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Abstract: Biological processes are inherently noisy, as highlighted in recent measurements of stochasticity in gene
expression. Here, the authors show that such phenotypic noise is essential to the adaptation of organisms to a
variety of environments and also to the evolution of robustness against mutations. First, the authors show that
for any growing cell showing stochastic gene expression, the adaptive cellular state is inevitably selected by noise,
without the use of a specific signal transduction network. In general, changes in any protein concentration in a
cell are products of its synthesis minus dilution and degradation, both of which are proportional to the rate of cell
growth. In an adaptive state, both the synthesis and dilution terms of proteins are large, and so the adaptive state
is less affected by stochasticity in gene expression, whereas for a non-adaptive state, both terms are smaller, and
so cells are easily knocked out of their original state by noise. This leads to a novel, generic mechanism for the
selection of adaptive states. The authors have confirmed this selection by model simulations. Secondly, the
authors consider the evolution of gene networks to acquire robustness of the phenotype against noise and
mutation. Through simulations using a simple stochastic gene expression network that undergoes mutation
and selection, the authors show that a threshold level of noise in gene expression is required for the network
to acquire both types of robustness. The results reveal how the noise that cells encounter during growth and
development shapes any network’s robustness, not only to noise but also to mutations. The authors also
establish a relationship between developmental and mutational robustness.
1 Introduction
Phenotypes of isogenic individual organisms are not
identical, as they all differ to some degree from each other.
Cell motility in Paramecium exhibits differences between
cells as evidence of individuality, as studied in pioneering
papers by Spudich and Koshland, and Oosawa [1, 2].
Differentiation in isogenic bacterial cells has been measured
through enzyme activities [3], suggesting that it is
controlled by a dynamic mechanism [4]. With the recent
advent of fluorescent proteins, measuring fluctuations in
protein numbers among cells has become much easier.
In fact, measuring stochasticity in protein abundance
between cells sharing the same genotype has become a hot
topic [5–16]. The sources of fluctuations can be
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distinguished and attributed to either extrinsic or intrinsic
factors [5–17], and can be analysed both theoretically
and experimentally. Besides the degree of variance in
protein abundance, it is important to recognise that the
distribution is not Gaussian but log-normal [15, 16], which
suggests a multiplicative nature of stochastic processes
in a cell.

Indeed, the existence of noise in a cell is inevitable, as
biological processes consist of a huge number of reactions
in which the number of molecules is not necessarily large.
In cellular reproduction, molecules have to be synthesised,
which involves positive feedback processes. The noise can
be amplified via this positive feedback, which may
introduce a log-normal distribution [15, 18].
IET Syst. Biol., 2008, Vol. 2, No. 5, pp. 234–246
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In view of this, does stochasticity in gene expression have
any relevance in biology? Often, such phenotypic noise is
thought to be an obstacle in tuning a system to achieve and
maintain a state with higher functions. Indeed, the
question most often asked is how some biological functions
can remain robust to phenotypic noise: examples include
robustness of cell signalling [10, 19], chemotaxis in a noisy
environment [20] and cell differentiation under molecular
noise [11, 21]. Noise reduction is generally possible by
temporal or spatial averaging, whereas optimal information
processing in a signal network under noise is studied by
using Shannon’s information theory [12, 13].

Given that fluctuation by noise is inevitable, and
considering that a relatively large amount of phenotypic
noise has been preserved through evolution, it is important
to investigate any positive role of phenotypic noise for
biological functions. In nonlinear dynamics, the use of
stochasticity has been discussed for decades. This includes
a noise-induced transition to produce an ordered state
[22–24], stochastic resonance [25, 26], attractor selection
by noise [27] and so forth. Even though such mechanisms
may work in a biological system (in particular in neural
systems), whether they are relevant to a cell system is rather
questionable. In studying the relevance of noise to cell
function, we need to remember that cells grow and
reproduce, in contrast to physical systems. It is crucial to
discuss the relevance of noise to a cell in relationship with
its capacity to grow. In other words, we need to consider
the relevance of noise to adaptation, development and
evolution.

As for development, the role of noise in robust cell
differentiation processes has been described in isologous
diversification theory. This theory addresses the question of
robustness in cell types and the number and distribution of
each type under noise. It has been shown that
differentiation to a few discrete cell types progresses as a
result of an interplay between intracellular dynamics and
cell–cell interactions. In particular, differentiation of cell
states triggered by noise leads to noise-tolerant
developmental processes [18, 21]. With regard to
adaptation to a fluctuating environment, the relevance of
stochastic switching in bacterial phenotypes has been
studied by Kussell and Leibler [14].

In the present paper, we briefly review the relevance of
noise to adaptation and evolution, as they are basic
phenomena enabling cells to survive under different
environments. We consider adaptation to be the change in
cellular states that does not involve genetic change, whereas
evolution is a process over much longer time scales
involving genetic changes. For both cases, it has been
shown that noise is relevant in shaping cellular states to
achieve higher growth speeds with robustness to a system’s
change. Here, we mainly focus on recent progress,
particularly studies by ourselves and our collaborators.
Syst. Biol., 2008, Vol. 2, No. 5, pp. 234–246
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2 Spontaneous adaptation
by noise
2.1 Necessity of a general adaptation
mechanism

In this section, we review a novel mechanism for cellular
adaptation, which was proposed recently [28, 29].
According to this adaptation mechanism, noise in
intracellular reaction dynamics drives the selection of
actively growing states among all possible cellular states.
This enables cells to adapt to a variety of environmental
conditions without any fine-tuned signal transduction
mechanism.

As is well known, cells adapt to a variety of environmental
conditions by changing their pattern of gene expression or
distribution of metabolic flux. Such adaptive responses are
generally explained by signal transduction mechanisms, for
example, the regulation of lactose metabolism by the Lac
operon of Escherichia coli cells [30]. This is a programmed
response depending on the input concentration. However,
such ‘if-then’ type descriptions as used in computer
programs may not always be sufficient to explain cellular
adaptation, because the number of possible environmental
conditions to which a cell must adapt is very large
compared with the limited repertoire of gene regulatory
mechanisms. In fact, experiments using phenotype
microarrays [31] revealed that E. coli cells grow in hundreds
of different environmental conditions, including different
carbon and nitrogen sources and stress environments, in
which they have altered their gene expression patterns in
order to achieve growing states [32]. Considering that there
are only a few hundred genes categorised as ‘signal
transduction mechanisms’ in the E. coli genome [33], it is
rather unlikely that gene regulatory programs can adapt to
such a wide variety of environmental conditions. Of course,
such regulatory programs could have a huge number of
possible combinatorial states. However, since cellular
processes have to work coordinately to achieve an adaptive
state, the regulatory mechanisms for such processes should
be tightly coupled. In that case, the selection of an adaptive
state among such a huge number of possible states could
cause a difficult computational problem. In this sense, the
search for an alternative mechanism other than
combinatorial signal transduction, if any, will be relevant to
understanding the cellular adaptation process.

Furthermore, two recent studies revealed the possibility
that cells can respond to environmental changes adaptively
without preprogrammed signal transduction mechanisms.
Using yeast cells, Braun and colleagues demonstrated that
even when the promoter of the essential gene (HIS3) is
detached from the original regulatory system, the expression
of the gene is regulated adaptively in response to
environmental demands [34, 35]. Kashiwagi et al.
demonstrated that E. coli cells select an appropriate
intracellular state according to environmental conditions
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without the help of signal transduction mechanisms [28]. In
their study, an artificial gene network composed of two
mutually inhibitory operons was introduced into E. coli
cells, such that the states of gene expression were bistable.
Corresponding to each of the bistable states, two specific
proteins were produced to carry out functions that were
necessary for survival under the two given environmental
conditions. Even without a corresponding signal
transduction network, the cells were found to shift to an
adaptive state in which the protein necessary for survival
was expressed.

These experimental observations strongly suggest that
there is an alternative adaptation mechanism in addition to
the signal transduction machinery. Indeed, such a
mechanism – if it exists – should be important in adapting
to novel environments that a species has not experienced in
the course of evolution, because organisms must survive by
adapting to new environments even before specific signal
transduction networks have been developed. As for
environmental adaptation without sophisticated if-then type
signal transduction mechanisms, there is a preceding study
by Narang [36] in which a simple Lotka–Volterra type
model was used to represent metabolic dynamics. In this
study, it was shown that the selection of an adaptive state is
possible by the change of stability of each state caused by
environmental changes, thus explaining microbial growth
behaviour on mixtures of substrates. Recently, Yomo and
colleagues demonstrated that the selection of an adaptive
attractor between bistable states by noise is possible by
introducing phenomenological activity that governs the
synthesis and degradation of proteins [28]. These studies
showed that when there are multiple cellular states having a
variety of growth rates, the selection of adaptive states can
naturally emerge. Beyond the simple two-state model, it
has recently been demonstrated that cells select states most
favourable for their survival among a large number of other
possible states as an inevitable outcome of the very fact that
cells grow and that gene expression is inherently stochastic
[29]. In the next section, we survey the adaptive
mechanism of our model, which enables the selection of
growing states by noise without any finely tuned signal
transduction.

2.2 General scheme

Suppose that the internal state of a cell is represented by a set
of concentrations of n proteins (x1, x2, . . . , xn), which are
regulated by each other. The change in concentrations of
proteins over time is determined by: (i) the synthesis of
proteins, (ii) the dilution of proteins by the growth in cell
volume and (iii) fluctuations in protein expression arising
from stochasticity in chemical reactions. (Besides dilution,
there can also be degradation of proteins. However, the
inclusion of protein degradation does not change the result
of adaptation qualitatively, as long as growth-dependent
dilution dominates the decrease of protein concentrations.)
The dilution of proteins is proportional to the growth rate
The Institution of Engineering and Technology 2008
in cell volume vg, which is determined by expression
profiles of proteins and the environmental conditions. Also,
it is natural to assume that the rates of protein synthesis are
proportional to the growth rate vg, since a decrease in
protein concentration by dilution because of cell growth has
to be compensated by synthesis to maintain a steady state.
In fact, some experimental studies have shown that the
total protein concentration is relatively unchanged with the
growth rate [37, 38], which suggests that the change of
the protein dilution rate is compensated by changing the
protein synthesis rate. We assumed the proportionality of
protein synthesis and dilution rates to the growth rate of
the cell volume, but even if rigorous proportionality is
replaced by a mere positive correlation between the
synthesis and growth rates, the adaptation mechanism
presented below still works. Following this argument, the
dynamics of concentration of the ith protein is chosen as
follows

dxi(t)

dt
¼ fi (x1, x2, . . . , xn)vg � xivg þ shi(t) (1)

The first and second terms in the right-hand side (r.h.s.)
represent synthesis and dilution of the proteins,
respectively, where fi ( � � � ) represents the regulation of
protein expression by other proteins. The third term
represents the noise in protein concentration with a certain
amplitude s satisfying khi(t)hj(t

0)l ¼ d(t � t 0)dij , where i
and j represent different proteins. For simplification, we
assume that the amplitude of the noise is independent of
the growth rate vg, whereas the inclusion of vg dependence
does not alter our results qualitatively. (Even if the noise
amplitude depends on the growth rate vg, the noise-driven
adaptation will work as long as the noise amplitude does
not vanish with the growth rate, in other words, as long as
a certain amplitude of the noise is maintained in the non-
adaptive state).

Let us consider the case that the expression dynamics
represented by (1) has multiple possible states (i.e. attractors)
and the growth rate vg is determined by the expression
dynamics. In this case, the influence of noise depends on the
growth rate vg for each attractor. When the cellular state
falls into an attractor that has a small vg, the deterministic
part of protein expression dynamics (i.e. the first and second
terms of the r.h.s. of (1)) is small, and so the stochastic part
is relatively dominant in the protein expression dynamics. In
this case, the probability to escape the attractor by noise is
large. In contrast, when the growth rate vg is large in
the attractor, the magnitude of the deterministic part of
the expression dynamics is much larger than that of the
stochastic part. Thus, the probability to escape that state
becomes small. As the result of this negative correlation
between the cellular growth rate vg and the probability to
escape a state, the cells can select a state with a relatively
higher growth rate, under the presence of an appropriate
noise level of gene expression.
IET Syst. Biol., 2008, Vol. 2, No. 5, pp. 234–246
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2.3 Simulation results

In this section, we present a simulation of a noise-driven
selection process. In this simulation, we adopt a cell model
with two networks. One is a regulatory network that
controls the expression levels of proteins acting through
each other. The other is a metabolic network in which the
metabolic reactions are regulated by the concentrations of
the proteins. The cell takes some metabolites as nutrients,
and these are transformed to other metabolites by the
metabolic reactions. The growth rate vg is determined by
the profile of metabolic fluxes and the environmental
conditions. We assume that some metabolites are required
for cellular growth and that a metabolite having a minimal
concentration among these metabolites limits the growth
rate. Thus, we use the simple rule that the growth rate vg is
determined to be proportional to the minimum concentration
of these metabolites.

Also, we assume that the synthesis of proteins is given by
the sigmoidal regulation function with regulatory inputs
(activation or inhibition) from other proteins. We used the
sigmoidal function fi (z) ¼ 1=(1þ exp(�mzi)), where
zi ¼ (

P
j Jijxj(t)� u) is the total regulatory input with the

regulatory matrix J ij , the threshold u for activation of
synthesis and m indicates the gain parameter of the sigmoid
function. (The form of the single sigmoidal regulation
function with regulatory inputs was adopted here for
simplification. However, the behaviour of the model was
unchanged when other forms of regulation are adopted, as
long as there are multiple attractors in the gene regulatory
dynamics.) As the result of these regulations, the gene
expression dynamics has multiple attractors. For a specific
form of the noise term, we add a Gaussian white noise
term with an amplitude of s to the expression dynamics.
We perform thousands of simulations starting from
randomly determined initial conditions (i.e. gene expressions
and metabolic concentrations) and investigate the general
behaviour of cellular adaptation (for details of the model,
see [29]).

In Fig. 1, an example of the selection process of rapidly
growing states is shown by taking an adequate noise
amplitude in the expression dynamics. Time series using
arbitrarily chosen protein concentrations and cellular growth
rates vg are plotted in Figs. 1a and Fig. 1b, respectively. In
the example, cells are set initially at a state with a low-
growth rate. In such a state, stochasticity dominates the
evolution of protein concentrations with time. After
itinerating among various expression patterns, the cellular
dynamics arrives at a state with a higher growth rate. Such
a transition repeats until the growth rate becomes
sufficiently high. Once a gene expression pattern
supporting optimal growth is reached, the system maintains
it over time.

This selection of higher growth states was observed for all
of the one thousand networks that we simulated. It also
Syst. Biol., 2008, Vol. 2, No. 5, pp. 234–246
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worked independently of initial conditions. As the final
state depends on the initial condition, we have computed
the distribution of the final growth rate reached from
randomly chosen initial conditions. The histograms of the
final growth rate, thus obtained, are plotted in Fig. 2. In
the case s ¼ 0, the cellular state converges rapidly and
deterministically into an attractor. In such a case, the final
growth rates exhibit a broad distribution as shown in
Fig. 2, representing a wide variety of the final cellular
states. In contrast, in the presence of noise (s ¼ 0.02 and
s ¼ 0.2), the final growth rates exhibit a relatively sharp
distribution because of the selection of faster growth states,
as we have seen in Fig. 1.

The relationship between the noise amplitude s and the
final growth rate vg is plotted in Fig. 3. For a small noise
amplitude (s , 10�2), the final growth rates are distributed

Figure 1 Time series of protein expression levels and
cellular growth rate vg

a Time series of protein expression levels xi(t); 10 of 96 protein
species are displayed. Vertical axis represents the expression
levels of proteins and the horizontal axis represents time
b Change in growth rate vg observed during the time interval
shown in Fig. 1a. Initially, the growth rate of the cell fluctuates
owing to the highly stochastic time course in protein expression.
After a few short-lived nearly optimal states (4800 – 5600 time
steps), the cell finds a state of protein expression that realises a
high rate of growth
237
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broadly, as the cells cannot escape from the first attracting
state they encounter. On the other hand, when the noise
amplitude is larger (s . 1), the final growth rates again
exhibit a broad range distribution, because the cellular state
continues to change without settling into any attractor. In
the intermediate range of the noise strength 10�2 , s , 1,
cellular states are selected that are associated with growth
rates significantly higher than those found in the other
noise ranges. This shift of the final growth rate is caused by
the selection of cellular states by fluctuations, as shown in
Fig. 1. In fact, we measured the ‘depth’ of an attractor,
defined as the smallest noise amplitude that can eventually
kick the state out of the attractor in a certain time period,

Figure 2 Histogram of growth rate with different noise
strength s

Starting from 2 � 104 randomly chosen initial conditions (i.e.
protein expression levels), growth rates after 105 time steps
have been computed with different noise strengths s ¼ 0, 0.02,
and 0.2

Figure 3 Relationship between the noise amplitude s and
the growth rate vg

Starting from randomly chosen initial conditions against noise
amplitudes s values ranging over 1024 , s , 3, the growth
rates vg after 105 time steps have been plotted. In the
intermediate range of noise strength, 1022 , s , 1, cellular
states with high growth rates are selected among many possible
cellular states, as depicted in Fig. 1
8
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by changing the noise amplitude. As a result, we found
that there is a positive correlation between the depth of the
attractor and the growth rate (data not shown).

The time required to reach an adaptive attractor is not
necessarily short, compared with that needed for the signal
transduction mechanism. If the number of attractors is not
very large, the selection is completed within a generation,
whereas for successive selections among a thousand
attractors as in Fig. 1, several generations are required. In
this case, the expression pattern of proteins (x1, x2, . . . , xn)
has to be inherited epigenetically after cell division, at least
to some degree.

2.4 Significance

We have carried out numerical experiments with our
model using several sets of parameter values, which allow for
multiple attractors in expression dynamics, and have evaluated
thousands of different randomly generated reaction networks.
The adaptation process triggered by noise is observed
generally independently of the details of the model. In fact, it
emerges as long as the following four requirements are
satisfied: (i) the coexistence of multiple attractors, (ii) the
dependence of the growth rate on attractors, (iii) an increase
of cellular reaction processes with the speed of growth and
(iv) the presence of stochasticity in reaction dynamics. We
have confirmed the robustness of our results against changes
in model parameters and rules. For example, the results did
not change when model parameters such as coefficients of
reactions were changed, provided the above requirements
were satisfied. The robustness of the results against changes in
the properties of reaction networks, such as the path density
or distribution of the numbers of paths has been confirmed
[30]. Also, the specific form of dependence of the growth
rate on the expression dynamics is not important for the
result; instead, the same results are obtained as long as the
growth rate is somehow determined by the expression
dynamics.

This study provides a possible explanation for the
establishment of the optimal growth rate in metabolic
reaction networks, proposed by Palsson and colleagues
[39–41]. These studies suggested that a metabolic network
is organised such that the growth rate is optimised under
given conditions. For example, it was shown that E. coli
strains with the deletion of a single metabolic gene can
adapt to several environmental conditions, and that the
value of the final growth rate is consistent with that
calculated as an optimal growth rate in such perturbed
metabolic networks and environmental conditions [41].
Their results suggest that these bacteria can adjust their
intracellular state to optimise their growth rate, even against
an environment they have never experienced. Indeed, by
the adaptation mechanism surveyed here, a cellular state
with an optimal growth rate is selected from those among a
variety of environmental conditions. Provided the cellular
states are perturbed sufficiently by stochasticity in gene
IET Syst. Biol., 2008, Vol. 2, No. 5, pp. 234–246
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expressions, there will be a negative correlation between the
growth rate and the probability of escape from the
corresponding cellular state. Thus, the adaptive attractor
selection may be at work behind the observed regulations of
metabolic fluxes leading to optimal growth rates.

Even though such adaptive attractor selection by noise is
relatively slow, it works generally without the requirement
of a finely tuned signal transduction network. Hence, for
the environmental conditions that an organism encounters
frequently, cells have likely developed a sophisticated sensory
and signal transduction network, whereas the present
mechanism enables the adaptation of cells even to
environments that they have never faced.

The adaptation mechanism reviewed here has not been
confirmed experimentally so far. Standard experimental
studies have focused only on adaptation processes based on
signal transduction networks, and therefore we need novel
experimental setups to justify the proposed adaptation
mechanism. There are two possibilities. One is the use of
artificial gene networks, as demonstrated in [28]. In this
approach, one can introduce a gene network disconnected
from the existing signal transduction networks, and
investigate whether the artificial gene network shows
adaptive behaviour. Other possibility is the study of cellular
response against environmental changes that cells have
never faced, or the response of cells in which known
regulatory mechanisms are destroyed. In both cases, by
investigating the response of the cells, one can examine if
they show adaptive behaviour to environmental changes
without the sophisticated regulatory mechanisms, but by
utilising the fluctuation-based selection of a higher growth
state as presented in this paper.

3 Role of phenotypic noise in
genetic evolution
3.1 Motivation and general framework

Now, we discuss the relevance of phenotypic noise to
evolution. There have been long-lasting discussions on the
possible relationships among phenotypic plasticity, robustness
and evolution.

In general, plasticity is the changeability of a phenotype
in response to environmental change. This change itself
does not involve genetic changes because of mutation or
recombination, but rather can appear within one generation.
In this sense, the relationship between plasticity and
evolution is not a logical consequence, and one has to
examine if evolution decreases or increases plasticity, and if
plasticity increases evolution [42–45]. In spite of long-term
efforts, most of the studies to address this question remains
rather qualitative.

If we borrow a concept from physics, one may expect that
susceptibility to environmental changes is proportional to, or
Syst. Biol., 2008, Vol. 2, No. 5, pp. 234–246
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positively correlated with, phenotypic fluctuation [46, 47].
Indeed, in statistical physics near an equilibrium state, the
ratio of response to an external force is proportional to
the degree of fluctuation at the equilibrium state. The
generalisation of such a fluctuation–response relationship
has also been proposed [18, 48, 49]. Therefore phenotypic
plasticity, which is a degree of phenotype change to different
environments, is expected to be positively correlated (or
proportional to) the isogenic phenotypic fluctuation that is
now being quantitatively measured in the laboratory.

In evolution under a fixed environment, the phenotype
changes to adapt to that environment. The evolutionary
process is, thus, regarded as a response to the environment.
Accordingly, it is of relevance to study possible relationships
between the phenotypic fluctuation of isogenic individuals
and the speed of genetic evolution. Borrowing a
formulation from statistical physics, Sato et al. [50]
previously proposed an evolutionary fluctuation–response
relationship in which the speed of evolution increases in
proportion to the variance of the isogenic phenotypic
fluctuation. This proposition is supported by the results of
an experiment on bacterial evolution in the laboratory, and
is also confirmed by simulations of a reaction network
model of a growing cell population [51].

The fluctuation of phenotype, on the other hand, is related
with the robustness of a system. Robustness is generally
defined as the ability to function in spite of changes in
various parameters of a system [52–56]. Since a system’s
sensitivity to change increases with its fluctuation, the
robustness increases as the system’s fluctuation decreases.
Historically, increases in robustness through evolution were
proposed by Schmalhausen to stabilise evolution [57] and
by Waddington to lead to canalisation [58, 59]. Since then,
whether robustness increases through natural selection has
long been debated in the context of developmental
dynamics and evolutionary theory [42, 52, 54, 60–62].
Recalling that measurements of fluctuation are now
available, it is possible to explore the relationship between
fluctuation and evolution, and to study the evolution of
robustness quantitatively. There are two questions to be
addressed. Does fluctuation (robustness) decrease (increase)
through evolution? And is fluctuation relevant to the
evolution of robustness?

For the former question, there is direct evidence from
experiments and simulations [50, 51]. As for the latter
question, if and why stochasticity in gene expression is
needed to establish the evolution of robustness has not
been elucidated. To examine this, one must first recall the
general structure of biological evolution. Evolutionary
fitness is determined by dynamic processes that provide
phenotype. In multicellular organisms, the phenotype is a
result of complex developmental processes. Even in unicellular
organisms, it is a result of stochastic gene expression
dynamics that determines the rate of growth of the cell.
239
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Such dynamics is governed by the genotype, whereas the
dynamics of determining phenotype is stochastic in nature.

Now, one needs to consider the following structure of
evolutionary processes. (i) There is a population of organisms
with a distribution of genotypes. (ii) Phenotype is determined
by genotype, through ‘developmental’ dynamics. (iii) The
fitness for selection is given by the phenotype. (iv) The
distribution of genotypes for the next generation is a result of
reproduction, mutation and selection. Mutations change the
genotype, whereas the offspring number will be based on the
fitness value.

During evolution in silico, procedures (i), (iii) and (iv) are
adopted as genetic algorithms. However, it is important to
note that the phenotype is determined only after complex
‘developmental’ dynamics of (ii), which are stochastic
because of the noise therein. By adopting this framework,
a few models have been studied to examine the relevance
of noise to evolution, such as a reproducing cell model
with a catalytic reaction network [51], and a gene
network model [63]. Here, we review the results from the
latter model.

3.2 Gene network model

Gene expression dynamics is governed by regulatory
networks. Each expression profile changes in time, and
eventually reaches a stationary pattern that determines
evolutionary fitness. Selection occurs after the introduction
of mutations at each generation in the gene network.
Among the mutated networks, we select those networks
with higher fitness values. By including a noise term in the
gene expression dynamics, we discuss how this noise
influences the evolution of the network to increase fitness.

To be specific, typical switch-like dynamics with sigmoid
input–output behaviour [64–66] was adopted, although
several simulations in the form of biological networks
would give essentially the same result. In this simplified
model, the dynamics of a given gene expression level xi is
described by

dxi

dt
¼ tanh

bffiffiffiffiffiffiffiffiffiffiffiffiffi
M � k
p

XM
j.k

J ijxj

" #
� xi þ shi(t) (2)

where J ij ¼ �1, 1, 0 and hi(t) is Gaussian white noise given
by khi(t)hj(t

0)l ¼ di, jd(t � t 0). M is the total number of
genes, and k is the number of output genes that are
responsible for fitness to be determined. These output
genes are fixed to i ¼ 1, 2, . . . , k. The value of s represents
the noise strength that determines stochasticity in gene
expression. By following a sigmoid function tanh, xi has a
tendency to approach either 1 or 21, which is regarded as
being ‘on’ or ‘off’ for gene expression. The initial condition
is set at (21, 21, . . . , 21); that is, all genes are off.
0
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The fitness is determined by setting a target gene
expression pattern. As a simple example, we adopt the
target such that gene expression levels (xi) for the output
genes i ¼ 1, 2, . . . , k , M reach ‘on’ states, that is, xi . 0.
The fitness F is at its maximum if all k genes are on after a
transient time span Tini, and at its minimum if all are off.
F is set at 0, if all the target genes are on, and is decreased
by 1 if one of the k genes is off. Note that fitness is
calculated only after time Tini, which is chosen at a
sufficiently large value so that the gene expression dynamics
reaches a stationary state. This initial time can be considered
as the time required for developmental dynamics (see [63]
for details).

Selection is applied after the introduction of mutations at
each generation in the transcriptional regulation network.
Among the mutated networks, we select those networks
with higher fitness values. Because the network is governed
by J ij that determines the ‘rule’ of the dynamics, it is
natural to treat J ij as a measure of genotype. Individuals
with a different genotype have a different set of J ij .

At each generation, there are N (¼200) individuals. We
compute the average fitness F for each network by carrying
out L(¼200) runs for each. Individuals with a different set
of J ij have different fitness values according to the
dynamics given by (2), and those with higher fitness values
are selected for the next generation. To be specific,
Ns ¼ N =4 networks with higher values of F are selected
for the next generation, from which J ij is ‘mutated’, that is,
a single path (a single pair of i, j ) is changed. Here,
we make N =Ns mutants from each of the top Ns networks,
such that there are N networks again for the next generation.
Following mutation, the N individuals at each generation
have slightly different network elements, J ij , so that the
values of F differ. From this population of networks, we
repeat the processes of developmental dynamics, their
mutation and selection of networks with higher fitness values.

As the model contains a noise term, fitness can fluctuate at
each run, which leads to a distribution in F, even among
individuals sharing the same network. This leads to the
isogenic phenotype variance denoted by Vip(I ) for a given
genotype (network) I that is

Vip(I ) ¼

ð
p(F ; I )(F � F I )2dF (3)

where p(F ; I ) is the fitness distribution over isogenic species I
sharing the same network J ij , and F I ¼

Ð
Fp(F ; I )dF is the

average fitness of the species I. Vip(I ) generally depends on
the individual (genotype) I. Later, we use the average of
Vip(I ) over all genotypes I existing at each generation, as Vip.

At each generation, there exists a population of individuals
with different genotypes I. The distribution P(F ) is obtained
over all existing individuals (networks) including those that
are not fitted. By using this distribution, fitness variance
IET Syst. Biol., 2008, Vol. 2, No. 5, pp. 234–246
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because of genetic variation is defined as

Vg ¼

ð
P(F )(F � kF l)2dF (4)

where kF l ¼
Ð

P(F )FdF is the average of average fitness over
all networks.

3.3 Result of numerical evolution

Let us first see how the evolutionary process changes as a
function of the noise strength s. Within a hundred
generations, the top fitness among the network population
reaches 0, the maximum possible value in our model. On
the other hand, the temporal evolution of the distribution
function P(F ) depends essentially on the noise strength s.
When s is small, the distribution is broad. There remain
individuals with very low-fitness values F , even after many
generations of evolution (Fig. 4). On the other hand, for
large s, even those individuals with the lowest fitness
approach F ¼ 0. There is a threshold noise sc , below
which the distribution P(F ) is broadened, as shown in
Fig. 4. As a result, the average fitness over all individuals,
kF l, is low. kF l and the lowest fitness over individuals
F min, after a sufficiently large number of generations, is
plotted against s in Fig. 5. The sharp decrease in fitness
suggests threshold noise sc , below which low-fitness
mutants always remain in the distribution.

Why does the system not maintain the highest fitness state
under small phenotypic noise, s , sc? Indeed, the dynamics
of the top-fitness networks that evolved under low noise has
dynamic behaviours distinct from those that evolved under
high noise. First, the highest-fitness network that evolved
at low s often fails to reach the target if simulated under a
higher noise level. The expression often has a few oscillations

Figure 4 Distribution P(F̄) after 200 generations, for a
population of 1000 individuals

Inset is the magnification for 20.27 , kF̄l , 0. For a high s value
(solid line, with s ¼ 0.1), the distribution is concentrated at
F̄ ¼ 0, whereas for a low s value (dotted line, with s ¼ 0.006),
the distribution is extended to large negative values, even after
many generations
Syst. Biol., 2008, Vol. 2, No. 5, pp. 234–246
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before reaching the target state and noise might cause the
expression of the output genes to switch to off states. In
contrast, the temporal course of gene expression evolved for
s . sc is much smoother, and is not affected by noise.
This distinction is confirmed by simulating gene expression
dynamics by cutting off the noise term over a variety of
initial gene expression conditions, and checking if the orbit
is attracted to the original target. It was found that, for
networks evolved under s . sc , a large portion of the
initial conditions is attracted to the target pattern, whereas
for those evolved under s , sc , only a tiny fraction (i.e.
the vicinity of all off states) is attracted to the target.

When the time course of a given gene expression pattern to
reach its final pattern is represented as a motion falling along
a potential valley, our results suggest that the potential
landscape becomes smoother and simpler through evolution
and loses ruggedness after a few hundred generations. This
‘developmental’ landscape is displayed schematically in
Fig. 6. For networks evolved under s . sc there is a large,
smooth attraction to the target, whereas for the dynamics
evolved under s , sc , the initial states are split into small
parts (basins), from each of which the gene expression
patterns reach different steady states. Now, consider a
mutation to a network. The change in the network leads to
slight alterations in gene expression dynamics. In smooth
dynamics, as in Fig. 6 (upper), this perturbation influences
the attraction to the target only slightly. By contrast, under
the dynamics as shown in Fig. 6 (lower), a slight change
easily destroys the attraction to the target attractor. For this
latter case, the fitness of mutant networks is distributed
down to lower values, which explains the behaviour
observed in Figs. 4 and 5.

In other words, evolution to eliminate ruggedness in
developmental potential is possible only for sufficient noise

Figure 5 Mean of average fitness kF̄l and minimal fitness
plotted against the noise strength s

kF̄l, the average of the average fitness F̄ over all individuals was
computed for 100–200 generations
The minimal fitness was computed from the time average of the
least-fit network present at each generation
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amplitudes, whereas ruggedness remains for small noise
values and the developmental dynamics often fails to reach
the target, either by noise in gene expression dynamics or
by mutations to the networks. It is interesting to note that
a greater set of initial conditions is attracted to a target
pattern for networks evolved under large noise. The
existence of such global attraction in an actual gene
network has recently been reported for the yeast cell cycle
[67] and others [68]. In fact, the existence of such global
attraction was proposed in protein folding dynamics by
Abe and Go [69], and is now termed as a funnel landscape
[70]. Such a ‘developmental landscape’ is expected to be a
result of evolution, as most random interaction yields
rugged landscapes as in the lower diagram of Fig. 6.
The existence of the landscape of folding dynamics as in
the upper diagram suggests that it is shaped through the
evolution under thermal noise.

3.4 Evolution of robustness

For a network evolved under large noise, the target pattern is
reached even if the developmental dynamics is perturbed by
noise or by a mutation to the network. In other words, the
fitness is rather insensitive to such perturbations. This is
nothing but robustness of the system.

As discussed already, robustness is the insensitivity of
phenotype to a system’s change. In a biological system,
these changes have two distinct origins: genetic and
epigenetic. The former concerns genetic robustness, that is,
the rigidity of phenotype against mutation. The latter

Figure 6 Schematic representation of the basin structure,
represented as a process of descending a potential
landscape

D is the magnitude of perturbation needed to jump over the
barrier to a different attractor from the target. A smooth
landscape evolves under a high level of noise (above), and a
rugged landscape evolves under a low level of noise (below)
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concerns robustness against stochasticity in gene expression
or the external environment.

Corresponding to genetic and epigenetic robustness, there
are two types of variances, as introduced in Section 3.2. The
variance corresponding to genetic change is Vg, the
phenotype variance caused by the distribution of genes. As
the variance decreases, the system increases its robustness to
genetic change (mutation). On the other hand, epigenetic
robustness is measured by the phenotypic variance of
isogenic organisms, Vip.

Under large noise, the selection process favours a
developmental process that is robust against it. This
robustness to noise is then embedded into robustness to
mutation. Indeed, both Vg and Vip decrease through the
course of evolution (Fig. 7) while proportionality is
maintained between the two. Such proportionality between
the two has been discussed from an analysis of evolutionary
stability under a condition of low mutation rates [51]. This
proportionality is consistent with observations from an
experiment in bacterial evolution [18, 50].

Such proportionality suggests that ‘developmental
robustness’ and ‘genetic robustness’ evolve in coordination.
In fact, the correlation between phenotypic plasticity in
development to genetic change in evolution was proposed
as genetic assimilation by Waddington [58, 59], where
phenotypic change in response to the environment is later
fixed in genes through Baldwin’s effect [71, 72]. Since
then, the possible role of genetic assimilation to evolution
has been extensively investigated [73, 74]. The study
reviewed here quantitatively demonstrated a correlation
between developmental robustness to noise and genetic
robustness to mutation, in terms of phenotypic variance,
when the system is evolved under sufficient noise. The

Figure 7 Relationship between Vg and Vip

Vg is computed from P (F̄) at each generation, and Vip by averaging
the variance of p(F; gene) over all existing individuals. We also
checked using the variance for a gene network that gives the
peak fitness value in P (F̄), but the overall relationship is not
altered. Points are plotted over 200 generations. The colour is
changed gradually with the number of generations, as displayed.
s ¼ .01 (circle), .04 (cross), and .01 (square). For s . sc ’ .02,
both decrease with successive generations
IET Syst. Biol., 2008, Vol. 2, No. 5, pp. 234–246
doi: 10.1049/iet-syb:20070078



IET
do

www.ietdl.org
relationship between phenotypic fluctuations and evolution
implies a relationship between phenotypic plasticity and
evolution akin to genetic assimilation.

4 Summary
Despite recent quantitative studies on stochastic gene
expression patterns, their positive roles have not yet been
fully understood. Here, we have reviewed recent studies on
the relevance of noise to adaptation and evolution. First, it
has been shown that growing cells have a general ability for
adaptation by taking advantage of stochasticity in gene
expression. On the one hand, this attractor selection
mechanism by noise explains recent experiments showing
adaptation without signal transduction. On the other
hand, it also explains how cells can adapt to a variety
of environments that they may never have encountered
before.

Second, the evolution of robustness to developmental noise
and mutation has been shown to be possible under the
presence of noise. Indeed, developmental robustness to
noise leads to mutational robustness. Although we have
demonstrated this evolution of robustness using gene
expression network models, we expect this behaviour to be
observable generally if fitness is determined through
developmental dynamics that is sufficiently complex so that
a given developmental process, when deviated by noise,
may fail to reach the fittest target pattern. The present
work opens the possibility of quantitative studies on
robustness, in terms of phenotypic variance, while the
relevance of noise in shaping smooth developmental
landscapes is elucidated.

In the studies surveyed here, evolution is concerned with a
single fitness condition under a fixed environment. Then, the
fluctuation or biological plasticity decreases over generations.
Of course in present organisms, a relatively large degree of
phenotypic fluctuations is preserved. Phenotypic plasticity or
evolvability (the ability for evolution) is sustained. It is
important to consider the influence of environmental
fluctuations, interactions with other individuals and
interference among different processes in developmental
dynamics, which may restore or sustain phenotypic plasticity,
evolvability and fluctuations.

Both adaptation and evolution are responses of organisms
to their environment, which is crucial for their survivability.
In the adaptation discussed here, a gene expression pattern
is selected such that cell growth is optimal under given
environmental conditions. In evolution, a genotype is selected
such that the population growth is optimal under a given
environment.

In both cases, consistency between two different levels is
achieved, that is, gene expression and total cellular activity
(growth speed) for adaptation, and genotype and phenotype
for evolution. In both cases, the relation between the levels is
Syst. Biol., 2008, Vol. 2, No. 5, pp. 234–246
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mutual. Gene expression (protein concentration) controls cell
growth, whereas cell growth influences protein concentration
through dilution. Genotype determines the phenotype, but
which genotype is selected depends on the phenotype
concerning fitness. In both cases, the gene expression
dynamics is stochastic. To sum up, consistency between
different levels is achieved through a mutual relationship
between levels and stochasticity. When the environmental
condition is altered, the consistency between levels may be
broken. In the new environment, gene expression
dynamics may no longer lead to optimal growth, nor can the
genotype produce a high fitness phenotype. Then, by taking
advantage of stochastic dynamics, the phenotype is changed
to fit the new environment, so that consistency between
levels is later recovered. Stochastic dynamics, thus, provides
flexible adaptation or evolution to the environment in
biology [75].
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