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A dynamic model for cell differentiation, where cells with internal chemical reaction
dynamics interact with each other and replicate was studied. It led to spontaneous
differentiation of cells and determination, as discussed in the isologous diversifica-
tion. The following features of the differentiation were obtained: (1) hierarchical
differentiation from a ‘stem’ cell to other cell types, with the emergence of the
interaction-dependent rules for differentiation; (2) global stability of an ensemble
of cells consisting of several cell types, that were sustained by the emergent, au-
tonomous control on the rate of differentiation; (3) existence of several cell colonies
with different cell-type distributions. The results provide a novel viewpoint on
the origin of a complex cell society, while relevance to some biological problems,
especially to the hemopoietic system, is also discussed.
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1. INTRODUCTION

A multicellular organism is an ordered clone of a fertilized egg. All the cells
contain the same genome set but are specialized in different ways. The emergence of
different cell types is determined rather precisely, while the developmental process
of the cells, viewed as a cell society, has robustness against perturbations.

In molecular biology, the differentiation processes are often regarded as on–off
switching processes, depending on inputs by signal molecules, leading to a variety
of cell types as outputs. A large number of reactions between inputs and outputs are
represented as a ‘cascade’, where the reactions are assumed to be approximately
independent of the other reaction processes in the cell. The switching behavior
(given by the sigmoidal function) is assumed to be generated from a chain of these
reactions. With this viewpoint, one can decompose the differentiation by successive
local elementary processes. It enables us to elucidate the differentiation processes
by experimental methods, where several signal molecules and essential genes for
differentiations are identified.

Of course, the development progresses through cooperation of several processes.
Successive differentiation processes are often expressed as ‘canalization’, where
differentiations are captured as a result of dynamics of complex chemical networks,
in contrast with a linear combination of simple pathways of chemical reactions.
The pioneering study of Kaufmann (1969) demonstrated that the Boolean network
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of genes gives a variety of final states depending on the initial conditions, and
he has suggested that each final state corresponds to each cell type. However,
needless to say, a single initial state embedded in a fertilized egg can produce
several different cell types. Thus, the following questions remain unanswered
about the gene network. How do the different initial states leading to the different
cell types arise in the process of development? How does a selection of specific
initial conditions lead to precise rules of differentiations?

It should be noted that, in the gene network picture, cellular interactions are not
explicitly taken into account, which should be important in the course of devel-
opment. A pioneering study for the pattern formation is due to Turing (1952),
where dynamic instability by the cellular interactions leads to the pattern formation
(Newman, 1990). However, it remains unsolved as to how such cell-to-cell inter-
actions are incorporated with the internal dynamical complexity including the gene
networks [see also Bignone (1993), Mjolsnesset al. (1991), Thomaset al. (1995)].

Hence it is necessary and important to consider a system of internal dynamics with
suitable cell-to-cell interactions. Kaneko and Yomo (1994, 1995, 1997) have per-
formed several simulations of interacting cells with internal biochemical networks
and cell divisions that lead to the change in the number of degrees of freedom. The
‘isologous diversification theory’ is proposed as a general mechanism of sponta-
neous differentiation of replicating biological units (Kaneko and Yomo, 1994, 1995,
1997). In the theory, the following three points are essential.

1. Spontaneous differentiation. The cells, which have oscillatory chemical reac-
tions within, differentiate through interaction with other cells. This differenti-
ation is provided by the separation of orbits in the phase space. The dynamics
of cells first splits into groups with different phases of oscillations, and then to
groups with different compositions of chemicals. These differentiations are
not caused by specific substances, but are triggered by the instability brought
about by nonlinear systems. The background of this differentiation process
lies in the dynamic clustering in globally coupled chaotic systems (Kaneko,
1990, 1991, 1992).

2. Inheritance of the differentiated state to the offspring. Each differentiated
state of a cell is preserved by the cell division and transmitted to its offspring.
Chemical composition of a cell is recursively kept with respect to divisions.
Thus a kind of ‘memory’ is formed, through the transfer of initial conditions
(e.g., of chemicals). By reproduction, the initial condition of a cell is chosen
so that the same cell type is produced at the next generation.

3. Global stability. A multicellular organism often shows a robustness against
some perturbation, such as somatic and other mutations. An extreme example
is seen in a mutation to triploid in the newt, where the cell size triples, but the
total cell number is reduced to one-third, and the final body is affected little
by the mutation (Fankhauser, 1995). The distribution of cell types obtained
is robust against external perturbations. For instance, when the number of
one cell type is decreased by external removal, the distribution is recovered
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by further differentiations to generate the removed cell type. In this theory,
although the instability triggers the differentiations, the cell society as a whole
is stabilized through cell-to-cell interactions.

In the present paper we extend previous studies by Kaneko and Yomo (1997) to
incorporate the formation of a complex cell society. We extend our model to allow
for complex internal dynamics, in particular, focusing on the following three topics.

1. The hierarchical organization and the emergence of stochastic rules. The
cell differentiation process in nature follows a hierarchical organization. For
example, the pluripotent cells, such as stem cells, give rise to committed cells,
which further differentiate to terminally differentiated cells. Here the rules of
differentiation are written as expressions of DNA in principle, but it should be
noted that the differentiation is often interaction-dependent. Furthermore, in
the hemopoietic system, the differentiation process appears to be stochastic,
and the probability of each choice seems to depend also on the distribution
of cell types (Ogawa, 1993). Hence it is interesting how such interaction-
dependent rules of hierarchical differentiation are formed naturally through
the interplay between internal dynamics and cell-to-cell interactions.

2. Stability of cell types and cell groups. Cells belonging to the same cell-type
also differ slightly from each other. Hence discretization of states to types and
their changing continuously coexist among cells. The differentiation rules
of cell types are written for the discrete types. When cell differentiation is
determined, memory of the discrete state is stable against cell division. Then,
the state has to be dynamically stable (like an attractor), while for stem cells
or undetermined cells, their state must have both stability and variability (dif-
ferentiability) by divisions. Here we are interested in how such stability and
differentiability are compatible as a state of dynamical systems. Besides the
stability of a cellular state, stability about the distribution of cell types has to be
attained through the developmental process. For example, the distribution of
cell types in the hemopoietic system is robust against external perturbations.
Here we try to answer the question of stability through an interplay of internal
dynamics and cell-to-cell interaction, that leads to modulation of internal cel-
lular states and to the stability of distribution of the cells at the ensemble level.

3. Differentiation of the cell colony. In an organism, a higher level of differentia-
tions often appears, leading to several distinct types of tissues. They consist of
different types of cells and/or different distribution of cell types. Indeed in the
hemopoietic system, several colonies consisting of different cell types appear
from the same stem cells (Nakahataet al., 1982). It is important to ask how a
single cell can form such different cell colonies. This is more complex than
cell differentiation, since the population of cell types has to be differentiated.

In the present paper we study these three problems by extending the previous
model of cell differentiation, to allow for complex internal dynamics. Here the
cellular states are given by a set of chemical concentrations, while the internal
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dynamics is given by mutually catalytic reaction networks. In contrast with the
previous model, the internal dynamics allows for chaos and also coexistence of
multiple attractors. Interaction among cells is given by the diffusive transport of
chemicals between each cell and a homogeneous environment. Cell volume is
increased through the transport of chemicals from the environment, which leads to
the cell division when it is larger than a given threshold.

By allowing complex dynamics at the internal cell level, we will show that the
above three problems are answered from our standpoint. First, hierarchical differ-
entiation of several cell types is formed. There appears a cell type that plays the role
of ‘stem cell’, from which different cell types are differentiated. The probabilistic
switch of cell types is given through the internal dynamics, whose rate is dependent
on the interaction, and accordingly, on the distribution of other cell types. Second,
the stability of cell types is given as a ‘partial attractor’ (to be discussed) of the
internal dynamics, stabilized through interactions. Third, stochastic population dy-
namics of cell types emerges as a higher level. It is found that this dynamics has
several attracting states, which supports different stable cell colonies (tissues).

The organization of the paper is as follows. In Section 2, our model is presented.
Although a specific type of catalytic reaction network is adopted in the present
paper, it should be noted that the results are generally seen in a variety of reaction
networks. Although the interaction we adopt here is global, in the sense that all
cells interact with each other, our main conclusion on the differentiation and the
formation of cell society is invariant even if the ‘spatial’ effect is explicitly taken into
account as a local diffusion process. In Section 3, we will show numerical results
of the evolution of cell society from a single cell, where the emergence of distinct
cell types is given. Differentiation of these cells is found to obey a specific rule; this
emerges as a higher level than the chemical reaction rules we have adopted. The
mechanism of discretization of states, and the formation of (interaction-dependent)
cell memory is discussed in Section 4. The rule of ‘stochastic’ differentiation from
a stem-type cell is studied in Section 5, where the stability of the population of cell
types is noted. In Section 6, the diversity of cell colonies is shown in relation to
several attracting states of a higher-level dynamics, i.e., the population dynamics of
cell types. Summary and discussions are given in Sections 7 and 8, where relevance
of our results to cell biology is discussed, which covers the origin of stem cells,
in particular stochastic branching, stability and diversity of cell colonies in the
hemopoietic system, and the origin of multicellular organisms.

2. THE MODEL

Our model for differentiation consists of:

• internal dynamics by biochemical reaction network within each cell;
• interaction with other cells through media, intercellular dynamics;
• cell division.
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The basic strategy of the modeling follows the previous works (Kaneko and Yomo,
1997), although we take different dynamics for each of the above three processes.
In essence we assume a network of catalytic reactions for internal dynamics that
allows for a periodic and/or chaotic oscillations of chemicals, while the interaction
process is just a diffusion of chemicals through media.

We represent the internal state of a cell by concentrations ofk chemicals as
dynamical variables. Cells are assumed to be in surrounding media, where the same
set of chemicals is given. Hence the dynamics of the internal state is represented
by a set of variablesx(m)i (t), the concentration of themth chemical species at the
ith cell, at timet. The corresponding concentration of the species in the medium is
represented by a set of variablesX(m)(t). We assume that the medium is well stirred
by neglecting the spatial variation of the concentration, so that all cells interact with
each other through an identical environment.

2.1. The internal chemical reaction. Within each cell, there is a network of
biochemical reactions. The network includes not only a complicated metabolic
network but also reactions associated with genetic expressions, signaling pathways,
and so on. In the present model, a cellular state is represented by the concentrations
of k chemicals.

As internal chemical-reaction dynamics we choose a catalytic network among the
k chemicals. Each reaction from the chemicali to j is assumed to be catalyzed
by the chemical̀ , which is determined randomly. To represent the reaction matrix
we adopt the notation Con(i, j, `) which takes unity when the reaction from the
chemicali to j is catalyzed bỳ , and takes 0 otherwise. Each chemical has several
paths to other chemicals, which act as a substrate to create several enzymes for
other reactions. Thus these reactions form a complicated network. This matrix is
generated randomly before simulations, and is fixed throughout the simulation. We
use the same reaction matrix throughout a series of simulations in this paper (see
also Sections 3 and 7 for dependence on the reaction matrix).

Usually, chemical kinetics with enzymes is solved under some approximations,
such as Michaelis–Menten. In this paper, we assume the quadratic effect of en-
zymes. Thus the reaction from the chemicalm to ` aided by the chemicalj leads to
the terme1x(m)i (t)(x( j )

i (t))2, wheree1 is a coefficient for chemical reactions, which
is taken identical for all paths. The quadratic effect of enzymes is not essential to
our scenario of cell differentiations. Several other forms on the internal dynamics
leads qualitatively to the same behavior, as long as nonlinear oscillation is included.
The scenario of the differentiation which we propose here is independent of the
details of this specific choice of biochemical dynamics.

Besides the change of chemical concentrations, we have to take into account
the change of the volume of the cell. The volume is now treated as a dynamical
variable, which increases as a result of transportation of chemicals into the cell from
the environment. Of course, the concentrations of chemicals are diluted according
to the increase of the volume of the cell. For simplicity, we assume that the volume
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of the cell is proportional to the sum of chemicals in the cell. Under this assumption,
the operation which compensates the concentration of chemicals with the volume
change is identical to imposing the restriction

∑
` x(`)i = 1, namely normalizing the

chemical concentrations at each step of the calculation, while the volume change is
calculated from the transport as will be given later.

2.2. The interaction with other cells through media.Each cell communicates
with its environment through the transport of chemicals. Thus, interactions between
cells occur throughout the environment. Here, the environment does not mean
the external environment for individual organism, but is intended as an interstitial
environment of each cell. In this model, we consider only diffusion processes
through the cell membrane. Thus, the rates of chemicals transported into a cell are
proportional to differences of chemical concentrations between the inside and the
outside of the cell. Of course, the transport through the membrane is not so simple,
including several mechanisms such as channel proteins and endocytosis. We omit
these complicated mechanisms for simplicity.

The transportation or diffusion coefficient should be different for different chem-
icals. Here we assume that there are two types of chemicals, those which can
penetrate the membrane and those which cannot. We use the notationσm, which
takes 1 if the chemicalx(m)i is penetrable, and 0 otherwise.

To sum up all these processes, the dynamics of chemical concentration in each
cell is represented as follows:

dx(`)i (t)/dt = δx(`)i (t)− (1/k)
k∑

l=1

δx(`)i (t) (1)

with

δx`i (t)=
∑
m, j

Con(m, `, j ) e1 x(m)i (t) (x( j )
i (t))2

−
∑
m′, j ′

Con(`,m′, j ′) e1 x(`)i (t) (x( j ′)
i (t))2

+σ`D(X(`)(t)− x(`)i (t)) (2)

where the term with
∑

Con(. . .) represents paths coming into` and out of̀ respec-
tively. The termδx(`)i gives the increment of chemical`, while the second term in
equation (1) gives the constraint of

∑
` x(`)i (t) = 1 due to the growth of the volume.

The third term in equation (2) represents the transport between the medium and the
cell, whereD denotes a diffusion constant, which we assume to be identical for all
chemicals. Since the penetrable chemicals in the medium can be consumed with the
flow to the cells, we need some flow of chemicals (nutrition) into the medium from
the outside. By denoting the external concentration of these chemicals byX and its
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flow rate per volume of the medium byf , the dynamics of penetrable chemicals in
the medium is written as

d X(`) (t)/dt = f σ`(X(`) − X(`)(t))− (1/V)
N∑

i=1

σ`D(X
(`)(t)− x(`)i (t)) (3)

whereN denotes the number of the cells in the environment, andV denotes the
volume of the medium in the unit of a cell.

2.3. Cell division. Each cell takes penetrable chemicals from the medium as the
nutrient, while the reactions in the cell transform them to unpenetrable chemicals
which construct the body of the cell such as membrane and DNA. As a result of
chemical flow, the volume of the cell is increased by the factor(1+∑` δx

`
i (t)) per

dt. In the present paper, the cell is assumed to divide into two almost identical cells
when the volume of the cell is doubled. (In other words, the cell divides at the time
t when ∫ t

tb

exp(1+
∑
`

δx`i (t
′))dt′ = 2 (4)

is satisfied since the previous division timetb) †.
The concentrations of chemicals in the daughter cells are almost equal to the

concentrations of the mother cell. ‘Almost’ here means that the concentrations of
chemicals in a daughter cell are slightly different from that of the mother. Each cell
has(1+ε)x(l ) and(1−ε)x(l ), respectively, with a small ‘noise’ε, a random number
with a small amplitude, say[−10−6,10−6]. Although the existence of imbalance is
essential to the differentiation in our model and in nature, the degree of imbalance
itself is not essential to our results to be discussed. The important feature of our
model is the amplification of microscopic differences between the cells through the
instability of the internal dynamics.

2.4. The internal dynamics in a single cell.Before studying the dynamics of
cell society, we demonstrate a typical behavior of our model by taking only one
cell and medium. In our theory, the fundamental assumption is that the internal
dynamics of chemicals in the cell shows oscillation as in Fig. 1. In real biological
systems, oscillations are observed in some chemical substrates such as Ca, NADH,
cyclic AMP, and cyclins (Hess and Boiteux, 1971; Albertset al., 1994; Tysonet al.,
1996). Hence it is natural to postulate such oscillatory dynamics to our model.

†Embryos fall into two general categories: those in which cell division is accompanied by growth of
the cells back to their former volume (as in mammals and birds); those in which cell division results
in cells of half the previous volume (as amphibians). Although our model here adopts the division
process as in mammals and birds, we have also confirmed that the present differentiation mechanism
also holds for a model with amphibian-like rules, where cell division halves cell volume, and each
cell interacts with neighborhood cells like gap junctions.
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Figure 1. The overlaid time series ofx(m)(t) of a single cell in medium, obtained from a
network with 16 chemicals and three connections in each chemical. Only the time series
of five chemicals are plotted out of 16 internal chemicals. Each line with the numberm=
2,9,10,11,12 gives the time series of the concentrations of the corresponding chemical
x(m)(t). This oscillatory behavior is a limit cycle, whose periodT is longer than the plotted
range of the figure (T ∼= 16 000 time steps). The parameters are set ase1 = 1, D = 0.01,
f = 0.01, X(`) = 0.1 for all `, andV = 100. Chemicalsx(`)(t) for m ≤ 3 are penetrable
(i.e., σ` = 1), and others are not. The reaction network Con(i, j, `) is randomly chosen
initially, and is fixed throughout the simulation results of the present paper.

The importance of oscillatory dynamics in cellular systems has been pointed out by
Goodwin (1963).

The nature of internal dynamics by equations (1) and (2) depends on the choice
of the reaction network, in particular on the number of paths in the reaction matrix.
When the number of reaction paths is small, cellular dynamics falls into a steady
state without oscillation, where a small number of chemicals is dominant while
concentrations of other chemicals vanish. On the other hand, when the number
of reaction paths is large, many chemicals generate each other. Then chemical
concentrations take constant values (which are often almost equal). Only for a
medium number of reaction paths, do non-trivial oscillations of chemicals appear
as in Fig. 1. We use such networks for our simulation. It is not easy to estimate the
number of paths in real biochemical data, although they may suggest the medium
number (3–6) of paths, as required in our simulation.
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Furthermore, the behavior of dynamics depends on the number of penetrating
chemicals; these being another control parameter for the capacity of the oscillation
or differentiation. When the number of penetrating chemicals is small, e.g., only
one, the rate of randomly chosen reaction networks which show oscillatory dynamics
is small. On the other hand, when the number of penetrating chemicals is too large,
it is also difficult to obtain the network with oscillatory dynamics.

Another relevant factor to the nature of internal dynamics is the frequency of
autocatalytic paths. Indeed, the oscillatory dynamics is rather common as the
number of autocatalytic paths is increased (see Section 7).

3. THE DIFFERENTIATION PROCESS: NUMERICAL RESULTS

We have performed several simulations of our model with different chemical
networks and different parameters. Since typical behaviors are rather common,
we present our results by taking a specific chemical network with the number of
chemicalsk = 20‡.

As an initial condition, we take a single cell, with randomly chosen chemical
concentrations ofx(`)i satisfying

∑
` x(`)i = 1. In Fig. 1, we have plotted a time

series of concentrations of the chemicals in a cell, when only a single cell is in the
medium. This attractor of the internal chemical dynamics is a limit cycle, whose
period is longer than the plotted range in Fig. 1. We call this state ‘Attractor 0’
or ‘Type 0’ in this paper. This is the only attractor that is detected from randomly
chosen initial conditions§.

With the diffusion term, external chemicals flow into the cell, which leads to the
increase of the volume of the cell. Thus the cell is divided into two, with almost
identical chemical concentrations. Chemicals of the two daughter cells oscillate
coherently, with the same dynamical behavior as the mother cell (i.e., Attractor 0).
Successive cell divisions occur simultaneously, and the cell number increases as
1–2–4–8. . ., up to some threshold number. At this stage, the internal dynamics of
each cell belongs to the same attractor (i.e., Attractor 0), but the oscillations are no
longer synchronized. The microscopic differences introduced at each cell division
are amplified to a macroscopic level through the interaction, which destroys the
phase coherence.

‡In this example, we do not choose reaction paths equivalently among all chemicals, but select two
class of reactions randomly. One class of reactions are paths from a penetrable chemical to any other
chemical, and another is a path from any chemical to a penetrable one. The purpose of this selection
is to enhance the autocatalytic reaction loop, and to easily obtain oscillatory reaction dynamics. Of
course, reaction networks chosen equivalently and randomly can also show the same type of behavior
to be discussed in this paper. As for the relationship between autocatalytic reactions and our scenario
for differentiation, see also Section 7.

§As will be seen later, there is another attractor as a single-cell state. However, this attractor is not
observed when the initial condition is randomly chosen; in other words the basin volume for it is very
small.
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When the number of cells exceeds this threshold value, some cells start to show
a different type of dynamics. The threshold number depends on the parameters of
our model. In the present example, two cells start to show a different dynamical
behavior (as plotted in Fig. 2(a)), when the total cell number becomes 16. In
Fig. 2(a), the time series of the chemicals in this cell are plotted. We call the state
‘partial Attractor 1’ (or ‘Type 1’ cell). We do not call it an attractor, since the
state does not exist as an attractor of internal dynamics of a single cell. As will be
discussed later, the stability of the state is sustained only through the interaction.
In Fig. 3(a), orbits of chemical concentrations are plotted in the phase space during
the transition from Type 0 to Type 1. It shows that each attractor occupies distinct
regimes in the phase space. These two types of cells are clearly distinguishable as
digitally distinct states; hence, we interpret this phenomenon as differentiation.

As the cell number further increases, another type of cell appears, which we call
Type 2 here. It is again differentiated from the Type 0 cell [see Figs 2(b) and 3(b)].
The Type 0 cells have potentiality to differentiate to either ‘1’ or ‘2’, while some of
the Type 0 cells remain to be of the same type by the division.

For some simulations (i.e., for some initial conditions), the differentiation process
stops at this stage, and only three types of cells coexist. In many other simulations,
however, the differentiation process continues. At this stage, hierarchical differ-
entiation occurs. The cell Type 1 further differentiates into either of three groups
represented as ‘3’, ‘4’ or ‘5’. The time series of these three types are shown in
Fig. 2(c)–(e). The internal dynamics of each type is plotted in a projected phase
space in Fig. 4 . The orbit of Type 1 cell itinerates over the three regions corre-
sponding to ‘3’, ‘4’, and ‘5’. For example, Fig. 3(c) shows a switch from Type 1 to
Type 3 in the phase space by taking a projection different from that in Fig. 3(a) and
(b) (note the difference of scales). It is also noted that the difference by cell types
is more clearly distinguishable by chemicals with lower concentrations.

In the normal course of cell differentiation process (without external operation),
cells of the types 2 and 1 reproduce themselves or further differentiate to the other
cell types, but the offspring never go back to the Type 0 cell. Besides the cell Type 2,
the cell Types 3, 4 and 5 reproduce themselves without any further differentiation.
Among these three types, only the cell Type 5 is an attractor by itself, while others
replicate only under the presence of different types of cells. Indeed, the Type 5 cell
is rather special; its appearance destabilizes the cell society consisting of ‘0’, ‘1’
and ‘2’. Once the Type 5 cell appears, all the cells will finally be transformed to
this type. Whether the Type 5 cell appears or not depends on the initial condition,
while the cell society without the type keeps diversity of cell types (see Section 6).

At this stage the differentiation is determined, and cellular memory is formed
as is first discussed in Kaneko and Yomo (1997). Accordingly we can draw the
cell lineage diagram as shown in Fig. 5, where the division process with time is
represented by the connecting line between mother and daughter cells while the
color in the figure shows the cell type.

The switch of types by differentiation turns out to obey a specific rule. In Fig. 6,
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Figure 2. The time series ofx(m)(t), overlaid for the five chemicals (as given in Fig. 1) in a
cell. (a)–(e), The course of differentiation to Types 1, 2, 3, 4, and 5 cells respectively. The
differentiation to Types 3, 4 and 5 cells always occurs from Type 1 cells.
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Figure 3. Orbits of internal chemical dynamics in the phase space. (a) and (b), The orbits of
chemical concentrations for a switching process from Type 0 to Types 1 and 2 cells, respec-
tively, plotted in the projected space(x(2)(t), x(13)(t)). (c), A plot of (x(1)(t), x(8)(t)),
which shows a switch from Type 1 to Type 3 cells (note the difference of scales). Each cell
type is clearly distinct in the phase space.
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Figure 3. Continued

we write down an automaton-like representation of the rule of differentiation. The
node ‘0’ has three paths; one to itself, and the others to the nodes ‘1’ and ‘2’. The
path to itself means replication of the same cell type through division, while the
other paths give the differentiation to the corresponding cell types. Figure 6 repre-
sents the potentiality of these differentiations.

Note that this differentiation is not induced directly by the tiny differences in-
troduced at the division. The switch from one cell-type to another does not occur
simultaneously with the division, but occurs later through the interaction among the
cells. This phenomenon is caused by dynamical instability in the total system con-
sisting of all cells and medium. The tiny difference between two daughter cells is
amplified to yield macroscopic difference through the interaction. Our results show
that these transitions are not accompanied by the cell division but occur through cell-
to-cell interactions. This conclusion is consistent with experimental data, where
the onset of a new gene expression is not always accompanied by the cell division.
According to our theory and simulations, the time lag between the cell division
and the onset of new gene expressions depends on the cell-to-cell interaction, i.e.,
the surrounding cells. On the other hand, a change in the number of degrees of
freedom by division amplifies the instability in the dynamics of the total system.
When the instability exceeds some threshold, the differentiations start. Then, the
emergence of another cell type stabilizes the dynamics of each cell again. The cell
differentiation process in our model is due to the amplification of tiny differences
by orbital instability (transient chaos), while the coexistence of different cell types
stabilizes the system.
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Figure 6. Automaton-like representation of the rule of differentiation. The path returning
to the node itself represents the reproduction of its type, while the paths to other nodes
represent the potentiality to differentiation to the corresponding cell types. The dotted
line from Type 2 to Type 0 gives an exceptional case: indeed the differentiation from ‘2’
to ‘0’ never occurs when several types of cells such as ‘0’,‘1’ and ‘2’ coexist. It occurs
exceptionally only if ‘5’ cells dominate the system, when all cells are finally differentiated
to Type 5. In this case the Type 2 cells de-differentiate to ‘0’ (and finally to ‘5’).

4. STATE DISCRETIZATION, HIERARCHICAL ORGANIZATION AND DUAL

MEMORY

One might wonder that our definition of types is rather ambiguous and is not
clearly defined. Indeed one can clearly distinguish them by plotting and comparing
the time series and check how these orbits are separated. To confirm that the state
in each type is clearly separated, we introduce the distance between cells in the
k-dimensional phase space.

Since a cell state is determined by chemical concentrations in the present model,
the cellular state is represented by an orbit in thek-dimensional phase space. Here
we first consider the average position of an orbit for simplicity;

x(`)i = (1/T)
∫

x(`)i (t)dt. (5)

As the difference between two cells we adopt the Euclid distance

Di, j ≡
√∑

`

(x(`)i − x(`)j )
2. (6)

The distance between two cell types is shown in Table 1. Note that there remains
some difference in the same type of cell as mentioned. However, this difference is
clearly much smaller than that between different cell types. This demonstrates that
the differentiated cell types (from ‘0’ to ‘5’) are well defined as ‘digitally’ distinct
states. Then one might suspect that these different states may be just a different
attractor in each dynamics. This is not the case. Except the Type 0 and Type 5 cells,
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Table 1. The average distance in phase space between each cell type:Di, j in equation (6)
is estimated by taking the average over 5× 104 time steps. Each cell type is sampled from
a course of the evolution starting from one cell.

Cell 0 Cell 1 Cell 2 Cell 3 Cell 4 Cell 5
Cell 0 1.3× 101 1.8× 103 1.6× 103 2.9× 103 3.0× 103 3.2× 103

Cell 1 * 5.3× 102 1.2× 103 1.8× 103 2.3× 103 2.4× 103

Cell 2 * * 2.0× 102 1.5× 103 1.5× 103 3.6× 103

Cell 3 * * * 1 .2× 101 6.3× 102 4.1× 103

Cell 4 * * * * 2 .3× 101 4.6× 103

Cell 5 * * * * * 1 .3× 101

Table 2. The minimum distance in phase space between each cell type.Dmin
i, j in equation (7)

is estimated from 5×104 time steps. Each cell type is sampled from a course of the evolution
starting from one cell.

Cell 0 Cell 1 Cell 2 Cell 3 Cell 4 Cell 5
Cell 0 * 2.8× 102 1.1× 102 1.2× 103 1.2× 103 1.1× 103

Cell 1 * * 1.2× 102 8.0× 101 8.7× 101 2.8× 102

Cell 2 * * * 4 .1× 102 4.8× 102 2.6× 103

Cell 3 * * * * 4 .9× 101 2.6× 103

Cell 4 * * * * * 2 .9× 103

Cell 5 * * * * * *

the state of differentiated cells is unstable by itself. When we start the simulation
of a single cell with the state of cell type ‘1’,‘2’,‘3’ or ‘4’ with the same media (but
without any other cells), the cell is dedifferentiated back to the Attractor 0. The
states for types ‘1’,‘2’,‘3’ and ‘4’ are stabilized only through the interaction among
other cells. For example, the existence of Type 0 cells is necessary to keep the
stability of cell types ‘1’ and ‘2’.

It is also interesting to compare the bifurcation rule of cell types (in Fig. 6) with
the distance. If the history of cell lineage reflects on the distance of cell features,
it is expected that forj = 3,4,5 D1, j < D0, j or D1, j < D2, j since the Types 3,
4 and 5 are derived from the Type 1 cell. This is not necessarily true in Table 1.
The reason for this discrepancy is due to the insufficiency in the representation for
the distance measured after taking the average. As is seen in Fig. 4, the orbit of the
Type 1 cell itinerates over the states close to Types 3, 4 and 5. Hence, it is useful to
define the minimal distance by

Dmin
i, j ≡ min

t

(√∑
`

(x(`)i (t)− x(`)j (t))
2

)
(7)

where mint means the minimum over time. The distance is given in Table 2, where
one can clearly see the hierarchical organization of cell types according to the
bifurcation rule of Fig. 6. The distance between a pair of cell types among ‘0’,
‘1’ and ‘2’ is smaller than that between ‘0’ or ‘2’ and ‘3’,‘4’,or ‘5’. The distance
between ‘1’ and ‘3’, ‘4’ or ‘5’ is much smaller than the others.
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Let us reconsider the form of memory using the distance. First, the memory of
cell types is sustained in the internal dynamics modulated by the interaction. The
memory corresponds to a partial attractor stabilized by the interaction. Here, the
information on the distribution of cell types is embedded in each internal dynamics.

For example, each internal dynamics is gradually modified with the change of
distribution of other cells. In Fig. 7 we have studied how the dynamics of the
Type 2 cell changes when the rate of Type 0 cell is varied. In the simulation, we
choose (a stable) cell society consisting of types ‘0’, ‘2’, and ‘3’, and successively
replace a cell of Type 0 by Type 3. To avoid the perturbation due to the change in the
number of cells, we remove the rule of division in the present simulation, to fix the
number. As a result of the change of the distribution of cell types (i.e., the fraction
of Type 0 cells), the dynamics of each cell (e.g., of type 2) is modulated. We have
plotted the distanceD2,20 where the 20 denotes the cell when the distribution of cells
satisfies(n0,n2,n3) = (23,50,27), the condition at the left-end point of the axis,
wherenk represents the number of the Typek cell. The distanceD2,20 increases
(roughly linearly) with the decrease ofn0, until the further decrease destabilizes the
cell society and the switching of cells to Type 5 starts. The gradual change ofD2,20

means that the internal cell state varies according to the cell distribution. Hence
the global information on the cell distribution is embedded in the internal cellular
state. We note that this information adopts ‘analogue’ representation, instead of the
digital representation, adopted for the distinct cell type. Hence our cellular system
has both analogue and digital memories.

5. INTERACTION-DEPENDENT RULES AND THE STABILITY OF CELL

SOCIETY

Figure 6 shows the automaton-like rule that has emerged without explicit im-
plementation. The rule is not solely determined by its cell type. When there are
multiple choices of differentiation process (as in ‘0’→ ‘0’ or ‘0’ → ‘1’ and ‘0’ →
‘2’) the rate of each path is neither fixed nor random, but depends on the number
distribution of cell types in the system, embedded in the internal dynamics. This
implies that a higher-level dynamics emerges, which controls the rate of cell division
and differentiation according to the number of each cell type. In other words, the
dynamics on the number of each cell typen0,n1, . . ., andn5 can be represented by
{nk} (k = 0, . . . ,5). (This dynamics should be stochastic, since we have neglected
the information on each cellular state and reduced it to the number of cell types only.)

This dynamics allows for stability at the level of the ensemble of cells. The
variety and population distribution of cell types are robust against external pertur-
bations. As an example, let us consider the case with three cell types (‘0’, ‘1’, ‘2’
in Fig. 6). When Type 2 cells are removed to decrease their population, events of
differentiations from ‘0’ to ‘2’ are enhanced, and the original cell-type distribution
is recovered.
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Figure 7. The variation in dynamics of Type 2 cells with the change of the rate of Type 0
cell. The distanceD2,20 of equation (6) is measured between two Type 2 cells from the
conditions(n0,n2,n3) = (23,50,27) and(n0,n2,n3) = (n0,50,50−n0), as one Type 3
cell is successively switched to Type 0 externally by 2×104 step. Besides the distance, the
number of Type 0 cells is plotted against time.

The rate of differentiation from the Type 0 cell to others is plotted in Fig. 8. In this
simulation, to capture the dynamics of the number of each cell type, the total number
of cells in the medium is fixed (toN = 100 in the present case), by removing the
division rule. As the initial condition,N cells are placed in the medium, where
the concentration of chemicals in each cell is selected so that they give Type 0, 1
or 2 cell. The switch of cell types is measured when the system settles down to
a stable distribution of cell types. The simulations are repeated by changing the
initial distribution of cell types(n0,n1,n2), to plot the number of the switches from
0 to others, while the final number of cells for each type is also plotted. As in Fig. 8,
the frequency of switches from the cell Type 0 increases almost linearly withn0

when it is larger than approximately 40%. With this switch, the stability of cell
distribution around approximately(n0,n1,n2) = (40,30,30) is attained.

This kind of robustness at an ensemble level is expected from our isologous
diversification theory, since the stability of macroscopic characteristics is attained
in coupled dynamical systems (Kaneko, 1992, 1994). In our case, the macroscopic
stability is sustained by the change of the rate of differentiation from ‘0’ to other
types. Recall that the differentiations from ‘1’ or ‘2’ to ‘0’ do not occur (see
Fig. 6), even if some of the Type 0 cells are removed¶. In the hierarchical structure

¶Transformation from Type 2 to Type 0 cells occurs as a transient process to Type 5 cells, which is
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Figure 8. The rate of the differentiation from Type 0 to other cell types. The total cell
number is fixed to 100 (without division process), while we take the initial cell distribution
of three types as(n0,n1,n2) = (n0,30,70− n0). Starting the simulation with this initial
condition, the final number of each cell type, as well as the number of differentiations from
Type 0 to others, is plotted, as a function of the initial number of Type 0 cells(n0). Within
this range of cell-type distribution, none of Type 3, 4 or 5 cells appear (see Section 6).

represented in Fig. 6, the cell at an upper node behaves as a stem cell, and regulates
the distribution of the cells at a lower node. This type of regulation system is
often adopted in the real multicellular organism [e.g., in the hemopoietic system,
Schofieldet al. (1980)]. An important point of our result is that the dynamical
differentiation process always accompanies this kind of regulation process, without
any sophisticated programs implemented in advance. This robustness provides a
novel viewpoint to understand how the stability of the cell society is maintained in
the multicellular organism.

6. DIFFERENTIATION OF COLONIES

The automaton rule of Fig. 6 does not necessarily mean that all of these six types
of cells coexist in a cell society that emerged in the course of the development.
Cell groups consisting only of two or three cell types can appear. For example, cell
groups only of ‘0’, ‘1’ and ‘2’ types and of ‘0’, ‘2’ and ‘4’ types are observed.

seen only in the case when the Type 5 cell appears and starts to dominate the society.
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Figure 9. A histogram about the number of Type 2 cells. Starting from a single cell with
randomly chosen chemical concentrations, the simulation is carried out until the total cell
number reaches 300, when the numbern2 of Type 2 cells is measured. Repeating the runs
347 times, we have counted the number of such initial conditions thatn2 falls onto a given
bin (with the size 5). The histogram ofn2 is obtained from the count. There are four peaks
at n2 = 0,100,150 and 220, each of which corresponds to a stable distribution of the cell
colony.

This implies that the dynamics on the number of cells of each type also has several
stable attractors due to the autonomous control of the rate of differentiation. They
correspond to stable distributions of cell types in each cell group. In other words,
there are several possible distributions of cell types when cells are developed from
a single cell. To confirm it, we have performed the following simulations. First,
we took one cell whose internal chemical concentrations were chosen at random;
then the cell society was evolved following the rules of the present model, until the
total cell number reached a given threshold value. The simulation was then stopped
and the distribution of cell types measured. We repeated the simulations 100 times,
starting from different initial conditions.

In Fig. 9, the number of initial configurations leading to a cell-type distribution
with a given range ofn2 is plotted as a histogram, where the number of Type 2 cells,
n2, is measured when the total cell number has reached 300. Four peaks are clearly
visible atn2 = 0,∼100,∼150 and∼220, which correspond to possible distinct sets
of cell distributions. As mentioned, the possible set of cell types (from ‘0’ to ‘5’)
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Figure 10. A flow chart of the change of(n0,n1,n2). We have carried out the simulations
starting from the initial condition at each(n0,100− n0 − n2,n2) by fixing the total cell
number to 100 (by removing the cell-division process). A change in the number of cell
types is measured from simulations, from which the direction of changes of(n0,n2) is
shown as an arrow in the(n0,n2) space. As is seen, there are five fixed points, each of
which corresponds to the stable population distribution of cell types.

and the temporal ordering of their appearance (e.g., 0→ 1→ 2) are independent
of the initial conditions. However, at the later stage, several types of cell groups
emerge depending on the initial conditions.

The most relevant factor to the choice of cell groups is the ratio of the numbers of
differentiated cells (i.e., Types 1 and 2 cells) to undifferentiated cells (i.e., Type 0
cells) at an early stage of development, when the first differentiations from ‘0’ to
‘1’ and ‘2’ occur. Thus the fate of cell groups is determined at a rather early stage.

Recall that the differentiation rate of cells (each arrow in Fig. 6), and accordingly,
the higher-level dynamics ofnk depend on the distribution of cellsnk. The result
of Fig. 9 implies that there are several attractors on this higher-level dynamics on
nk. As discussed in Section 5, an ‘attractor’ of this higher-level dynamics is stable
against perturbations to change the number of cells of each type.

In Fig. 10 we have shown the flow chart of the change of(n0,n1,n2), where the
direction of change ofn0 andn2 is represented by the arrow, starting from the initial
distribution given by(n0,n1,n2) of the corresponding site. To draw the figure, we
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adopt the same rules as in Fig. 8, where the total cell number(n0 + n1 + n2) is
fixed to 100, and the division rule is removed. From the two-dimensional plane,
the number of cells of types 1, 3, 4 and 5 are given by 100− n0 − n2. The chart
shows that cell colonies on the cell-type distribution{n0, · · ·n5} have at least five
stable states around(n0,n2)=(0,0), (38,32), (30,50), (18,58) and (0,78) respectively.
Each state has a basin of attraction, and the corresponding cell-type distribution is
stable against external perturbations, as is supported by the higher-level dynamics
on {n0, · · ·n5}.

In Fig. 10 the fixed point, A, at(n0,n2) = (0,0)corresponds to a colony consisting
only of Type 5 cells, while the fixed point, B, corresponds to a colony only of ‘0’,
‘1’, ‘2’, C, of ‘0’, ‘2’, ‘3’, and D, of ‘0’, ‘2’, ‘4’, respectively. Indeed, these cell-type
distributions correspond to the peaks of Fig. 9, respectively.

Still there is a clear difference between the developmental process from one cell
(Fig. 9) and the present simulation (Fig. 10) with a fixed cell number. Some region
in the plane of Fig. 10 cannot be reached by the simulation from a single cell.
For example, the state E consisting of Types 2 and 4 cannot be obtained from the
developmental process from a single cell. Furthermore, the state B, which does
not have a large attraction volume in Fig. 10, has the largest probability of being
reached from the developmental process (see Fig. 9). This discrepancy is caused by
the conjunction of cell-number change with the population dynamics of cell types.
Through the change of the number of cells, the population dynamics shifts from
one flow chart of Fig. 10 to another with a different number of cells. The organized
cell colony from a single cell has such developmental constraints.

Now the coexistence of several stable cell colonies is clear. Depending on the
initial cell condition, different cell colonies are obtained. The result here means
that several types of tissues can appear through the interactions among cells. This
kind of diversity is often observed in a cultivation system of a colony of blood cells
starting from a stem cell (Nakahataet al., 1982).

7. SUMMARY

In the present paper, we have studied a dynamical model to show that a proto-
type of cell differentiation occurs as a result of internal dynamics, interaction, and
division. We have made several simulations choosing several chemical networks,
also with a different number of chemical species, and the same scenario for cell
differentiation is obtained. Under the same parameters used in the previous ex-
ample, approximately 5% of randomly chosen chemical networks show oscillatory
behavior, while others fall into fixed points. Furthermore, approximately 20% of
these oscillatory dynamics are destabilized through the cell division, where some
of the cells differentiate following a specific rule such as Fig. 6.

Some may cast a question why we can select such oscillatory dynamics to draw a
general mechanism for differentiation, even if only a few randomly chosen chemical
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networks are oscillatory. One reason why only a few reaction networks are oscilla-
tory is that we choose reaction paths randomly and with the identical coefficients.
On the other hand, the chemical reaction network of the real biological system is
more sophisticated through the evolutionary process. For example, there are pos-
itive and negative feedback reactions ubiquitously. This feedback mechanism, in
particular autocatalytic reaction, is important to provide oscillatory dynamics which
are observed in the real biological system (e.g., Ca oscillation).

In the present model with randomly chosen networks, only a few reactions have
autocatalytic effects. By increasing the rate of autocatalytic reaction paths, the
probability of the network with oscillatory dynamics and differentiation gets much
higher. For comparison, we have also studied a class of models where each chemical
can catalyze a reaction to generate itself from another chemical, besides the ordinary
reaction paths determined randomly. By sampling several reaction networks, we
have found that 40% of the reaction networks has oscillatory dynamics and more
than 20% of these dynamics are destabilized to show cell differentiation by cell
divisions.

Then, why are such autocatalytic reactions common? To make replications effi-
ciently, some mechanism to amplify reaction by its product is generally expected
at the first stage of life (Eigen and Schuster, 1979). Also, autocatalytic reactions
are necessary to add new metabolites in the metabolic network through the evo-
lutionary process. Indeed, when novel chemicals are included in the evolutionary
process of the metabolic network, their concentrations must be amplified by the
reactions. This implies that these new chemicals must constitute an autocatalytic
set [see Kaneko and Yomo (1997, Appendix)].

Let us summarize the consequences of our simulations. First, we have provided
a further support for isologous diversification previously proposed. Cells are dif-
ferentiated through the interplay between intracellular chemical-reaction dynamics
and the interaction among cells through media. As the cell number is increased, the
oscillatory dynamics in each cell is destabilized and loses synchrony. Then, some
of the cells change their internal dynamics, which form a group with a different
stable dynamics. Discrete, differentiated states appear, which are transmitted to
their daughter cells as a memory. We interpret this phenomenon as (determined)
differentiation.

The differentiation in our theory is caused by the instability in internal dynamics
triggered by cell-to-cell interactions. Microscopically speaking in biological terms,
this may be regarded as a switching process following signal molecules from outside
the cell. Our theory is not inconsistent with such biological knowledge, but the
point in our theory lies in that such local transition of internal states also has the
information on macroscopic states, i.e., the distribution of cell types. With this, the
robustness of cell society emerges in spite of instability in each internal dynamics.

Besides this further support for the isologous diversification, we have demon-
strated the hierarchical cell differentiation, generation of interaction-dependent
rules, and the existence of distinct cell groups.
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7.1. The hierarchical organization. Differentiation from a stem cell to two dif-
ferent types, and then to three types from one of them are observed; hierarchical
rule of differentiation is thus generated. Although the number of cell types and
the rule of differentiation depend on the choice of chemical networks, generation
of an hierarchical rule (written by the tree-type diagram as in Fig. 6) is generally
observed.

7.2. The generation of rules and internal memory reflecting on the environment
(that is the distribution of other cell types).These differentiations obey a specific
rule, which emerges from inter- and intradynamics. It is often believed that the
rules of the differentiation, which determine when, where and what type of a cell
appears in a multicellular organism, should be prespecified as the information on
DNA. We do not deny such a role of DNA, but it should be stressed that the rules
of differentiation and the higher-level dynamics emerge through interaction of cells
with internal dynamics. As a consequence of our interaction-based approach, the
diversity of cells and the stability of cell society naturally follow.

The rates of differentiation and reproduction vary with the distribution of cell
types. The global stability of the whole system is obtained, which is sustained by
regulating the rates of the differentiations.

As a coupled dynamical system, the memory of cell types is given in a state
stabilized by interactions. This state is not necessarily an attractor as a single-
cell dynamics, but is a ‘partial attractor’ stabilized only in the presence of suitable
interactions provided by the distribution of other cells. Through the cell divisions
and the evolution of the cell society, the cells choose suitable interactions so that the
memory of their types is preserved. This is the mechanism of how the recursivity
of cell types is attained, while the global stability of cell society is assured through
the interaction. Indeed such partial attractors lose stability and switch to other cell
types when the interaction by the cell distribution is not ‘suitable’.

It should be noted that two types of memory coexist, analogue and digital. The
former gives information on the cell society, i.e., the distribution of cell types, while
the latter gives a distinct internal state on cell differentiation. We believe that such
dual memory structure is a general feature in a biological system. In cell biology, the
‘analogue’ difference reflecting on the interaction is known as modulation (Alberts
et al., 1994).

7.3. The formation of higher-level dynamics and diversity of cell groups.The
rule of differentiation depends on the number distribution of other cell types, for
which stochastic dynamics at a higher level is formed. The result provides the
first example that a two-step higher-level dynamics is formed, that is a colony
level formed from a cellular one, i.e., from a chemical-network level. Here the
dynamics of a colony level (i.e., the change of the number of each cell type) is
‘stochastic’, because the information on the number of cell types is not complete,
where the lower-level information on the internal state (of chemical concentrations)
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is discarded. It is interesting to note that the macroscopic flow chart on the number
of cell types is formed in spite of the stochasticity.

Our result shows that there are several attracting states for this higher-level dynam-
ics. In biological terms, this corresponds to the existence of several cell colonies,
distinguishable by the number distribution of cell types. These diverse colonies ap-
pear from a single stem cell. Each cell colony is stable, in the sense that the original
distribution is recovered after perturbations (of not too large size) are added on the
cell colony, such as elimination of a few cells of one type.

8. DISCUSSION

Of course, there has been preceding theories for cell differentiation. The idea
to regard the differentiation as the transition in cellular multistationarity is traced
back to Delbr¨uck (1949), who proposed a simple bistable reaction network with two
metabolic chains that are cross inhibited by their products. Indeed the epigenetic
transmission of such stationary states have been reported in unicellular organisms
(Novick and Wiener, 1957; Sonneborn, 1964).

In general, this multistationarity results from positive and negative feedbacks
in metabolic reaction networks. This leads to the viewpoint that each differenti-
ated cell state is represented by an attractor of intracellular dynamics, as has been
demonstrated by Kauffman (1969) in his Boolean network. It leads to a variety of
stable states (attractors), depending on the initial conditions. Here, each cell type
corresponds to an attractor of internal networks, while an external mechanism is
required to have the transition between these attractors.

Such mechanism is supported by cell-to-cell interaction. Indeed, a mechanism
of interaction-induced differentiation has been proposed by the pioneering study of
Turing (1952). Now, a well-known mechanism of external regulation is gradient
of morphogen, in which the transition depends on the concentration of chemical
substances. [See, however, Kaneko and Yomo (submitted), for instability due to
stochastic fluctuation in the threshold mechanism on the gradient of chemicals.]
Another possible mechanism for interaction-induced differentiation is proposed by
Gordon, where the mechanical wave transmits among the cells and controls the cell
state (Gordonet al., 1994).

Then, a combination of the multistationary reaction network and the external
regulation mechanism might be relevant to explain the local differentiations. How-
ever, to understand the complexity and the stability of the cell society, two important
questions still remain: How is such external regulation mechanism regulated? Is
another external mechanism required?

Our results provide a distinct, and plausible standpoint for this problem. Noticing
the interplay between intracellular dynamics and interaction, we have proposed a
novel concept ‘partial attractor’, which is stabilized only by cell-to-cell interaction.
Thus, a cell state is not always determined by the attractor of internal dynamics, but
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it also depends on the other cells. An important consequence of our results is that
there is no distinction between internal dynamics that determines the cell state and
the regulation mechanism of differentiation. Rather, the mechanism for regulation
is spontaneously accompanied by the multistationarity, because the number of cells
with each partial attractor is found to depend on the circumstance of the cell society
which sustains them.

A consequence of our theory is ‘relativity’ of determination of a differentiated
cell. Since our cellular state reflects the interaction, the rule of differentiation as
well as the recursivity may be affected by the cells around the cell concerned. A
suitable experimental system to distinguish our theory from previous theories is
provided by a hemopoietic stem-cell system, where spatial pattern mechanism in
the manner of Turing no longer works. Now we will discuss briefly the relevance
of our results to the cell biology.

8.1. Application to biological problems.Since our model reaction process does
not have one-to-one correspondence to any existing biochemical network, a detailed
prediction cannot be made on a specific example in biology. However, the present
scenario sheds new light on some open questions in biology, by providing a coherent
viewpoint on them. Let us discuss two of them.

Since our results provide hierarchical differentiation, it is interesting to compare
them with such an example in cell biology. A well-known example is a hemopoietic
system (Ogawa, 1993). The blood contains many types of cells with different
functions, while a pluripotent stem cell in the bone marrow gives rise to all classes
of blood cells. The hemopoietic system can be viewed as a hierarchy of cells, where
pluripotent stem cells differentiate to progenitor cells determined as ancestors of
one or a few terminally differentiated blood-cell types. In general, these terminal
blood cells have limited lifespans and are produced throughout the life of the animal.
Thus, to keep a variety of blood cells, it is important to control the differentiation
and proliferation of the stem cell at the higher level of hierarchy. However, because
of the difficulty of identifying the stem cells in the bone marrow, the behavior of the
pluripotent stem cellsin vivo remains especially elusive. In the experimental result
in vitro, even if the cells have been selected to be as homogeneous as possible,
there is a remarkable variability in the sizes, and often in the characters, of the
developed colonies (Nakahataet al., 1982). Even if two sister cells are taken
immediately after a cell division and cultured separately under identical conditions,
they frequently give rise to colonies that contain different types of blood cells or
different distributions of the types of cells.

It is often interpreted that the differentiation of a hemopoietic stem cell is stochas-
tic, whose probability is controlled by some other control mechanism, by which the
multicellular system as a whole regulates the distribution of cell types (Tillet al.,
1964; Ogawa, 1993). Results of our model provide a novel interpretation of these
experiments. First, the rules of differentiation are generated through interactions.
Secondly, the stochastic differentiation of the cells and regulation of the probability
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of the differentiations naturally emerge from the cell-to-cell interaction, without
imposing any random event or external regulation mechanism. Thirdly, the diver-
sity of the colonies which have developed from the same type of cell is a natural
consequence, as a multistability of higher-level dynamics. We note that a single
cell with a slightly different initial condition can lead to a different colony in our
simulation.

Through the chemical substrates such as the interleukins, the complicated inter-
actions among the blood cells are observed experimentally. It is plausible to assume
the dynamical interaction adopted in our theory.

Here, we propose an experiment on the hemopoietic system to make some pre-
dictions. As mentioned, one of the important consequences of our results is that the
states of cells are not always determined by the attractor of internal dynamics, but of-
ten are sustained by interaction with other cells. This implies that some types of cells
in the hemopoietic system do not correspond to a stable attractor of internal dynam-
ics, but are stabilized by other cells. The pluripotent stem cell and the terminal dif-
ferentiated cell, the top and bottom of the hierarchy respectively, seem to correspond
to a stable attractor, because they can stand independently of other blood cells. On
the other hand, the progenitor cells can be observed only in the colonies of the blood
cell. We expect that the internal dynamics of these progenitor cells is represented
by a partial attractor. Then, these cells can differentiate back to the cell of higher hi-
erarchy when these cells are separated and cultured independently. To confirm this
hypothesis, differences between an isolated blood cell and that surrounded by other
cells should be tested experimentally. We predict that the potentiality of blood cells
to differentiate and to proliferate is quite different in these two situations, which
confirms the importance of the cell-to-cell interaction in the hemopoietic system.

In general, there are levels of differentiations in the cell. The determined differ-
entiation keeps the memory even if a cell is transplanted, while some cells can be
transdifferentiated (Albertset al., 1994). In our dynamical-systems representations,
such a difference can be expressed as the distinction between an attractor by the
cell itself and the partial attractor stabilized by the interaction. The merit in our ap-
proach is that such levels of differentiation appear without external implementation,
which is important when one considers the origin of multicellular organisms.

There are several types of cells in a multicellular organism. In particular, almost
all organisms have a distinction between the germ cells and the somatic cells. The
appearance of these two types are controlled elaborately by complicated interaction
among cells in the contemporary multicellular organisms. However, it is hard to
postulate that such a mechanism appeared at the same time with the emergence
of the multicellular organisms. Our theory provides one possible solution to this
problem. According to our results, differentiation in a group of identical cells
occurs through the dynamical interaction among cells, as long as the intra-cellular
reaction dynamics can show nonlinear oscillations. The differentiation, as well as
the stability of such diverse cells, is a rather natural consequence of interacting cells.
At the next stage in the evolution, a more complex cell society must have appeared,
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where several types of tissues exist as a higher hierarchy, which interact with each
other. Our result regarding the diversity of a cell group shows that several types of
tissues potentially appear at this stage, based on the dynamical interaction among
cells. In our model, we do not take into account the spatial variation. Selection of
each cell group thus depends on the choice of different initial conditions. On the
other hand, when the spatial information is included in this system, it is possible
that several types of cell group coexist at a (spatially) different region.

Of course, contemporary multicellular organisms such as mammals often have
hundreds of cell types, though our results in this paper can show coexistence with
only few cell types. The number of cell types in our dynamical-differentiation
model does not show clear increase with the number of chemical substances. We
suppose that the reason for these few types of cells is due to our random choice of
the chemical-reaction network, where the reaction paths are chosen equivalently. In
real biological systems, the chemical reaction network is more organized, possibly
in a hierarchical manner.

To choose such a suitable network, evolutionary aspects of the chemical-reaction
network should be taken into account for our model. This problem is also con-
cerned with the emergence of the gene expression system, and is currently under
investigation.
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