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Abstract
A wide range of cellular processes require molecular regulatory pathways to convert a graded
signal into a discrete response. One prevalent switching mechanism relies on the coexistence
of two stable states (bistability) caused by positive feedback regulations. Intriguingly, positive
feedback is often supplemented with negative feedback, raising the question of whether and
how these two types of feedback can cooperate to control discrete cellular responses. To
address this issue, we formulate a canonical model of a protein–protein interaction network
and analyze the dynamics of a prototypical two-component circuit. The appropriate
combination of negative and positive feedback loops can bring a bistable circuit close to the
oscillatory regime. Notably, sharply activated negative feedback can give rise to a bistable
regime wherein two stable fixed points coexist and may collide pairwise with two saddle
points. This specific type of bistability is found to allow for separate and flexible control of
switch-on and switch-off events, for example (i) to combine fast and reversible transitions,
(ii) to enable transient switching responses and (iii) to display tunable noise-induced transition
rates. Finally, we discuss the relevance of such bistable switching behavior, and the circuit
topologies considered, to specific biological processes such as adaptive metabolic responses,
stochastic fate decisions and cell-cycle transitions. Taken together, our results suggest an
efficient mechanism by which positive and negative feedback loops cooperate to drive the
flexible and multifaceted switching behaviors arising in biological systems.

1. Introduction

An essential attribute of living cells is their capacity to switch
between distinct states in response to external or internal
signals. Such switching behavior arises in various cellular
processes such as metabolic response [1], cell differentiation
[2] or cell-cycle transitions [3]. The most prevalent switching
mechanism in living cells relies on the coexistence of multiple
stable steady states under the same cellular conditions [4–6].
Then, specific chemical stimuli can trigger discrete transitions
from one stable state to another. A necessary condition for
multistability in a dynamical system is the existence of positive
loops in its Jacobian system [7, 8]. Indeed, positive feedback
loops have been documented in many cellular regulatory
pathways, where they have been ascribed the crucial task

of inducing discrete, fast and eventually irreversible cellular
transitions [9–11]. However, the occurrence of multistability
due to positive feedback comes at a cost, as cells may be
trapped in suboptimal epigenetic states, especially when facing
unknown, ambiguous or rapidly changing environmental
conditions [12–14]. To overcome such a drawback, it has been
suggested that negative feedback regulation could be combined
and cooperate with positive feedback to facilitate escape from
stable states [15–17]. As a matter of fact, positive and negative
feedback loops are combined in many disparate signaling and
regulatory pathways involved into discrete cellular responses
[17–27], which raises the question to what extent negative
feedback can complement or refine the switching properties of
positive-feedback-based cellular pathways.
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Theoretical analysis of chemical or biochemical systems
combining positive and negative feedback has shown that
transitions from bistability to oscillations represented by a
typical cross-shaped phase diagram is a pervasive feature of
these systems [28, 29]. The purpose of the present study
is to establish the functional advantages for biochemical
bistable systems to operate close to this transition. To address
this issue, we formulate a canonical model describing the
dynamics of a protein–protein interaction network and study
more specifically the dynamics of two-component circuits,
which are able to minimally incorporate both positive and
negative feedback loops. The results are organized in two
parts. The first part recapitulates the basic requirements for
negative feedback to convert bistability into oscillations in
two-component biochemical circuits. Notably, we delineate
the case where combined negative and positive feedback gives
rise to a specific type of bistability where the two stable
equilibria coexist and may collide pairwise with two saddle
equilibria on an invariant circle. The second part focuses on
the functional switching properties with respect to the control
of hysteresis width, transition speed, transient-state dynamics,
or stochastic transition rates, which are the characteristics of
such type of bistability based on the combination of positive
and negative feedback, but are not possible in the conventional
mechanism of switching based on positive feedback alone. We
close the paper by discussing the implications of the switching
properties and the circuit topologies considered in this study,
in a variety of cellular pathways and biological processes.

2. Model

We consider a canonical model of protein regulatory circuitry
in which interactions are mediated by post-translational
or transcriptional mechanisms. Under some assumptions
detailed in appendix A, the dynamics of the transcriptional or
post-translational circuit can be expressed in a mathematical
form as a set of dimensionless differential equations:

τi

dxi

dτ
= αi(1 − xi) − βixi + σiζi(τ ) (1)

where αi and βi are the activation and inactivation rates of the
protein species i, which depend on the activity levels of other
protein species j and signaling protein species S:

αi = ai + biS
γ1 +

∑
j

WE
ij x

γ2
j (2)

βi = 1 + ciS
γ1 +

∑
j

WI
ij x

γ2
j (3)

where γ1 and γ2 denote the degree of cooperativity
within the interactions between different protein species.
Other parameters have been normalized to the spontaneous
inactivation rate

(
β0

i

)
.

2.1. Feedback loops

The elements mij of the Jacobian matrix of (1) quantify
how much variations of the protein species j influence the
time derivative of the protein species i. Assuming in our

model that the protein can be either monotonously activated or
monotonously inhibited by other proteins (WE

ij �= 0 implying
WI

ij = 0 and reciprocally), the non-diagonal elements mij have
a definite sign. A Jacobian matrix that displays a sequence
of k nonzero elements mij of definite sign, in which its i
row and j column indices are circular permutations of each
other, is said to display a feedback loop of size k, negative or
positive according to the sign of the product of these elements.
Diagonal elements of the Jacobian matrix incorporate an
obvious negative contribution due to the spontaneous protein
degradation/inactivation that can be supplemented with a
positive term defining a positive feedback (self-)loop.

2.2. Noise

The last term on the right-hand side of equation (1) represents
a source of intrinsic noise. If we assume that the number
of molecules is relatively large and biochemical reactions
take place in time as a Poisson process, then we can use the
chemical Langevin equation [30]: ζ(t) is a white noise process
of variance σ 2

i that depends on the biochemical reaction rates
(see appendix A).

2.3. Parameters

Throughout the paper, some parameters have been set to fixed
value: γ1 = 1, γ2 = 2, ai = 0 and ci = 0, while other
parameter values may change and are specified in the figure
captions. We focus more specifically on the dynamics of
post-translational circuits. Nonetheless, we further check
the validity of our conclusions in the case of transcriptional
circuits.

3. Results

3.1. Distinct scenarios for the transition from bistability to
oscillations

Feedback loops consist of circular regulatory cascades. The
sign of the loop (positive or negative) depends on the number
(even or odd) of negative regulations in the loop. To begin,
we consider the simplest biochemical circuit that incorporates
a positive feedback loop: a single protein activating its own
activity. Figure 1 shows that bistability, wherein two stable
states of low- and high-x1-activity levels coexist, emerges as
the strength of the positive feedback increases. Bistability
occurs for signal values ranging between S1 and S2 at which
two, stable and unstable, equilibria appear or disappear
through a saddle-node bifurcation. The two branches of a
saddle-node bifurcation meet at a cusp-bifurcation point where
the amplitude of the switch and the size of the bistability
region decrease to zero

(
WE

11 ≈ 3.4
)
. These basic properties

of a bistable switching behavior are shared by any system
that incorporates a single positive feedback loop comprising
eventually several regulatory links and components (e.g.
mutual activation or inactivation).

We analyze further how the presence of negative feedback
modulates such conventional switching behavior based on
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(a) (b)

Figure 1. Conventional bistable switch based on a single positive
feedback loop. Steady-state properties of a single-component circuit
as a function of the signal strength and self-activation level that
measures positive feedback (PF) strength. Other parameters:
b1 = 0.13. (a) Phase diagram where the white domain corresponds
to monostability (one stable fixed point) and the yellow domain
corresponds to bistability (two stable and one unstable fixed points).
The solid line indicates a saddle-node bifurcation. (b) Bifurcation
diagram (the solid lines indicate stable fixed points, the dotted line
indicates unstable fixed points) for WE

11 = 3.9 (dashed line of (a)).

(a)

(b)

(c)

(d )

Figure 2. Transitions from bistability to oscillations in the presence of negative feedback. Phase diagram, bifurcation diagram and phase
plane associated with different topologies and parameters of a two-component circuit: (a) τ1 = 1, τ2 = 1, WE

11 = 3.9, WE
22 = 3,

b1 = 0.13 (1 + Q1), b2 = 0, WI
12 = 0.5 Q1, WE

21 = 3. (b) Same as (a) except τ2 = 10. (c) Same as (a) except WE
22 = 3.8 and WE

21 = 1.
(d) Same as (a) except WE

22 = 4.2, b1 = 0.13 (1 − Q2), b2 = 0.26 Q2, WI
21 = 1, WE

12 = 0.6. Bifurcation diagrams are shown for the value of
Qi indicated by the dashed line on the phase diagram. Phase planes are shown for the value of S indicated by the dashed line on the
bifurcation diagram. All legends associated with phase diagram, bifurcation diagram and phase plane are shown on the top of the figure.
Bifurcation and phase diagrams are all based on the linear stability analysis of fixed points (see appendix B). Monostability: one sink; type-I
bistability (BI ): two sinks and one saddle; excitability (E): one sink, one saddle and one source; type-II bistability (BII ): two sinks, two
saddles and one source; oscillation (O): one source.

a single positive feedback loop. To this end, the simplest
approach is to consider a two-component circuit where the self-
activating x1 component, called master, behaves like a bistable
switch

(
WE

11 = 3.9
)

and is interacting with a x2 component,
called partner, establishing a negative feedback loop in two
possible manners as depicted in figure 2.

In a first circuit topology, the master component
both activates and is inhibited by the partner component
(figures 2(a)–(c)). For such a circuit, we define a control
parameter Q1 that increases with the inhibitory regulation,
WI

12, and decreases with the signal sensitivity of the master
component, b1. Q1 measures the strength of negative feedback,
with Q1 = 0 indicating an absence of negative feedback.
Increasing the negative feedback strength can affect positive
feedback-based bistability in three typical manners. First,
for a partner dynamics not too slow or not too much self-
activating, the increase of Q1 reduces the bistable domain
and two stable fixed points collide through a cusp (pitchfork)

3



Phys. Biol. 6 (2009) 046013 B Pfeuty and K Kaneko

bifurcation (figure 2(a)), similar to the case where positive
feedback strength is reduced (figure 1). The presence of
the negative feedback merely counteracts the effect of the
positive feedback. Second, for a delayed negative feedback
due to a slow partner dynamics (e.g. τ2 = 10), increase of
Q1 also reduces the bistable domain, but can additionally give
rise to oscillatory or excitable regime (figure 2(b)). In this
case, the two stable fixed points are destabilized through a
saddle-node bifurcation and a Hopf bifurcation respectively.
Third, for higher partner self-activation, increase of Q1 not
only generates oscillations or excitability but also produces
a specific type of bistability where two saddle equilibria
are present instead of a single one and collide with stable
fixed points (figure 2(c)). In the following, such bistability
associated with two saddle points is called type-II while type-I
refers to the existence of a single saddle point. These three
typical ways by which negative feedback affects bistability can
be captured by simple theoretical considerations described in
appendix B. It is confirmed in two-component circuits that
negative feedback must operate at enough slow time scale
or/and must be mediated by a sharply activated component to
allow that two stable fixed points of a bistable system can be
destabilized simultaneously while being far from each other,
giving rise to a transition from a bistable to an oscillatory
regime.

Type-II bistability can also occur in an alternative
feedback architecture where the self-activating master
component is activated by and inhibits the partner component
(figure 2(d)). The strength of the negative feedback is now
measured by the parameter Q2 associated with the increase in
b2 and the decrease in b1. Like the previous topology, type-II
bistability requires strong enough negative feedback and self-
activation of the partner component. In fact figures 2(c) and
(d) correspond to two switching scenarios associated with two
distinct domains in the parameter space, which differ primarily
by the level of negative regulation within the negative feedback
loops. Figure 3 depicts clearly the difference between those
two cases of type-II bistability where the signal-induced
activation of a first protein activates a second protein, which
in turn can (i) slightly reduce the first protein’s activity or
(ii) turn it off, respectively. In one case, the partner contributes
to the switch-off event only; while in the other case, the
partner contributes to the switch-on event only. Thus, despite
their differences, both type-II bistable switching scenarios are
characterized by a separate and independent control of switch-
on and switch-off events.

3.2. Functional switching properties associated with type-II
bistability

In the previous section, we focused on the emergence of a
specific type of bistability, called type-II, in the presence
of the appropriate combination of positive and negative
feedback. What are the specific switching properties of
type-II bistable system as compared with the conventional case
of bistability based on positive feedback alone? Could these
switching properties provide functional advantages in some
physiological contexts? In the following, we study several

(a)

(b)

Figure 3. Two main switching scenarios associated with type-II
bistability. (a) Same motif and parameters as in figure 2(c). The
signal-driven master x1 component activates its partner inhibitor.
The corresponding bifurcation diagram (left panel) is compared
with the two steady-state curves (gray thick line) associated with the
cases where the master is either not inhibited or constantly inhibited.
Time evolution of x1 and x2 activities in response to a signal step
(right panel) indicates that both x1 and x2 activities switch-on.
(b) Same motif and parameters as in figure 2(d). The master x1

component inhibits its signal-driven partner activator. The
corresponding bifurcation diagram (left panel) is compared with the
two steady-state curves (gray thick line) associated with the
single-master-component dynamics or single-partner-component
dynamics. The temporal response to a signal step indicates that only
x1 activity switches permanently while x2 activity switches
transiently.

specific switching properties as the response time, the quasi-
stationnarity or the effect of noise.

3.2.1. Switching response speed. As it is essential for cells
to rapidly and efficiently adapt in response to environmental
changes, protein regulatory circuits must have evolved
mechanisms to produce prompt switching behavior.

We first define the switching speed in a bistable system
as the speed to transit from the neighborhood of a saddle-
node bifurcation point to the neighborhood of the other, stable,
steady state (see appendix D). Of course, the switching speed
depends on the intrinsic time scales of the system dynamics
(i.e. τi in our model) associated with the time constants
of the biochemical processes involved in protein synthesis,
degradation or post-translational modification. However, it
also depends on the feedback structure of the circuit. Figure 4
shows how the interplay between positive and negative
feedback affects the switching speed. Increasing the positive
feedback strength accelerates significantly the switching speed
(figure 4(a)) together with the hysteresis width (figure 4(b))
such as to produce a fast and irreversible transition. The
addition of negative feedback can decorrelate these two
properties, by restoring a reversible switching behavior while
preserving the fast switching response. As a result, among
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(a) (b)

Figure 4. Fast and reversible transitions in type-II bistable systems. The switching speed (equation (D.3) with ε = 0.04) (a) and hysteresis
width (b) of a two-component circuit (same motif as figure 2(c)) as a function of positive and negative feedback strength (WE

11 and WI
12

respectively). Black domains are associated with a non-bistable regime. Panels of (a) show example of time evolution of x1 activity in
response to a small perturbation near the bifurcation point, from which switching speed is computed. Panels of (b) show bifurcation diagram
from which hysteresis width is computed. Fixed parameters: τ1 = 1, τ2 = 1, WE

22 = 3.8, WE
21 = 1, b2 = 0. b1 is adjusted to keep constant

the signal threshold associated with the switch-on event while WE
11 is varied. Panel A: WE

11 = 3.6, WI
12 = 0; panel B: WE

11 = 5, WI
12 = 0;

panel C: WE
11 = 5, WI

12 = 0.75.

two circuits with similar switching and hysteresis (panels A
and C of figure 4(b)) amplitudes, the type-II bistable system
combining positive and negative feedback exhibits a much
faster response than the type-I bistable system without negative
feedback (panels A and C of figure 4(a)). Alternatively,
among two circuits with similar switching speed (panels B
and C of figure 4(a)), only the type-II bistable system can
display a reversible switching behavior.

These results clearly show how type-II bistable systems
benefit from complementary roles between positive and
negative feedback wherein the former controls the switching
speed (and amplitude) and the latter controls the extent of
hysteresis (i.e. the degree of irreversibility), allowing both fast
and reversible state transitions.

3.2.2. Transient-state dynamics. Many types of cellular
behavioral changes are transient, such as during the cell-
division cycle or certain types of differentiation. In these
processes, individual cells, some time after a step or pulse of
signal triggered a transition to a specific state, switch back to
the original state or to a further different state. Thus, the main
feature of a transient state is that its termination is caused by
the internal dynamics rather than an external control.

Here, we show that type-II bistable switches can naturally
generate such transient states in response to both pulse or step
of signal. One basic paradigm of transient-state dynamics is
related to the existence of an excitable dynamical regime where
a perturbation beyond a threshold value gives rise to a large
non-monotonous response, eventually to a state close to being
stable (sometimes called an attractor ruin) before returning
to the original steady state. For a standard type-II bistable
switch (figure 5(a)), a signal pulse can induce a transient state
(panel C of figure 5(c) and figure 5(d)) in the excitable regime,
which contrasts with the permanent switching response (panel
C of figure 5(c)) in the bistable regime or the rapid monotonic
relaxation (panel A of figure 5(c)) for not excitable enough
system or not strong enough perturbation. Transient states
can also occur in the bistable regime of a type-II bistable

switch (figures 5(b) and (e)), where the switch from one state to
another is associated with a large excursion in the phase space
during which one variable is transiently activated (switched
on and off). In this case, a step of signal can induce a
transient state (panel E of figure 5(c)). In both excitable or
bistable regime, the duration of transient states is determined
by intrinsic time scales as well as the degree of instability of
the attractor ruin.

For the reasons above, a suitable combination of positive
and negative feedback makes type-II bistable systems capable
to generate transient states with various properties: transient
states can (i) display variable durations, (ii) be elicited by a
pulse or a step of signal, (iii) be followed by the return to the
original state or a switch to a further different state.

3.2.3. Stochastic switching dynamics. The discreteness
of molecule number and of biochemical reactions leads to
temporal and spatial fluctuations in protein concentrations.
Such intrinsic noise can induce stochastic transitions between
the two stable states of a bistable biochemical switch.

We investigate how type-II bistable switches (same motifs
and parameters as in figure 2(d)) behave in the presence of
intrinsic noise (equations (1) and (A.2)) where we define
σ̃i = √

τi/
√

Ni and σ̃ = σ̃1 = σ̃2. Figure 6(a) depicts
how the transition rate depends on the intrinsic noise level,
σ̃ , and the negative feedback strength, Q2. The signal value
is adjusted such that the circuit state switches on and off with
the same probability. In the absence of noise, transitions occur
only for Q2 > 0.69, in the oscillatory regime characterized by
the periodic switch-like alternation between low- and high-x1

activity. In the presence of noise, the transition rate increases
significantly when Q2 increases within the type-II bistable
regime. The level of negative feedback can therefore modulate
the transition rate of a bistable switch over a wide range,
about tenfold for σ̃i = 0.05, giving rise to either very robust
or very sensitive switching behavior. The inflexion point
occurs when phase space trajectories follow different paths
during switch-on and switch-off transitions, respectively. For
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(a) (c) (d )

(b) (e)

Figure 5. Transient states in type-II bistable systems. (a) Bifurcation diagram (see legend in figure 2) of a two-component circuit (same
motif as figure 2(c)) with parameters τ1 = 1, τ2 = 1, WE

11 = 4.5, WE
22 = 3.8, b1 = 0.2, b2 = 0, WI

12 = 0.5, WE
21 = 1 (b) Same as A except

WE
22 = 4. (c) Time evolution of x1 activity (black solid line) in response to a signal pulse or step (red solid line) is shown for different initial

circuit state. (A: S = 0.2, pulse; B: S = 0.4, pulse; C: S = 0.5, pulse; D:S = 0.4, pulse; E: S = 0.4, step). (d, e) x1 activity (brown solid
line) associated with panels B and D of (c) are represented on the phase plane with nullclines (dashed and dash-dotted lines) and fixed points
(circles); see legend in figure 2.

the type-I bistable system (e.g. Q2 = 0.2), high levels of
noise (σ̃i = 0.05) barely trigger transitions between low-
and high-x1 activity (figure 6(b)). In contrast, for type-II
bistable systems (e.g. Q2 = 0.6), relatively low levels of noise
(σ̃i = 0.02) can trigger transition between low- and high-
x1 activity (figure 6(c)). The sharp distribution of x1-activity
levels around the stable fixed point indicates that relatively
high stochastic transition rates can arise together with long
periods of low fluctuations.

In summary, the stochastic transition rate of type-II
bistable circuit can be tuned by parameters (e.g. those
modulating the negative feedback strength) that move the
attractor basin boundaries close to or away from stable fixed
points in a flexible manner.

4. Discussion

4.1. The specific switching properties of type-II bistable
systems

In this paper, we investigate the switching properties of
protein circuits composed of interacting positive and negative
feedback loops. It is well known that adding negative feedback
to positive feedback can turn bistability into oscillations in
both chemical or biological systems [28, 29, 31–33]. We
find that circuits operating close to this transition exhibit
a flexible control of switching behavior far beyond that
attributed to the conventional bistable switch based on a single
positive feedback loop. This is especially the case for circuit
that displays a specific type of bistability, named type-II,
which provides a prototypical example of a two-dimensional
system that can alternatively switch or oscillate between two
states. Type-II bistable systems are able to generate transient
switching responses, to display tunable transition rates and
to decorrelate hysteresis size with switching amplitude and

speed. Thus, such bistable systems can give rise to a great
diversity and flexibility of switching behavior characterized by
a wide spectrum and tunability of noise sensitivity or degree
of reversibility.

These results suggest that negative and positive feedback
loops can cooperate not only to tune the properties of biological
oscillators [34–36], the gain of metabolic fluxes [37] or the
spatial patterning [38], but also in the context of biochemical
switching behaviors, requiring that these feedback loops are
suitably combined. Type-II bistability arises indeed in simple
circuit topologies where, typically, a master regulator is
involved in a positive feedback loop and interacts with a
partner regulator through a negative feedback loop. In fact, two
typical architectures are possible where the partner is located
either upstream or downstream to the master regulator. In any
case, a sharp or discrete activation of the partner and a fast
positive feedback (as compared to the speed of the negative
feedback) are necessary to restrict the effect of the negative
feedback to the case when the master regulator has been fully
activated, allowing a separate and tunable control of switch-
on and switch-off events and their respective thresholds.
This specific feedback architecture ensures that negative and
positive feedback does not interfere and cancel their effect, but
instead cooperate for flexible switching behavior as described
above.

It is important to emphasize that type-II bistable systems
provide an illustrative but incomplete picture of biochemical
switches combining positive and negative feedback loops
or/and operating near the transition to excitable or oscillatory
regimes. On the one hand, biochemical circuits can involve
several negative [32, 33] or positive [39–42] feedback loops
interlocked in more complicated ways than the topologies
described in the present study. On the other hand, stable steady
states can loose their stability through Hopf bifurcations,
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(a)

(b)

(c)

Figure 6. Tunable noise-induced transitions in type-II bistable
systems. Stochastic transitions within the circuit described in
figure 2(d) in the presence of intrinsic noise. The signal level is
fixed and adjusted to have similar transition rates in both directions.
(a) Transition rates as a function of negative feedback strength, Q2.
(b,c) Stochastic time evolution of x1 activity (left), probability
distribution (center) and trajectories represented in the phase plane
(right). On phase planes are shown nullclines (dashed and
dash-dotted lines), fixed points (circles), attractor basin (gray and
white), basin boundary (solid line) and the circuit state at successive
time interval (blue points). (b) For Q2 = 0.2 (type-I bistability),
rare transitions between x1-active and x1-inactive states elicited by
high level of noises (σ̃ = 0.05). (c) For Q2 = 0.6 (type-II
bistability), frequent transitions between x1-active and x1-inactive
states elicited by relatively low levels of noises (σ̃ = 0.02).

supercritical or subcritical [28, 32], instead of saddle-
node bifurcations especially in high-dimensional systems.
Nevertheless, these considerations do not preclude that high-
dimensional biochemical circuits exhibit type-II bistable
dynamics as long as the feedback architecture and time scale
properties enable a separate control of switch-off and switch-
on events.

Our study raises the question of whether and which
cellular pathways combine positive and negative feedback
such as to operate near the transition between bistable and
oscillatory regimes. Among possible candidates, many
signaling and regulatory pathways involved in discrete cellular

responses actually combine positive and negative feedback
loops (figure 7), which is a necessary though not sufficient
condition to exhibit type-II bistability. In the following
section, we provide some concrete examples of such cellular
pathways that are likely to deploy a type-II bistable switching
behavior.

4.2. Fast, stochastic and transient switching behaviors in
biological systems

It is essential for any organism to rapidly and reversibly
adapt in response to changes in nutrient availability and other
environmental parameters. Regulatory mechanisms such as
negative autoregulation have been shown to contribute to
speeding up the reaction time of physiological responses
[43]. Our study revealed a related mechanism allowing
a fast and reversible switching behavior: strong positive
feedback that triggers prompt and irreversible transitions
is combined with negative feedback that restores reversible
transitions while preserving the high transition speed. Such
a mechanism may have evolved, for instance, to ensure
a rapid and reversible response of yeast cells to changing
levels of glucose. The yeast glucose utilization network
consists of two interconnected signaling pathways (Snf3/Rgt2-
Rgt1 and Snf1-Mig1) incorporating multiple feedback loops
[19, 44] (figure 7(b)). At low glucose, activation of Snf3
relieves, mainly via Std1, the Rgt1-dependent repression
of HXT genes encoding glucose transporters and results in
activation of the glucose transcriptional repressor Mig1. In
turn, Mig1-dependent repression of Mth1 contributes to the
phosphorylation of Rgt1, thereby promoting the expression
of the HXT1 gene and giving rise to a positive feedback
loop required to maintain high Mig1 levels. At the same
time, Mig1-dependent repression of Mig1, Snf3, HXT2-4 genes
contributes to multiple negative feedback loops. This feedback
topology wherein a starter component (i.e. Snf3/HXT2-4)
contributes to the activation of the master regulator (Mig1),
which further inactivates the starter component, is likely,
according to our findings, to enable a prompt induction and
repression of the glucose utilization pathways when glucose is
either exhausted or available, respectively.

Noise-induced cellular transitions can also play an active
role into biological adaptation by promoting phenotypic
heterogeneity in a clonal cell population and subsequently
allowing a subset of cells to adapt more effectively to harmful
environmental changes [12, 45]. Accordingly, cells are likely
to evolve their inter-phenotype switching rates according to
the frequency of environmental changes [46], which can
be done by tuning their intrinsic noise or their switching
sensitivity to noise. For the latter mechanism, our study
proposed that the presence of negative feedback in addition
to positive one allows tunable control of stochastic switching
rates. Interestingly, cell fate decisions that are influenced
by stochastic processes are often associated with regulatory
networks combining positive and negative feedback such as
those involved in the competence or sporulation processes
of Bacillus subtilis [16, 47, 48] (figures 7(a) and (h)). A
role for type-II bistable switching in these processes is indeed
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(a) (g)(b) (c) (d ) (e) (f )

(h) (n)(i ) ( j ) (k ) (l ) (m)

Figure 7. Examples of cellular pathways combining positive and negative feedback loops. Two-component circuits as a schematic
representation of signaling or regulatory pathways combining positive feedback loop (blue, +) and negative feedback loop (green, −). The
solid circle denotes a master regulator that is involved into (a) sporulation initiation in Bacillus subtilis [18]; (b) glucose utilization in
budding yeast [19, 44]; (c) S-phase initiation in the cell-division cycle of eukaryotes [49]; (d) mitotic control in the cell-division cycle of
eukaryotes [49]; (e) pheromone response in budding yeast [22]; (f ) heterocyst differentiation in cyanobacteria [23]; (g) cell constriction
initiation in caulobacter [25]; (h) competence induction in Bacillus subtilis [18]; (i) ovarian differentiation in mammals [27]; (j )
differentiation in ventral neural tube [20]; (k) p53-dependent stress response in mammals [21]; (l) muscle differentiation [24]; (m) meiosis
initiation in budding yeast [26]; (n) notch-dependent differentiation [33].

supported by a study by Süel and co-workers in which a model
of the competence regulatory circuit displays a type-II bistable
regime for a certain range of parameters (see the supporting
material of [16]).

Competence and sporulation, besides being influenced by
noise, are temporally constrained cellular processes for which
the cell adopts a transient state, or a sequence of transient
states, to further come back to the original state. Another
well-documented example of transient switching behavior
is provided by the cell-division cycle of which the ordered
succession of stages are controlled by the sequential activation
of cyclin-dependent protein kinases (Cdks) [49]. Interestingly,
these key regulators are immersed in a regulatory network
that combines multiple feedback loops [49] (figures 7(c)
and (d)). Positive loops mediated by mutual inhibition
with Cdk inhibitors or mutual activation with transcription
factors contribute to switching onto Cdk-active states. In
turn, negative loops ensure further inactivation of Cdks
(e.g. Cdk1 activates the anaphase-promoting complex, which
leads to cyclin destruction and Cdk1 inactivation). Our
study suggests that such feedback architecture, able to give
rise to type-II bistability, accounts for both clock-like and
switch-like properties of cell-cycle progression depicted as
a cyclical sequence of transient states, which can eventually
be turned into stable states if checkpoint conditions are not
satisfied. This interpretation is in agreement with those
postulated in previous modeling studies [50, 51], which have
described the directional cell-cycle progression monitored
through checkpoint mechanisms by a dynamic structure where
saddle-node bifurcations arise on an invariant circle, similar to
type-II bistable systems.

5. Conclusion

The frequent combination of positive and negative feedback
loops in biological systems suggests that this type of circuits
possess some performance advantage not only for spatial
pattern formation or oscillatory behavior but also for switching
behavior. Strong positive feedback is necessary to produce
prompt and robust switches, but may also induce irreversible
transitions and lead to excessively stable states, thereby
impairing the adaptive behavior of the cell. Our study
posits that the suitable addition of negative feedback can
allow a selective and contextual destabilization of these states
while preserving the switch-like behavior triggered by positive
feedback. During a developmental cycle as the cell-division
or sporulation cycle, such a cooperative mechanism would
contribute to the cellular progression along a cyclical sequence
of states, eventually controlled by checkpoints. In many
other cellular processes, the same mechanism would instead
promote fast and reversible signal-driven adaptive transitions.
Alternatively, it could also enable an efficient noise-driven
exploration of the phenotypic space, which is crucial for
the evolutionary adaptation of cells that must anticipate
unforeseen environments or adapt to unknown challenges.

Appendix A. Derivation of the canonical model for
transcriptional and post-translational networks

We have formulated a set of dimensionless differential
equations (equation (1)) to describe the dynamics of protein
networks. In the following, we give the details of the
assumptions and renormalizations that were made to derive
these equations.
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First, we consider the case of protein species i (with
Ni copy number) regulated at the post-translational level
by phosphorylation and dephosphorylation mechanisms.
Assuming a fast catalytic reaction rate compared to the binding
rate and using the law of mass action, we can write the
following equation for the time evolution of the number of
activated proteins:

dX+
i

dt
= α̃i

(
Ni − X+

i

) − β̃iX
+
i + η(t) (A.1)

where α̃ and β̃ are the activation and inactivation rates, and
η is a white noise term. Equation (1) can be derived from
equation (A.1) with τ = d1t , xi = X+

i

/
Ni , τi = d1/di (di

being the spontaneous inactivation rate of protein species i).
The variance σ 2

i is given by

σ 2
i = (αi(1 − xi) + βixi)

τi

Ni

. (A.2)

In the case of proteins regulated at the transcriptional
level, one can also derive equation (1). Let us consider two
classes of transcriptional factors, inducers Xj and repressors
Yj , that can bind and unbind at some rate k+

ij , k−
ij , K+

ij , K−
ij

with a cooperativity n, to a specific DNA-binding site of the
gene encoding the protein species i. Given a constant total
DNA-binding site concentration and averaging over many fast
binding and unbinding events, the rate of mRNA production
or promoter activity, pi , is given by the probability that the site
is bound by an inducer, times the maximal transcription rate,
km [52]:

pi = km

∑
j k+

ij

/
k−
ij X

n
j

1 +
∑

j k+
ij

/
k−
ij X

n
j +

∑
j K+

ij

/
K−

ij Y n
j

. (A.3)

For sufficiently slow degradation of proteins as compared
to mRNA, a quasi-steady state approximation can be used and
leads to the following equation for the time evolution of protein
concentrations Xi :

dXi

dt
= γ+pi/qm − γ−Xi + η(t) (A.4)

with qm, γ+ and γ− are the mRNA degradation rate and
the protein translation and degradation rates, respectively.
Equations (1), (2) and (3) can be derived from equations
(A.3) and (A.4) after defining suitable rescaled variables
and parameters: τ = γ− t , λ = kmγ+

qmγ−
, xi = Xi/λ,

WE
ij = λnk+

j

/(
dik

−
j

)
, WI

ij = λnK+
j

/(
diK

−
j

)
, τi = (αi + βi).

Finally, the Langevin noise associated with stochastic protein
translation and degradation events is given by

σ 2
i = (αi(1 + xi) + βixi)

τi

λ
. (A.5)

It is important to mention that for both transcriptional
and post-translational regulation, we assume that the
binding/unbinding events (between transcription factors and
DNA-binding sites or between enzymes and proteins) occur
independently, omitting the case of cross-regulatory events.
We also neglect the case where proteins are regulated at the
level of mRNA or protein degradation. Cross-regulations
as well as regulations at multiple levels are expected to
provide additional sources of non-linearities and feedback
mechanisms that would certainly contribute to enrich and
refine the dynamics of protein–protein interaction network.

Appendix B. Linear stability analysis of a
two-component circuit

For two-dimensional flows, attractors can be only a fixed point
or a limit cycle. The type of fixed point can be determined
by the sign of the trace and determinant of the Jacobian
matrix. Because the trajectories of the dynamical systems
(equation (1)) are bounded into the trapping subdomain ]0, 1[
of the phase space, the Poincare–Bendixon theorem can be
applied to identify the presence of a limit cycle associated
with the occurrence of a single unstable equilibrium. The
Poincare index theory can also be applied: if all fixed points
are hyperbolic, then there must be an odd number 2n + 1 of
equilibria of which n are saddles and n+1 are sinks or sources.
Bistable systems therefore possess n saddles and n−1 sources,
with n = 1 and n = 2 being associated with type-I and type-II
bistability, respectively.

Appendix C. Typical effects of negative feedback on
bistability

In order to characterize schematically the manifold influences
of negative feedback on bistability, we depart from the original
model (equation (1)) by assuming that the first component,
which can exhibit bistability

(
WE

11 > 3.4
)
, activates its own

inhibitor according to an arbitrary function G:⎧⎨
⎩

τ1 dx1/dt = (
a1S + WE

11x
2
1

)
(1 − x1) − (

1 + WI
12x

2
2

)
x1

= F(S, x1, x2)

τ2 dx2/dt = G(x1) − x2.

(C.1)

We consider separately the effect of constant, linear and
nonlinear contributions of that activation function G:

G(x1) =
⎧⎨
⎩

c0 ∈ ]0, 1[
c0 x1 ∈ ]0, 1[
c0 H(x1 − x0) ∈ ]0, 1[.

(C.2)

A constant activation of the negative regulation has a
straightforward effect of renormalizing the dynamics of the
first component:

τ1

1 + Q

dx1

dt
=

(
a1

1 + Q
S +

WE
11

1 + Q
x2

1

)
(1 − x1) − x1 (C.3)

where Q = WI
12c

2
0, meaning that increasing the negative

feedback strength has a similar effect as decreasing the self-
activation (i.e. the positive feedback strength), together with
the signal sensitivity and the time scale.

A linear activation of the negative regulation can give
rise to a scenario where fixed point is destabilized through
a Hopf bifurcation. The crossing of the imaginary axes by
a conjugated pair of eigenvalues occurs if Q satisfies both
these inequalities for the steady state x∗

1 associated with the
signal S∗:

ε

2(x∗
1 )2

< Q < WE
11

(
WE

11

S∗ + ε + 1
− 3

)
(C.4)

with ε = τ1/τ2. Slow enough negative feedback (ε < εc) is
then necessary to destabilize one stable fixed point through a
Hopf bifurcation. In particular, two stable fixed points can be
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destabilized simultaneously, one by a Hopf bifurcation and the
other by a saddle-node bifurcation.

A last case study is to consider a nonlinear activation of
the negative regulator as a step function H whose threshold
x0 lies between the two branches of steady state solutions
of the uncoupled first component. The two saddle-node
bifurcations arise for the values of S and x1 that satisify
F(S, x1, x2) = 0 and dF/dx1(S, x1, x2) = 0 with x2 = 0 or
c0 respectively. As a result, the two saddle-node bifurcations
occur at the same value of S for two different values of
x1, x+

1 and x−
1

(
x+

1 > x−
1

)
, which satisfies the equality(

x+
1 − x−

1

)(
2 − x+

1 − x−
1

) = Q
/
WE

11. Such a coincidence
of two saddle-node bifurcations corresponds to a transition
from type-II bistability to oscillations.

Appendix D. Measure of switching speed

To define a measure of switching speed, we assume that the
dynamical system (equation (1) rewritten as dx/dt = F(x))
is at a saddle-node bifurcation point xsn where a small
perturbation can switch the system to another stable state
xst, and we focus on the switching behavior of the master
component x1. The speed during the transition from low- to
high-x1 activities is correlated with phase-space velocity along
the heteroclinic orbit connecting the saddle-node fixed point to
the stable fixed point. We therefore define the switching time
as the time required to cover some significant portion of the
heteroclinic orbit γ connecting the saddle-node and the stable
fixed point:

Tε =
∫

γε

dx/F(x) (D.1)

where γε writes (for xsn
1 < xst

1 )

γε = γ ∩ {
x1 < xst

1 − ε
} ∩ {

x1 > xsn
1 + ε

}
. (D.2)

The switching speed can be derived by dividing the switching
distance by the switching time:

vε =
∣∣xst

1 − xsn
1

∣∣ − 2ε

Tε

. (D.3)
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