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Biological functions are generated as a result of developmental dynamics that form phenotypes
governed by genotypes. The dynamical system for development is shaped through genetic evolution
following natural selection based on the fitness of the phenotype. Here we study how this dynamical
system is robust to noise during development and to genetic change by mutation. We adopt a
simplified transcription regulation network model to govern gene expression, which gives a fitness
function. Through simulations of the network that undergoes mutation and selection, we show that
a certain level of noise in gene expression is required for the network to acquire both types of
robustness. The results reveal how the noise that cells encounter during development shapes any
network’s robustness, not only to noise but also to mutations. We also establish a relationship
between developmental and mutational robustness through phenotypic variances caused by genetic
variation and epigenetic noise. A universal relationship between the two variances is derived, akin
to the fluctuation-dissipation relationship known in physics. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2912458�

Biological function is generally robust to noise in dynami-
cal systems and to mutation to structure of the system.
How are these two types of robustness related? Through
numerical simulations of a minimal model that captures
the essence of a gene expression dynamics that undergoes
a mutation and selection process, we demonstrate that
the evolved networks acquire robustness to mutation only
when gene expression is sufficiently noisy—a physical
constraint highlighted by a series of experimental studies
in recent years. We derive a quantitative condition for the
evolution of robustness that ultimately links robustness to
mutation in the evolutionary time scale and robustness to
noise in development in the reproductive time scale. Our
model simulations predict a correlation between the two
types of robustness, which leads to a universal propor-
tionality relationship between variances of genetic and
epigenetic phenotype fluctuations, which is reminiscent of
the fluctuation-dissipation relationship in statistical
physics.

I. INTRODUCTION

Function in a biological system is generated by dynami-
cal systems in general. A specific shape of a protein that
gives rise to some function is formed by folding dynamics.
In a cell, the gene expression pattern changes in time to
shape some chemical composition from which a given func-
tion of the cell emerges. In multicellular organisms, develop-
mental dynamics lead to patterns of differentiated cells. Phe-
notype is shaped in a broad sense from such “developmental
dynamical systems,” according to which the fitness of an
individual is determined.

In a biological system, such developmental dynamics are
shaped through Darwinian evolution. Offspring are produced
depending on the fitness of the parents, with some variations
that introduce slight modifications in parameters or networks

in developmental dynamical systems. Among modified dy-
namical systems, phenotypes with higher function are se-
lected for the next generation. Hence, evolutionary shaping
of function is a result of variation and selection of develop-
mental dynamical systems.

Combining the terminology of biology and dynamical
systems, the evolutionary process is summarized as follows.
�i� The genotype gives a set of equations, i.e., terms and
parameters in developmental dynamical systems. �ii� From
an initial condition, the developmental dynamical system
leads to a set of state variables for a phenotype. �iii� Fitness
is a function of these state variables. The offspring number
increases with fitness. �iv� In reproduction, there are muta-
tions �or other sources for variations� giving rise to variation
in dynamical systems. At each generation, there is a redistri-
bution of dynamical systems. If evolution serves to increase
fitness, dynamical systems with higher function are shaped
through this selection-mutation process.

In discussing this evolutionary shaping of dynamical
systems with higher function, an important issue is robust-
ness. Robustness is defined as the ability to function against
changes in the parameters of a given system.1–6 In any bio-
logical system, these changes have two distinct origins: ge-
netic and epigenetic. The former concerns structural robust-
ness of the phenotype, i.e., rigidity of the phenotype against
variation in dynamical systems, introduced by genetic
changes produced by mutations. The latter concerns robust-
ness against the stochasticity that can arise in a given dy-
namical system, which includes fluctuation in initial states
and stochasticity occurring during developmental dynamics
or in the external environment. For example, stochasticity in
gene expression has recently been studied extensively both
experimentally and theoretically.7–11 Indeed, the existence of
such stochasticity is natural, because the number of mol-
ecules in a cell is generally limited. Accordingly, phenotypes
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of cells differ, even among those sharing the same
genotype.12 An important recent recognition is that pheno-
typic noise is indeed significant, as is highlighted by the
log-normal distribution of protein abundances in bacteria.9

The two types of robustness—epigenetic and genetic—
are concerned with fluctuations in phenotype caused by noise
in developmental processes and by variations in dynamical
systems caused by genetic changes. In terms of dynamical
systems, these two types of robustness are the stability of a
state �an attractor� to external noise and the structural stabil-
ity of the state against changes in the underlying equations,
respectively. Then, how are these two forms of robustness
related in evolution? Recently, we found a possible relation-
ship between the two from an experiment on adaptive evo-
lution in bacteria13 and numerical evolution of reaction net-
works and transcription regulation networks.5,14 The two
types of robustness, measured by the �inverse of� phenotypic
variances, increase in correlation through evolution, whereas
evolutionary speed is greater as the magnitude of the pheno-
typic fluctuation due to noise is increased. Hence, the rel-
evance of noise to evolution is suggested.

Despite recent quantitative observations on phenotypic
fluctuation, noise is often thought to be an obstacle in tuning
a system to achieve and maintain a state with higher func-
tions, because the phenotype may be deviated from an opti-
mal state achieving a higher function through such noise.
Indeed, the question most often asked is how a given bio-
logical function can be maintained in spite of the existence
of phenotypic noise.11,15 Although the positive roles of sto-
chasticity in gene expression to cell differentiation16 and ad-
aptation have been discussed,17,18 its role in evolution has not
been explored fully. As a relatively large amount of pheno-
typic noise has been preserved through evolution, it is im-
portant to investigate any positive roles of such noise for the
evolution of biological functions.

The present paper is organized as follows. Following the
Ref. 5, we introduce a simple transcription regulation net-
work model in Sec. II. In this model, fitness is determined by
the gene expression pattern generated by this network. Using
a genetic algorithm to change the network so that the fitness
is increased, we show that the evolution of the robustness of
fitness to mutation to a given network is possible only under
a certain level of noise in the gene expression dynamics.
Dependence of the fitness distribution on the noise level is
analyzed in Sec. III. Variances of fitness due to developmen-
tal noise and to genetic variation are computed, which give
indices for developmental and mutational robustness, respec-
tively. The proportional relationship between the two vari-
ances is given in Sec. IV, whereas in Sec. V the two vari-
ances are computed for the expression of all genes, which
demonstrate a common proportion relationship, suggesting
the existence of a universal relationship akin to fluctuation-
dissipation theorem in statistical physics. Summary and dis-
cussion are given in Sec. VI.

II. MODEL

To study evolutionary shaping of dynamical systems, we
consider a simple model for “development.” This consists of
a complex dynamic process to reach a target phenotype un-

der a condition of noise that might alter the final phenotypic
state. We do not choose a biologically realistic model that
describes a specific developmental process, but instead take a
model as simple as possible to satisfy the minimal require-
ment for our study. Here we take a simplified model for gene
expression dynamics, governed by transcription regulatory
networks. Expression of a gene activates or inhibits expres-
sion of other genes under noise. These interactions between
genes are determined by the transcription regulatory network
�TRN�. The expression profile changes in time, and eventu-
ally reaches a stationary pattern. This gene expression pat-
tern determines fitness.

To be specific, a typical switch-like dynamics with a
sigmoid input-output behavior19–21 was adopted, although
several simulations in the form of biological networks will
give essentially the same result. In this simplified model, the
dynamics of a given gene expression level xi is described by

dxi/dt = tanh� �

�M − k
�
j�k

M

Jijxj� − xi + ��i�t� , �1�

where Jij =−1,1 ,0, and �i�t� is Gaussian white noise given
by 	�i�t�� j�t��
=�i,j��t− t��. M is the total number of genes
and k is the number of output genes that are responsible for
fitness to be determined. The value of � represents noise
strength that determines stochasticity in gene expression. By
following a sigmoid function tanh, xi has a tendency to ap-
proach either 1 or −1, which is regarded as “on” or “off” in
terms of gene expression. The initial condition is given by
�−1,−1, . . . ,−1�, i.e., all genes are off unless noted other-
wise.

Depending on the expression pattern, the cell state
changes. Hence, the function of the cell and accordingly its
fitness changes. Here we assume that fitness is determined by
setting a target gene expression pattern. In the present paper,
we adopt a simple target so that the gene expression levels
�xi� for the output genes i=1,2 , . . . ,k�M reach “on” states,
i.e., xi�0. The fitness F is at its maximum if all k genes are
“on” after a transient time span Tini, and at its minimum if all
are off. F is set to 0 if all the target genes are on, and is
decreased by 1 if one of the k genes is “off.” Accordingly, the
fitness function is defined by

F =
1

2�Tf − Tini�
�
j=1

k �
Tini

Tf

�sgn�xj� − 1�dt , �2�

where sgn�x�=1 for x�0 and −1 otherwise. The initial time
Tini can be considered as the time required for developmental
dynamics. The fitness is computed only after time Tini, which
is sufficiently large for a given gene expression’s dynamics
to fall on an attractor. In the simulations presented here, we
adopt Tini=50 and the results to be discussed are not altered
even if it is increased. Here, in considering also the possibil-
ity of an oscillatory attractor, we adopt the temporal average
for the fitness, but indeed it is not necessary as attractors
after evolution are mostly fixed points. Tf is set at Tini+50
here, but even if it is defined just by a snapshot value at t
=Tini, the results are not essentially altered.

Selection is applied after the introduction of mutation at
each generation in the TRN. Among the mutated networks,
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we select those with higher fitness values. Because the net-
work is governed by Jij, which determines the “rule” of the
dynamics, it is natural to treat Jij as a measure of genotype.
Individuals with different genotype have a different set of Jij.

As model �1� contains a noise term, the fitness can fluc-
tuate at each run, which leads to a distribution in F, even
among individuals sharing the same network. For each indi-

vidual network, we compute the average fitness F̄ over a
given number of runs. At each generation, there are N indi-
viduals with different sets of Jij. Then we select the top
Ns��N� networks that have higher fitness values.

At each generation, there are N individuals. We compute

the average fitness F̄ for each network by carrying out L runs

for each. Then, Ns=N /4 networks with higher values of F̄
are selected for the next generation, from which Jij is “mu-
tated,” i.e., Jij for a certain pair i , j selected randomly with a
certain fraction is changed among �1,0. �To be specific,
only the changes 1↔0↔−1 are allowed.� The fraction of
path change is given by the mutation rate 	. Unless other-
wise mentioned, only a single path, i.e., a single pair of i , j is
changed so that the mutation rate 	=1 /M�M −k�. Here we
make N /Ns mutants from each of the top Ns networks, to
keep N networks again for the next generation. Following
mutation, the N individuals at each generation have slightly

different network elements, Jij, so that the values of F̄ differ.
From this population of networks, we repeat the processes of
developmental dynamics, their mutation, and selection of
networks with higher fitness values.

Unless otherwise mentioned, we chose N=L=200, while
the conclusion to be shown does not change as long as these
are sufficiently large. �We have also carried out the selection

process by F instead of F̄, but the conclusion is not altered if
N is chosen to be sufficiently large.� Throughout the paper,
we use �=50. For most numerical results, we use M =64 and
k=8, unless otherwise mentioned. Initially we chose Jij ran-
domly with equal probability for �1,0. However, the results
to be discussed are not changed qualitatively, even if the
fraction of 0 is increased. As shown in Eq. �1�, we did not
include a connection from the output genes i�k, so that Jij

with j�k is fixed at 0 and is not mutated. However, the
results to be discussed are not altered, even if such connec-
tions are included in Eq. �1�.

III. DECREASE IN THE AVERAGE FITNESS
WITH THE DECREASE OF NOISE

Let us first see how the evolutionary process changes as
a function of the noise strength �. Within a hundred genera-
tions, the top fitness among the network population ap-
proaches the highest value 0 if noise level is not too high
����c��0.12 for M =64� �see Fig. 1�. However, this is not
the case for the average fitness among a population with
slightly different genes. For low noise level, the average fit-
ness stays lower than the fittest value. In the middle range of
noise level, the average value approaches the fittest value.
This difference against the noise level is clearer in the tem-
poral evolution of the lowest fitness among the existing net-
works. As shown in Fig. 1, the value stays rather low for a
small noise case, whereas for evolution under a high noise

value, it goes up with the top fitness value. In other words,

the distribution of the fitness P�F̄� over existing networks
has three distinct behaviors, depending on the noise
strength �.

�i� For small � ���c�0.04 for M =64 and the mutation
rate with 1 path per generation�, the distribution is broad.
The top reaches the fittest, although there remain individuals

FIG. 1. �Color online� Evolutionary time course of the fitness F̄. The high-

est, average, and lowest values of the fitness F̄ among all individuals that
have different genotypes �i.e., networks Jij� at each generation are plotted.
�a� �=0.01, �b� �=0.1, �c� �=0.2.
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with very low fitness values F̄, even after many generations
of evolution.

�ii� For the middle range � ��c����c��, the distribu-
tion is sharp and concentrated at the fittest value. Even those

individuals with the lowest fitness approach F̄=0. We call
this range the “robust evolution region.”

�iii� For the much larger noise value ����c��, the top
does not reach the fittest values, while the distribution is
sharp and concentrated around the top value. Here the noise
is so large that xi changes its sign at a certain fraction even
after reaching the target, so that the top fittest value is not
achieved.

The change in the distribution between �i� and �ii� is
demonstrated in Fig. 2. There is a threshold noise �c, below

which the distribution P�F̄� is broadened. As a result, the

average fitness over all individuals, 	F̄
=F̄P�F̄�dF̄ is low.

	F̄
 and the lowest fitness values over individuals F̄min, after
a sufficiently large number of generations, are plotted against
� in Fig. 3. The abrupt decrease in fitness suggests the exis-
tence of threshold noise level �c, below which low-fitness
mutants always remain in the distribution.

This transition on the noise level is rather sharp, as long
as the number of genes M is large. As M becomes smaller,
the plateau in the highest fitness value against � is decreased,
and the transition loses sharpness, as shown in Fig. 4 for
M =16, with the mutation rate per single path change per
generation. With an increase in M, the region achieving the
highest fitness with sharp distribution increases, as well as
the increase in the sharpness of transition.

If there are more genes, change in a single path has a
smaller influence, so that an increase in the robust evolution
region is to be expected. However, the increase in the robust
region with M is not solely caused by this decrease in the

effective mutation rate. In Fig. 5, we have changed the num-
ber of genes M by fixing the mutation rate per path, i.e., a
single path change per generation for M =16, 4 paths for
M =32, and 16 for M =64. Even in this fixed mutation rate,
the transition is sharper, and the increase in the robustness in
the evolution is detected.

Of course, the increase in the mutation rate reduces the
robust evolution region. Comparing Fig. 2�a� and Fig. 4
shows that the threshold noise level �c for the robust evolu-
tion region is lowered with the decrease in mutation rate,
where the mutation rate is 16 times higher for the simulation
for M =64 in Fig. 4 than that for Fig. 2�a�.

At the transition at ���c we discuss here, mutational
robustness of the evolved network changes. The top fitness
network evolved at a low noise level ����c� does not have
robustness against mutation, in contrast to those evolved at a
higher noise level. To check this distinction statistically, we
measured the average fitness of mutants generated from the
top fitness. We took a network with the top fitness evolved

FIG. 2. �Color online� Fitness distribution P�F̄�. From the top fitness net-
work evolved after 200 generations, we generated 1000 networks by chang-

ing a single element in the Ji.js matrix, and computed the average fitness F̄
for each, to obtain the fitness distribution. Inset is the magnification for

−0.2� F̄�0. The histogram is computed with a bin size 0.01, whereas for
the inset, we adopt the bin size 0.001. For high � �red, with �=0.1�, the

distribution is concentrated at F̄=0, whereas for low � �green, with �
=0.01�, the distribution is extended to large negative values, even after
many generations.

FIG. 3. �Color online� Average of average fitness 	F̄
 and minimal fitness

over generations, plotted against the noise strength �. 	F̄
, the average of the

average fitness F̄ over all individuals is computed for 100–200 generations.
�For ��0.1, we choose the average over 200–300 generation, as the fitness
plateau is reached later.� The minimal fitness is computed from the time
average of the least fit network present at each generation. �a� M =64, �b�
M =16. The mutation rate is one path over all paths. In �b�, since there are 16
times paths of �a�, the mutation rate for each path is 1 /16, compared
from �a�.
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after generations, and changed m paths randomly �i.e.,
change in a value of Ji,j among �1,0�. By making a thou-
sand networks of such m mutations, we have measured the
average fitness of such mutants, which is plotted against m in
Fig. 6. For ���c, the average fitness decreases linearly with

the number of added mutations m as 	F̄
=−C���m. The co-
efficient C��� decreases with the increase in �, and for �
=0.1���c�, the linear decrease component vanishes, giving

rise to a plateau around 	F̄
=0. In other words, the fitness
landscape has an almost neutral region. The fitness is rather
insensitive to mutation, demonstrating the evolution of mu-
tational robustness. Around ���c, C��� estimated at small
mutation number m is rather small, and we may expect that

C���→0 as �→�c, although careful examination of the
slope at the m→0 limit is needed to confirm it.

The transition with regard to the mutational robustness at
�c reminds us of the error catastrophe introduced by Eigen
and Schuster,22 since the population of nonfit mutants starts
to accumulate after this transition. In their error catastrophe,
the transition occurs when the advantage by fitted individuals
cannot overcome combinatorial diversity of nonfit mutants.
Their error catastrophe occurs with the increase in the muta-
tion rate, while our robustness transition occurs with the de-
crease in developmental noise. In our case, the transition is
of dynamic origin, as will be discussed in the next section,
whereas in their case there exist �combinatorially� many
more nonfit networks than the fittest ones. The robustness
transition here could be related with �or regarded as an ex-
tension of� error catastrophe, but the relationship between the
two remains to be clarified.

IV. DYNAMIC ORIGIN OF THE ROBUSTNESS
TRANSITION

Why does the system not maintain the highest fitness
state under a condition of small phenotypic noise ���c?
Indeed, the top fitness networks that evolved under low noise
have dynamic behaviors distinct from those that evolved un-
der high noise. First, the highest fitness network evolved at
low � often fails to reach the target if simulated under a
higher noise level. The expression level often exhibits a few
oscillations before reaching the target state, and noise might
cause expression of the output genes to switch to “off” states.
In contrast, the temporal course of gene expression evolved
for ���c is much smoother, and is not affected by noise.
This distinction is confirmed by simulating gene expression
dynamics by cutting off the noise term over a variety of
initial gene expression conditions, and to check if the orbit is
attracted to the original target. We found that, for networks
evolved under ���c, a large portion of the initial conditions

FIG. 4. �Color online� Average of average fitness 	F̄
 over generations after

transients, plotted against the noise strength �. 	F̄
, the average of the av-

erage fitness F̄ over all individuals is computed over 100–200 generations
for ��0.1, and 200–300 generations for ��0.1 to remove the transient
effect. The fitness for M =16, 32, and 64 are computed by fixing the muta-
tion rate at 1 per 16
16 paths, i.e., one path in total for M =16, four paths
for M =32, and 16 paths for M =64.

FIG. 5. �Color� Decline of the average fitness plotted as a function of m,
which is the number of mutated paths from a top-fitness network. The av-

erage fitness is computed from F̄’s over 1000 mutants generated from an
evolved network having the top fitness, by inserting m mutations. For �

��c, it decreases linearly as 	F̄
=−C���m, as a function of the number of
mutated paths M. Here C��� decreases. At �=0.1��c, C���=0.

FIG. 6. �Color� Distribution of the fitness value when the initial condition
for xj is not fixed at −1, but is distributed over �−1,1�. We chose the evolved
network as in Fig. 5; for each network, we took 10 000 initial conditions,
and simulated the dynamics �1� without noise, to measure the fitness value F
after the system reached an attractor �as the temporal average 400� t
�500�. The histogram is plotted with a bin size 0.1 using a semilog plot.
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is attracted to the target pattern, while for those evolved un-
der ���c, only a tiny fraction �i.e., the vicinity of all “off”
states� is attracted to the target �see Fig. 6�.

If the time course of a given gene expression to reach its
final pattern is represented as a motion falling along a poten-
tial valley, our results suggest that the potential landscape
becomes smoother and simpler through evolution and loses
ruggedness after a few hundred generations. This “develop-
mental” landscape is displayed schematically in Fig. 7. For
networks evolved under ���c, there is a large, smooth at-
traction to the target, whereas for the dynamics evolved un-
der ���c, the initial states are split into small basins, from
each of which the gene expression patterns reach different
steady states.

Now, consider the mutation to a network. Any change in
the network leads to slight alterations in gene expression
dynamics. In smooth dynamics, as in Fig. 7�a�, this pertur-
bation influences the attraction to the target only slightly. By
contrast, under the dynamics as shown in Fig. 7�b�, a slight
change easily destroys the attraction to the target attractor.
For this latter case, the fitness of mutant networks is distrib-
uted down to lower values, which explains the behavior ob-
served in Fig. 3.

Accordingly, evolution to eliminate ruggedness in devel-
opmental potential is possible only for sufficient noise am-
plitude, whereas ruggedness remains for small noise values
and the developmental dynamics often fail to reach the tar-
get, either by noise in gene expression dynamics or by mu-
tations to the networks. It is interesting to note that a greater
set of initial conditions is attracted to a target pattern for
networks evolved under conditions of high noise. The exis-
tence of such global attraction in an actual gene network was
recently reported for the yeast cell cycle.23

V. EVOLUTION OF ROBUSTNESS

According to our results in the preceding two sections, a
network evolved under high noise has two types of robust-

ness. The target pattern is reached even if the developmental
dynamics are perturbed by noise or by a mutation to the
network. The fitness is rather insensitive to both such pertur-
bations.

As an index for robustness, variance of the fitness �or
phenotype� is useful.5 There are two types of variance corre-
sponding to the above two types of robustness, i.e., genetic
and epigenetic robustness. Variance corresponding to genetic
change, denoted by Vg, is defined as phenotype variance
caused by the distribution of genes,

Vg =� P�F̄��F̄ − 	F̄
�2dF̄ , �3�

where we note P�F̄� is the distribution of average fitness over

all networks at each generation, and 	F̄
= P�F̄�F̄dF̄ is the
average of average fitness over all networks.

As the variance decreases, the system increases its ro-
bustness to genetic change �mutation�. On the other hand,
epigenetic robustness is measured by the phenotypic vari-
ance of isogenic organisms Vip. Indeed, the phenotypes of
isogenic individual organisms fluctuate, as discussed
extensively.7–11 We define the isogenic phenotypic variance
Vip�I� by

Vip�I� =� p�F;I��F − F̄I�2dF , �4�

where p�F ; I� is the fitness distribution among isogenic indi-

viduals I sharing the same network Jij, and F̄I

=Fp�F ; I�dF is the average fitness of the genotype I. Vip�I�
generally depends on the individual �genotype� I. As a mea-
sure of Vip, we adopted such I that gives the peak in the

fitness distribution P�F̄�, i.e., most typical genotype. Or, in-
stead, we estimated it by the average of Vip�I� over all geno-
types I existing at each generation. The overall Vip-Vg rela-
tionship is not altered between the two estimates. In Fig. 8,
we adopted the latter estimate, to reduce statistical error.

FIG. 7. Schematic representation of the basin structure, represented as a
process of climbing down a potential landscape. A smooth landscape is
evolved under high noise �above�, and a rugged landscape is evolved under
low noise �below�.

FIG. 8. �Color� Relationship between Vg and Vip. Vg is computed from P�F̄�
at each generation, and Vip by computing the variances of isogenic fluctua-
tion of the fitness �over L runs� for existing individuals, and averaging them.
Plotted points are over 200 generations. For ���c�0.03, both decrease
with generations. See text for the definition of Vig and Vg.
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Under high noise conditions, the selection process favors
a developmental process that is robust against it. This robust-
ness to noise is then embedded into robustness against mu-
tation. Indeed, for ���c, both Vg and Vip decrease through
the course of evolution �Fig. 8� while maintaining propor-
tionality between the two. Such proportionality between the
two has been discussed from an evolutionary stability analy-
sis under a few assumptions.14,24,25 For ���c, the inequality
Vip�Vg is satisfied, while it is broken at the transition �
��c, which also agrees with the theoretical analysis. On the
other hand, the proportionality between Vip and Vg is also
consistent with an observation on an experiment in bacterial
evolution13 if Fisher’s theorem26–28 on the proportionality be-
tween evolution speed and Vg is applied.

VI. CONSOLIDATION OF THE EXPRESSION
OF NONTARGET GENES

So far, we have studied how a dynamical system consist-
ing of positive and negative feedbacks is shaped to generate
a given target output pattern. Here, the matrix Jij has a large
number of nonzero elements, and generally the structure is
complex. Fitness generated from such a complex network is
robust to noise and to mutation. How is such a robust system
achieved to fixate the expressions of target genes?

In our model, there are more degrees of freedom �genes�
xi besides those for the target genes. The expression levels of
the nontarget genes do not influence the fitness, and can take
either positive or negative values. Hence, there is no selec-
tion pressure leading them to be fixed, or robust to noise or
to mutation. However, we have found that expression levels
of many �about half� nontarget genes are fixed to positive or
negative values successively through the course of evolution
in the robust evolution region, i.e., for ���c. Even after
mutation to Ji,j values, the sign value of xi does not change
for most genes i �data not shown�. For such genes, the vari-
ance of each expression level over mutants becomes rather
small because of evolution.

To check for a possible decrease in the variance of ex-
pression levels, we define Vg�i� for gene i, as the variance of
sgn�xi� computed at t=Tini �i.e., after the time span for de-
velopment� over individuals with different genes, instead of
the variance of fitness we measured in the last section.
�sgn�xi� is the average among isogenic individuals, i.e., the
average over L runs.� In other words, Vg�i� is defined by

replacing F̄ by sgn�xi� in Eq. �3�. This variance Vg�i� is plot-
ted in Fig. 9 as a function of generation. Here, Vg�i� for i
�k, the variance of the expression level of the target genes
decreases at an earlier generation, together with a few other
genes, followed by a decrease in Vg�i� for about half of the
others toward low levels. Indeed, after 200 generations of
evolution, the variance Vg�i� for about half of the genes is
less than 10−5. Expression levels of many degrees of freedom
other than the requested degrees of freedom as a target are
also fixed. This consolidation is relevant to achieve a robust
system. Indeed, for ���c, such a fixation of nontarget gene
expression levels is not observed.

Similarly to Vg�i�, we define Vip�i� as the isogenic vari-
ance for each sgn�xi� by using sgn�xi� instead of F in Eq. �4�,

and we have computed its evolution over generations. For
genes that show the decrease in Vg�i�, the variances Vip�i�
also decrease through evolution. Furthermore, for such genes
i, Vg�i� and Vip�i� decrease in proportion, as shown in Fig.
10�a�. The proportionality relationship between Vg�i� and
Vip�i� holds true not only for fitness but also for many genes,
including nontarget ones. Surprisingly, as evolution
progresses, the plot of �Vip�i� ,Vg�i�� approaches a single line,
suggesting that the proportion coefficient between the two
approaches the same value for all genes, whose gene expres-
sions are fixated to on or off by generation. In fact, we have
plotted �Vip�i� ,Vg�i�� for all genes in Fig. 10�b�. For each
given generation, the overlaid plot of �Vip�i� ,Vg�i�� fits on
the same line for most genes. In other words, the proportion
relationship between the two variances holds not only for
each gene’s expression through the course of evolution, but
also for expression levels over different genes at each gen-
eration. Over generations, the plots shift toward smaller val-
ues �Vip�i� ,Vg�i��, approaching a unique line. This “univer-
sal” coefficient for all genes suggests the existence of a
global potential dynamic system governing many gene ex-
pression patterns.

VII. SUMMARY AND DISCUSSION

We have shown here that a dynamical system that is
robust both to noise and to structural variation is shaped
through evolution under noise. In our study, robustness to
developmental noise and to mutation are represented quanti-
tatively in terms of the phenotypic variance of isogenic or-
ganisms Vip and by genetic variation Vg. The proportionality
between the two through evolution is a quantitative manifes-
tation of how developmental and mutational robustness can
evolve in coordination. In fact, whether these two types of
robustness emerge under natural selection has long been de-
bated in the context of developmental dynamics and evolu-
tion theory1,2,29,30 since the propositions of stabilization se-

FIG. 9. �Color� The evolutionary change of Vg�i� plotted as a function of
generation. At each generation, Vg�i� is computed from the distribution of
N=200 individuals at each generation, from the average value of sgn�xi�
over L=200 runs. The black lines are the variance for target genes i
=1,2 , . . . ,k, while the others are for nontarget genes with i=k+1, . . . ,M.
The variance values of target genes decrease at earlier generations, while
about a half of the nontarget genes also exhibit decreases. �=0.1.
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lection by Schmalhausen31 and canalization by
Waddington32,33 more than half a century ago. Here we have
demonstrated a correlation between developmental robust-
ness to noise and genetic robustness to mutation, and we
have shown that the former leads to the latter.

Isogenic phenotypic fluctuation is related to phenotypic
plasticity, which is a degree of phenotype change in a differ-
ent environment. Positive roles for phenotypic plasticity in
evolution have been discussed elsewhere.30,34–36 Because
susceptibility to environmental changes and phenotypic fluc-
tuation are correlated positively according to the fluctuation-
response relationship,24 our present results on the relation-
ship between phenotypic fluctuations and evolution imply a
relationship between phenotypic plasticity and evolution
akin to the genetic assimilation proposed by Waddington.32

Although we have demonstrated this evolution of robust-
ness using a network model of transcriptional regulation, we
expect this behavior to be observable generally if fitness is
determined through developmental dynamics that are suffi-
ciently complex so that a given developmental process, when

deviated by noise, may fail to reach the fittest target pattern.
In fact, the decrease in phenotypic variance as well as the
proportionality law between Vg and Vip have been confirmed
in a catalytic reaction network model.14

We have also found that the expression of many nontar-
get genes is also fixed. The behavior of many other degrees
of freedom is consolidated with that directly related to fit-
ness. With this consolidation, the system’s behavior is con-
strained to exhibit an identical phenotype against noise and
mutation. Many degrees of freedom are highly correlated,
which may result in the emergence of a simple set of global
dynamics over many gene expressions. The existence of a
universal proportionality between Vg and Vip with an identi-
cal proportion coefficient over many genes might be a mani-
festation of such global dynamics. It is interesting to note
that this universal proportionality over components is also
observed in a reaction network model for a reproducing
cell.37

During the course of evolution, the variance levels of
some gene expressions decrease at an early generation, while
others decrease only later. This difference between genes
should be related to how their expressions influence those for
the target. It will be important to study the order of fixation
in terms of the network structure.

Borrowing the concept from statistical physics, we pre-
viously proposed an evolutionary fluctuation-response rela-
tionship, where proportionality between evolution speed �re-
sponse� and isogenic fluctuations is proposed and
experimentally verified. As the speed of evolution is propor-
tional to Vg according to Fisher’s fundamental theorem of
natural selection,26,27 the relationship then suggested the pro-
portionality between Vip and Vg. Note that in physics, the
proportion coefficient between response and fluctuation is
represented universally in terms of temperature, and is
known as the fluctuation-dissipation relation38,39 or Ein-
stein’s relation.40 Discovery of our universal proportion co-
efficient over genes suggests the existence of a general
theory akin to the fluctuation-dissipation theorem that could
be applied to evolutionary biology and also to robust design
of dynamical systems.

In the present paper, we adopted a simple fitness condi-
tion favoring a fixed expression of target genes. Accordingly,
such a system that has a large basin for a fixed point attractor
corresponding to the target pattern is evolved. It should be of
importance to examine a case with a more complex fitness
condition. A straightforward extension is the use of several
target patterns depending on some inputs applied to some
genes. Another extension is the use of fitness favoring dy-
namic attractors. As model �1�, with suitable choice of Jij,
shows periodic or chaotic attractors,41 study of the evolution
of robust dynamic system is also of importance �see also
Ref. 42�.
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FIG. 10. �Color� Relationship between Vg�i� and Vip�i�. Vg�i� is computed as
a variance of the distribution of �sgn�xi�� over 200 individuals at each gen-
eration, and Vip�i� as that of the distribution of sgn�xi� over 200 runs. �
=0.1. �a� Each point is a plot from one generation for four different genes
from one target � and three nontarget �x,*,��. Plotted over 400 genera-
tions, where �Vg�i� ,Vip�i�� at later generations take smaller values. �b� The
plot of �Vg�i� ,Vip�i�� for all genes i at the generation 10 �red ��, 20 �green
x�, 40 �blue *�, 80 �pink ��, 160 �sky blue *�, and 320 �black ��.
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