sorted the size, from bottom left to top right. The number in brackets is the size and
whenever it appears the number outside the brackets is the population size.

distribution of size has a long tail with a power law,
while in the study by Bagley et al., the distribution de-
cays exponentially. This demonstrates the efficiency
of joint growth.

The effective growth of tiles proceeds, with the
reaction pathways shown schematically inFig. 7.
Two cases for growth, aggregation, and joint growth
are shown by the arrows, where the bifurcation of
branches of a pathway is due to the reaction at a

different configuration of collision. As we show later,
the tiles are classified into four zones with regards to
the growth pattern, depending on the size of tiles.

• Zone A (tiny tiles; size 1 and 2): the tiles form an
autocatalytic network of reproduction. Within the
network of all possible two-body reactions, these
tiles form a closed set and no other tile is created by
two-body reaction. On the other hand, all tiles with
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Fig. 7. A schematic picture of the reaction pathways. Zones are
classified by tiles’ sizes. A: 1–2, B: 3–5, C: 6–19, D:≥20 (shown
in shadowed letters). Schematic images of joint growth and ag-
gregation are also shown (denoted by “joint” and “aggregation”,
respectively). Note the difference in reaction products between
joint growth and aggregation.

size 1 or 2 reproduces by themselves through auto-
catalytic process. If there is no input flux, only this
network remains since larger tiles are decomposed
while the tiles of zone A are preserved by autocat-
alytic reactions. Accordingly, the network of zone
A is called the minimal network (seeSection 3.2
for details).

• Zone B (small tiles; size 3–5): the tiles in zone B
are supplied as input flux, as shown inSection 2.
Small tiles do not disappear once created.

Indeed, the input flux is necessary to keep the
growth of tiles, since curved tiles, which are es-
sential for growth, are included in this zone. We
should note that there is no autocatalytic pathway
outside zone A. Small tiles are supplied but they do
not replicate. They are consumed to produce larger
tiles.

• Zone C (medium tiles; size 6–19): the tiles in this
zone are not supplied from the outside; instead they
are formed from the reaction of small tiles of zone
A and B. In this zone, tiles are not large enough to
continue joint growth. The tiles have some joinable
parts but they cannot continuously keep on growing.

During a collision with a tiny tile, the tiles are
easily decomposed. If two tiles in this zone success-
fully join to form a tile in the next zone, the larger
tile can continue joint growth.

• Zone D (large tiles; 20 or larger): most tiles have
several parts that allow for joint growth (see
Fig. 12), and they grow efficiently with joint growth
(seeSection 3.4). Zone D tiles are large enough to
maintain their size against collisions with tiny tiles.
As shown in Section 3.4.1, a positive feedback
process appears: the larger a tile grows, the more
stable it becomes against for the decomposition.
Since a large tile may have many joinable parts
with a complicated shape, the reaction with tiny
tiles is suppressed by the rate rule (seeSection 2.2).
Although a tile may be broken into pieces (see
Fig. 11), its fragments can grow again by joining
with a larger tile. While the aggregation process
is still working in this zone, its contribution to the
growth is minor, when compared with joint growth.

We should note that joint growth includes a
non-trivial growth process.Fig. 8 shows the distri-
bution tiles’ size. To obtain the histogram, we ac-
cumulated data from 70 runs. The population size
distribution has a tail with a power law. The region of
power-law distribution extends to a larger size with
time (compare with the histograms at time 10 and
50). The increase of the power-law tail clearly shows
a non-trivial growth process, supported by a positive
feedback process (for more detail, seeSection 3.4.2).

3.2. The minimal network

The minimal network is a closed subset of path-
ways that reproduce themselves through autocat-
alytic reactions. In the present model, the minimal
network consists of all tiles of size 1 or 2, within
which all possible reaction pathways are closed and
form an autocatalytic pathway (seeFig. 9). Without
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Fig. 8. Histograms of mass of tiles. Log–log plot. Two snapshots are imposed (t = 10 and 50). For each plot 70 runs are accumulated.

input flux (i.e., the supply of small tiles), only tiles
in this network remain. Also, if only tiny tiles ex-
ist at the beginning, the diversity of tiles does not
increase and only tiny tiles can reproduce. This

Fig. 9. The minimal network. (a) All two-body reaction pathways between tiny tiles. When the reaction paths bifurcate, they are due to
collisions with different configurations. SeeFigs. 3 and 4for details. (b) The minimal network. Solid lines stand for transitions due to a
reaction. Dashed lines connect identical pairs. The label “R” indicates a reproducing path. Note that the minimal network is closed within
tiny tiles.

state corresponds to an equilibrium state; no poly-
merization resulting in the growth of tiles is seen
and only tiles that belong to the minimal network
exist.
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The diversity of tiles shown inFig. 6 is supported
by the input flux and partially multibody reaction (see
below). Note that a small tile is not supplied until it
appears here at least once. The diversity is triggered
by the multibody reaction. For making the diverse tile
shapes by joining, at least one L-shaped tile is nec-
essary, which is not included in the minimal network
(compare case (i) ofFigs. 3 and 4).

A tile is often decomposed by a reaction with tiny
tiles of size 1 or 2 (seeSection 3.3). Since smaller
tiles are more fragile, they need to be supported by an
external supply source. Then, it is important to under-
stand how the population of larger tiles is sustained
without external supply, and in spite of the decompo-
sition by the tiny tiles. This mechanism is examined
in Section 3.3.

To enhance the pathways beyond the minimal net-
work, at least one small tile is required. In particu-
lar, an L-shaped area is required for joining two tiles.
Fig. 10shows how an L-shaped tile is made only with
tiny tiles through a multibody collision. However, the
large tile is fragilised by collisions with tiny tiles. In
Figs. 3 and 4, out of all possible configurations for col-
lisions ((e)–(h)), only one case (f) preserves the curved
shape. The curved tiles of small size may be decom-
posed before they join and increase their respective
size. Then, to obtain diverse pathways, the small tiles
have to be supplied in order to start further growth
process (seeSection 3.4.1).

Fig. 10. An example of formation of L-shaped tile. This shape cannot be formed by a two-body reaction between tiny tiles.

3.3. Joint growth vs. decomposition

As generic features of reactions, we suggest two
tendencies. One is decomposition, whereby a tile
is broken by reacting with tiny tiles. The other is
growth, which contributes to diversity and comes
against decomposition. In this section, we study both
tendencies in detail and discuss how they oppose
each other. Although growth is supported by the input
flux, it is robust to a certain extent, as is described
below.

The conflict between growth and decomposition
may correspond to two stable equilibria of Dyson’s
model[3] of the origin of life. In his model, there are
two equilibrium states: one is an active state where
peptides are “alive” in an autocatalytic manner and
the other is an inactive state which corresponds to
a “dead” state. In our model, those two equilibria
correspond to states with growth and decomposition,
respectively. Also, in Dyson’s model, there is an un-
stable equilibrium state between them. Indeed a jump
from the “dead” state to the “alive” state is possi-
ble. While its driving force is the size of polymer in
Dyson’s model, in our model, the driving force will
be shown to be a “cooperative” relationship between
large tiles: the possibility for the jump is defined as the
probability of collision between large tiles. Although
this probability is defined by the density of the input
flux, we should note that the cooperative relationship
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between large tiles is not explicitly defined by the rule
of reaction and hence is an emergent behavior.

Next, let us study the mechanisms for growth. In
fact, there are two mechanisms; joint growth and ag-
gregation. The former is a quick growth process of
tiles realized by combining large tiles. The latter is a
rather trivial and a slower process, like diffusion lim-
ited aggregation (DLA)[8]. Joint growth progresses
faster than decomposition and works well even if the
input flux is low. This feature is important, since the
decomposition has a driving force to bring back the
system to the “dead” equilibrium. A strong counter
force is thus required to keep the system “alive”.

While the joining of tiles is ultimately allowed by
the reaction rule, a continuous joining process is not
a trivial phenomenon. Since tiles are continuously de-
composed, collisions between large tiles should take
place frequently. For instance, if there is only one large
tile, it cannot maintain its size. While large tiles may be
formed by aggregation, they must also meet together
in order to sustain their size. Since the configuration
of collision is randomly chosen and appropriate con-
figuration for joining is limited, joint growth must be
quite unstable in the beginning. Then, a threshold-like
phenomenon is expected (seeSection 3.4.1); as the
number of large tiles increases by joint growth, a pos-
itive feedback process sustains itself (seeSection 3.4).

Conversely, decomposition is a much more stable
process than joint growth. Decomposition is likely to
occur when some tile reacts with a tiny tile. While
the tiles may join to form a single tile, their mass in-
creases only little. Since the reaction is restricted to the
neighborhood of colliding sites and the mass increases
at most by the size of reacting zones. A step-by-step
growth is difficult (seeSection 3.4.1for simulation)
when the input flux is low. Also, the tiny tiles form
the minimal network and they usually occupy a large
proportion of the total population. Hence the collision
with a tiny tile occurs with higher probability. The de-
composition process must thus be very efficient.

In the worst case, a large tile can be cut into two
parts.Fig. 11shows that even a large tile can be easily
broken when reacting with a tiny tile. A W-shaped
region, as shown inFig. 11(f), is a typical vulnerability
for a large tile. With this type of reaction, the size

of the tile decreases drastically. In fact, a tile can be
decomposed into tiny tiles after a few steps.

3.4. Joint growth

We now study joint growth in more detail. Gener-
ally speaking, joint growth is faster when the reaction
involves larger tiles. As in zone D (seeSection 3.1and
Fig. 7), a rapid growth is possible by joining large tiles,
when a reaction occurs between two complex-shaped
tiles. In Fig. 12, several examples of joint are shown.
Note that L-shapes are required on the same side as
the collision. Furthermore, both tiles must be larger
than the reacting zone (2× 3 cells in one-side colli-
sion) and be curved to include an empty area within
the reacting zone. If such joinable shapes are part of
tiles, a larger tile is formed (seeFig. 16). Of course,
the occurrence of joins depends on the configuration.
It is not easily satisfied, and “joinable shapes” are of-
ten broken by a reaction with other configurations. In
spite of this difficulty, the rapid growth obtained by
joining reactions starts to appear at the zone D, which
continuously supplies joinable large tiles.

This joint growth is based on a positive feedback
process. The coalescence of large (i.e., joinable) tiles
increases the population ratio of joinable large tiles
and the probability of joint growth is increased. Also,
a larger tile requires longer time to be decomposed
into smaller ones. As a rough estimation, the feed-
back process producing larger tiles works when there
are several tiles of size larger than 20. This gives the
boundary between zones C and D (seeSection 3.4.1).
Once there is a sufficient number of tiles in zone D,
joint growth becomes stable. Indeed, growth is possi-
ble even when the input flux is cut off. Even if large
tiles are cut into two parts, the fragments can join with
other tiles to make a stable growth again.

Figs. 13 and 14show snapshots when the input flux
is cut off. At time 15, when a rich diversity of tiles
exists, we cut the input flux. Then, at time 25, tiles
of intermediate sizes (i.e., zone C) have already dis-
appeared but large tiles remain, and even grow. We
should note that no stable tile keeps on existing for a
long period, but large tiles continue to exist by chang-
ing their size and shape. The quick change of shapes
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Fig. 11. A large tile can be decomposed by the reaction with smaller tiles. (a)–(c) shows a collision with the upper arm. A bulge can work
as a connector, but it is not stable against a reaction with “wrong configuration”. (a) A caved area is broken and three cells (L-shaped area)
are disintegrated. (b, c) This configuration works as a connector, but a square is not joinable and is also broken. In case (c), the arm is
transformed into a W-shape, which has weak parts (see also case (f)). (d, e) A long bulge is not joinable, but they are transformed into a short
one, which has connectability. The mass is however decreased. (f) A W-shape is the weakest point and the tile is dissolved into two parts.

Fig. 12. Examples of joinable shapes and their dependence on the configuration. (a) The two tiles join together at the top, but not at the
bottom. (b) The larger number of curved areas a tile has, the likelier it grows. Roughly speaking, the combination of a notch and an L
(or U) shape gives a joinable part.
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Fig. 13. A snapshot at time 15. The input flux is cut off at this moment. Shown in a similar manner as inFig. 6.

is shown in the figures. At time 50, seeFig. 14, tiles
are clearly divided into a small one (at zone A, B)
and a large one (zone D). Roughly speaking, the tile
size of the larger group is greater than 20, which
gives an estimate for the lower size limit of joint
growth.

The large tiles remain for more than 100 time units;
much longer period than when the input flux is applied
(15 time units). Although the shape of remaining large
tiles depends on the initial condition, this behavior is
commonly seen. Then, we can conclude that a set of

joinable large tiles is a non-trivial self-sustaining state
(i.e., maintain joint growth).

To sum up, joint growth has the following two dis-
tinctive features. First, the unit of growth is a large tile.
Tiles larger than some threshold are required to keep
this joint growth, stably against decomposition. Sec-
ond, joint growth is provided by reactions with other
large tiles or smaller fragments broken from them.
Thus, the growth starts only after the population of
tiles reach as a condition given by zone D. This condi-
tion is given by the distribution of tiles. Unlike DLA,
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Fig. 14. Snapshot at times 25, 35, 50 and 75. After the cut off, large tiles remain with their shape and size changed.

joint growth is not possible when there is only one
large tile. InFigs. 15 and 16, examples of the aggre-
gation (i.e., DLA like process) and joint growth are,
respectively, shown.

The feedback process requires a sufficient number
of large tiles. It is expected that the state is reached
only if the initial input flux is larger than a certain
threshold. Without positive feedback process the
probability to form tiles would gradually increase
with the input flux, while a threshold-type depen-
dence on the input flux is expected under the presence
of a positive feedback process. The existence of the
threshold-like behavior, to be shown in the next sub-
section, also implies the existence of a lower limit for
joint growth, which gives the border between zone
C and D.

3.4.1. Threshold-like dependence of joint growth
on the input flux

We now examine joint growth more closely. To
study the dependence of joint growth on the input flux,
the percentages of such events over 100 runs that the
largest tile exceeds each given limit (10, 20, 30, 50, 70
and 90) against the probability of input flux (Ps) (see
Fig. 17). Here the input fluxPs is defined as follows:
if a tile no larger than 5 disappears from the reaction,
it is supplied with the probabilityPs.

From the figure, a threshold-like behavior is clearly
discernible. AsPs increases, the maximum size in-
crease rapidly aroundPs > 0.40. Note that for none of
the runs, the maximal tile size reaches 90 whenPs =
0.35, while for all runs it reaches 90 whenPs = 0.45.
This threshold-like behavior is observed for tile sizes
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Fig. 15. An example of the aggregation process. Two consequent reactions are shown. The increase in mass is small, although the shapes
change significantly.

larger than 20, while tiles of size 10–20 are commonly
found around the threshold,Ps = 0.35–0.45. Tiles of
this size are thought to supply the rapid joint growth
of tiles, thus producing larger tiles.

In Fig. 18, histograms of the mass of tiles are plot-
ted for several values ofPs, obtained from samples
over 100 runs. A horizontal dotted line is the aver-
age population size 1, the minimal value expected for
continuous existence. Since we expect more than one
large tiles to be required to start joint growth, the lower
limit for joint growth is estimated by looking for the
point where the histogram for the threshold value of
Ps crosses the dotted horizontal line.

Fig. 16. (a) An example of joint growth. (b) Depending on the configuration of the collision, the same tiles as case (a) are unable to join.

As shown above, the threshold for the growth is es-
timated aroundPs = 0.40–0.35. We compare the his-
tograms for both sides of the threshold. The two his-
tograms cross the dotted line at about size 20. ForPs ≥
0.40, more than one tile of size 20 exists, while none
do for Ps ≤ 0.35. Accordingly, we estimate that joint
growth requires tiles of size larger than about 20. The
border between zones C and D is defined by this size.

The threshold-like behavior demonstrates a positive
feedback process. First, joint growth requires large
tiles. As shown inFig. 16, some special “joinable”
shapes (e.g., L-shaped area) and configurations are
required for coalescence. However, if a tile has an
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Fig. 17. The percentage of cases which have tiles larger than the listed size. Note that the plots converge as the limit size increases. One
hundred samples are taken for each probabilityPs.

L-shape area, it may be broken by a reaction depending
on the configuration for the collision. Then, in order to
continuously form a larger tile, it is important to have
as many joinable shapes as possible; hence a larger tile
is more advantageous for joint growth. Indeed, tiles of
threshold size 20 often have several joinable areas.

Fig. 18. Histograms of the mass of tiles with the change ofPs with semi-log scale. Averaged over 100 runs. The dotted horizontal line
gives the size 1 for the average population.

Second, as a tile grows up, its stability against de-
composition increases, since it has a large surface area
and a complex shape. Then, by the rate rule, it is less
likely to react with a tiny tile. While these large tiles
have weak parts (seeFig. 11), the probability for de-
composition decreases generally.
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Third, with the increase in population of the large
tiles, the probability of collision between large tiles
increases (seeSection 3.4.2for detail), contributing to
joint growth. To sum up the above three features, it is
expected that once a sufficient number of large tiles
appear, growth is accelerated: tiles easily join together
and become stable against decomposition. The growth
is maintained by this positive feedback process, which
supports the threshold-like behavior.

3.4.2. Joint growth vs. aggregation
To isolate the effect of joint growth, we modified the

model by preventing joint growth. We have imposed
the following two restrictions on the reaction: one pro-
hibit the reaction between large tiles, and the other
prohibits the reuse of fragments from large tiles. With
these restrictions, the only possible way for the growth
is the aggregation process, by successively putting to-
gether small tiles. To be more specific, the restrictions
are as follows:

1. Prohibiting the reactions between large tiles: if
there are more than one tiles larger than the limit
lL (typically 20), the reaction is prohibited. Here,
to suppress the joining process, two tiles larger
than lL (i.e., in zone D) cannot react. However, a

Fig. 19. Same plot asFig. 17with two restrictions added to eliminate joint growth. Note that more input flux is required to obtain large tiles.

reaction between a tile in zone C and one in zone
D is still allowed.

2. Killing fragments: among the products of the reac-
tion involving a tile larger than the limitlK (typi-
cally 20), all tiles smaller thanlK are eliminated.
This restriction prevents cooperative relationship
between a large tile and fragments from the col-
lapse of a large tile. A fragment does not show joint
growth by itself, but it may join together with a
small tile or another fragment to come back to zone
D. With this restriction the distinction between joint
growth and the aggregation is made clear, since the
reuse of fragments works as a “gray zone” between
the two zones.

When the probability of the input flux is low, the
latter restriction is effective: as the fragments could be
used as a source for joint growth if the restriction is
not included. Then, with this restriction, the threshold
value for the growth is shifted to a higher probability
Ps. On the other hand, the former restriction prevents
large tiles from joining. Quick growth is hence sup-
pressed.

As mentioned above, by adding these restrictions,
we have plotted inFig. 19 the probability that a
maximal tile reaches a given size. Now, the plots
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Fig. 20. The time series of the sizes of the largest tile. Averaged over 100 samples for each case.

exhibit a large fluctuation, since the aggregation pro-
cess depends only on the probabilistic input flux.
Threshold-like behavior is not observed. Here, we
should note that the aggregation is supported by small
tiles, not by tiny tiles, since the latter process always

Fig. 21. Histograms of mass of tiles whenPs = 0.45 (joint growth case), averaged over 100 samples at time 500. Log–log plot. The plot
is similar to Fig. 8.

exists, due to the autocatalytic minimal network, even
whenPs is zero.

ComparingFigs. 17 and 19, the aggregation process
is suppressed, whenPs is low (Ps = 0.45) and only
joint growth works. To see the difference between the
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Fig. 22. Histograms of mass of tiles when the two restrictions are adopted (aggregation case), averaged over 100 samples at time 500.
Log–log plot. The plot saturates, implying a slow growth.

two growth mechanisms, the following two cases are
compared:

• Joint growth:Ps is set at 0.45 without additional
restrictions.

• Aggregation: the above two restrictions are imposed
to suppress joint growth, whilePs is set to 1.0 to
amplify the aggregation.

In Fig. 20, the time series of size of the largest tile
are shown for both cases, by averaging over 100 sam-
ples. The difference is clear. With aggregation only,
the maximal size is suppressed. The aggregation pro-
cess is slow in spite of highPs.

The histograms of mass of tiles are shown in
Fig. 21 (joint growth case) andFig. 22 (the aggre-
gation case), again obtained over 100 samples. Note
that, for the latter “aggregation case”, small tiles
are supplied at a high rate (with largePs) so that
the total number of tiles is much higher. However,
the mass distribution in this case is not extended to
large sizes, and decays rapidly. On the other hand,
for the former “joint growth” case, the distribu-
tion shows a tail with a power-law-like behavior
as in Fig. 8. This power-law tail suggests the exis-

tence of a non-trivial feedback process within joint
growth.

The positive feedback process leading to the
power-law mass distribution can be summarized as
follows; the larger a tile grows, the more frequently
and stably joint growth occurs. This feedback process
is strong enough to overcome decomposition.

We should note that this positive feedback process
is not found in earlier models of pre-biotic evolution
such as in Bagley et al.[1,2]. In fact, in their model, the
mass distribution is exponential, without a power-law
tail, and can be explained by a random aggregation
process.

4. Discussion

In the present paper, we have studied a model of re-
acting molecules (tiles), to see the emergence of repro-
duction out of a ‘soup’ of molecules. We have found
that growth of tiles is achieved through a positive feed-
back process by reaction among tiles. Notice that, in
the present model, and in the absence of input flux, the
system can only go to a equilibrium state, where only
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tiny tiles exist. The equilibrium state is brought by the
minimal network, which is a closed network among
tiny tiles. The tiny tiles form an autocatalytic network
and increase the population which provides a supply
for larger tiles. On the other hand, any large tile is
easily broken apart by a collision with tiny tiles (see
Fig. 11). Hence, tiles tend to be decomposed into tiny
ones. To attain a non-trivial structure within the reac-
tion network, some mechanism is essential to maintain
the size of polymers (tiles).

The growth processes, the aggregation and joint
growth are regarded as the driving forces to bring the
system out of the equilibrium. While the former pro-
cess is rather trivial, the latter one introduces a posi-
tive feedback process among the reactions, and coop-
erative growth among tiles is made possible, leading
to a power-law distribution for tile sizes.

4.1. Joint growth

First, let us recall how joint growth is possible. Joint
growth emerges through a cooperative behavior among
tiles and is sustained by a positive feedback reaction
process. We should emphasize that this cooperativity
is most important in the present model, since it brings
about fast and robust growth.

The cooperativity is based on joint growth of large
tiles. In Fig. 20, tiles grow faster than linearly over
time. Indeed, if we assume that the largest tiles join
at each time step, the maximum size would increase
exponentially over time. Of course, the supply of large
tiles is limited, and this assumption is invalid. Hence
this exponential growth does not occur, but the system
still maintains a high growth speed as in our case.

Due to the positive feedback process, the reaction
of large tiles does not crucially depend on the input
flux. Although joint growth is supported by the input
flux, large tiles keep on growing over a long time
span, even when the input is cut out (seeFigs. 13 and
14). Here large tiles recycle the fragments made by
decomposing reactions and use them as a resource for
further growth. This recycling process is also possible
even when the input flux is low (seeFigs. 13 and 14).
Accordingly, joint growth works under a lower input
flux condition than the aggregation. With this joint

growth, spontaneous polymerization to form a large
molecule is accelerated.

Next, let us discuss the condition to allow for joint
growth following our numerical result. First, there is a
selection pressure for a complicated shape. Since a tile
with a simple shape is more vulnerable to a collision
with tiny tiles, the tile shape becomes complicated as
it grows. The formation of such complicated shapes
brings about parts suitable for joint reactions.

Second, the reaction pathways have diversity, since
the reaction depends on the angle of collision. The va-
riety of possible configurations of collisions increases
as tiles become larger. A larger tile can have richer
pathways.

Only limited number of tile parts can join with other
tiles. In order to keep continuous joint growth, the ex-
istence of several such parts is necessary, since many
types of collision do not contribute to joint reaction.
A large tile can have several spare joinable parts as
“buffers”, to sustain joint growth against decomposi-
tion reactions. Hence a positive feedback process takes
place: the larger a tile grows, the more likely it is to
sustain joint growth. Among a huge variety of possible
reactions, joint growth is selected under the pressure
of decomposition reactions.

While the shapes allowing for joint reaction are
the most important factor for the growth, the selec-
tion of specific shapes is not necessary here. Since the
tile shape keeps on changing through reactions, there
exists a large variety of reaction pathways. Also we
should note that there is no genuine self-replication,
except within the minimal network. Hence, it is diffi-
cult to attribute a given function to the shape of given
individual tile, and similarly to distinguish a tile that
can grow by joint process from one that cannot.

In spite of this difficulty, the population of tiles
formed by the joint growth shows that the power-law-
like size distribution of tiles is a remarkable difference
with the exponential distribution obtained by aggre-
gation only (seeSection 3.4.2). The growth of tiles
is accomplished, even though a function for each in-
dividual tile (unit) is not assigned. The growth is a
collective behavior of the tiles.

The emergence of complex tiles that helps
each other’s growth may suggest the spontaneous
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emergence of enzymatic activity. The soup of tiles in
our model keeps the activity for further reproduction.
Note that the reproduction here is not the accurate
replication adopted by DNA and/or RNA. Our results
suggest that the cooperative loss reproduction is eas-
ier to be evolved as a generic phenomenon of reacting
polymers, as has also been proposed by Dyson[3] for
the origin of life.

4.2. Evolution without template and emergence of
temporal differentiation

Several models of autocatalytic reaction networks
have already been proposed to study the origin of life
[1,2,12]. These studies focus on the faithful replication
of molecules (or the ensemble of molecules). In these
studies, any large molecule is synthesized at once,
not step-by-step. The possible reaction pathways are
pre-defined by a given rule for a catalytic network. For
example, the possible reaction network is defined by
pattern matching of a string representing a polymer in
the Bagley’s model.1 While the inversion rule in our
model defines a possible reaction pathway, our rule is
given only for a local reaction process. During a reac-
tion, the modification of shape is local to the part that
has collided (i.e., within the reacting zone). This pro-
hibits trivial replication of a large tile (i.e., a tile larger
than the reacting zone). There is no template that is
preserved by the reaction.

Instead of using the external template for the repli-
cation, joint growth emerges from our model, through
a cooperative process followed by the positive feed-
back process mentioned above. To make this process
possible, both joint growth and a minimal network to
provide small molecules are necessary. To make the
coexistence of the minimal network and joint growth,
the separation of time scales is important, i.e., the fast
process of the minimal network and the slow process
of joint growth.

In our model, the separation of time scales is
achieved as follows. In the minimal network, replica-
tion of tiny tiles is completed in a single reaction, and

1 The polymerization corresponds to the growth of tile in our
model.

thus the process is fast. In contrast, joint growth of a
large tile is very slow, since joint reaction is possible
only within a limited configuration for the collision,
and its probability of occurrence is quite low. Further-
more, the growth is suppressed by the collision with
tiny tiles, which can lead a large tile to decompose
into tiny tiles. Indeed, decomposition is faster than
growth.

Here, the size of a large tile provides a long time
scale before the “relaxation” to the complete decom-
position. Since joint growth is slow, a tile must be large
enough to maintain its size by keeping joint growth
running. The size of a large tile plays a role to separate
the time scale of the two processes: the fast decompo-
sition and the slow joint growth. On the other hand,
threshold-like behavior on the input flux and the posi-
tive feedback process are supported by the separation
of the time scales of the two processes.

Generally speaking, we expect that the differentia-
tion of time scales is essential to maintain a living or-
ganism. A metabolic system has a variety of reaction
pathways with different time scales organized hierar-
chically; energy is supplied into slower cycles from
faster cycles, as seen from glycolytic to protein syn-
thesis cycles. The resources of the slow reaction pro-
cesses are supplied from fast reaction networks with
the energy source.

This coexistence of different time scales is not
seriously taken into account in previous models of
reaction networks for the origin of life. In the hyper-
cycle [4], the reaction rate is fixed for a cycle. There,
a parasitic process can break the whole cycle, if its
reaction rate is faster than its host. Then slow reac-
tion cannot be added to the existing network. Also,
other models of reaction networks such as the algo-
rithmic chemistry[5,6] or tape-machine network[9]
assume a single reaction time scale for reproduction
of each molecule. Although the reaction network is
topologically complex, there appears no temporally
differentiation in reaction pathways.

In reality, however, the time scale for the synthe-
sis of a large molecule would require a much longer
time scale. Living organisms, in some sense, exploit
the coexistence of different time scales. One possibil-
ity to include a different time scale, of course, is to
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include the compartmentization of a cell, and that cell
division occurs in a much slower time scale[7,10,11].
This approach will be relevant to the study of cell dif-
ferentiation and development, but here we are inter-
ested in the origin of a cellular system itself. In our
study, we did not impose an external condition for a
cell. Still, a longer time scale for growth is separated
spontaneously.

We should also mention that explicit treatment of
shape for the study of RNA world seems to be promis-
ing. In a spatially resolved model of RNA world
by Yamamoto and Hogeweg[13], the shape (i.e.,
secondary structure) of RNA molecules is included
and the “cooperative” relationship of short molecules
is obtained, as an “assembly” process to reproduce
long polymers. By adopting an explicit function of
folded molecules, a positive feedback process may be
generated.

4.3. Comparison with the spatial model

As mentioned earlier, the present “well-mixed”
model is derived from the original spatial model[16].
The most remarkable difference between the two
models lies in their treatment of motion. While we
adopted Newtonian motion for the spatial model, the
present well-mixed model assumes random collisions.
This difference between the two models comes from
the difference in the estimated mean free path be-
tween the collisions; it is about the unit length for the
spatial model, and is about the total system size for
the well-mixed model. In this sense, these two models
are at the extreme limits for the mean free path.

In the spatial model, the Newtonian motion is
adopted. A cluster, called factory, in which tiles
keep on producing new tiles, is formed as a result
of “entanglement” between two different aspects:
the shape and the motion. The hooking function of
a large tile is essential for realizing a factory. Since
large tiles must be built within a cluster, there is a
feedback process between the increase of the tile
size and the growth of a cluster. Also, as the number
of tiles within a cluster increases, some mechanical
functions emerge, such as the formation of a rigid
wall or the division of a cluster. Note that the size of a

cluster determines the range of its interactions. Large
tiles within a cluster increase possible configurations
of collisions and the diversity of possible reaction
pathways. This growth of diversity is accelerated
combinatorially. Through this feedback process, the
complexity of the reaction pathway increases.

The increase of possible reaction pathways is also
seen in the present well-mixed model, as tile sizes
increase. However, the size growth works in a different
manner. As mentioned (seeSection 3.4.2), the size
influences the lifetime of a tile. Although most reaction
processes occur among tiny tiles with a fast time scale,
joint growth of a large tile has a much longer time
scale.

To sum up, the growth of tiles supports the positive
feedback process for the reproduction of tiles for both
models. In the spatial model, this is possible by the
interplay between the spatial structure and the motion,
while in the present model it is achieved through the
separation of time scales. Both aspects will be impor-
tant to design a life-like machine.

5. Conclusion

Our result implies that chemical activity can be
changed during the evolution. While major tendency
of our model is to drive the system back to the equi-
librium state consisting only of the minimal network,
once several large tiles are formed, a positive feedback
process sustains joint growth which bring the system
to a non-trivial state. Large tiles join together to form
a larger tile and reuse their fragments. Thus a cooper-
ative growth of tiles is possible and the pathways that
work effectively change in time.

These large tiles have complex shapes, because
several parts for joining reaction are formed and a
simple shape is easily decomposed by the collision
with tiny tiles. The emergence of complex tiles that
help growing each other may suggest the spontaneous
emergence of enzymatic activity. The soup of the tiles
in our model keep the activity for further reproduc-
tion. Note that the reproduction here is not an accurate
replication adopted by DNA and/or RNA. Our result
may suggest that the cooperative loose reproduction



T. Yamamoto, K. Kaneko / Physica D 181 (2003) 252–273 273

is easier to be evolved as a generic phenomenon of re-
acting polymers, as has also been proposed by Dyson
[3] for the origin of life.

While we have not found a behavior corresponding
enzymatic reaction, it would be interesting to adopt an
external definition of enzymatic reactions. The present
“well-mixed with shape” modeling allows a realistic
behavior of an enzyme.
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Appendix A. Parameters and conditions

The total population is bounded by the population
limit (typically 400) and the maximum density is also
bounded by the density limit (typically 0.1). The pop-
ulation is rescaled when the total population exceeds
twice the population limit.Tw (typically 0.2) gives the
period of a complex, after then it either collides with
a tile, or it is disintegrated. The time step is given by
assuming dt = 1/Ntile, whereNtile is the total number
of tiles. This assumption keeps the collision rate per
tile constant.

Each time step,nr (typically 10) pairs of tiles or
complexes are selected for collision. This parame-
ter determines the population density of complexes,
which is relative to the probability of many-body re-
action. Small tiles (seeSection 3.1) are assumed to be
supplied, and at least one of each tile with size≤5 is

preserved, as long as once they appear: the minimum
population size is kept to 1.
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