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Conditions for Chemotactic Aggregation
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Micro-organisms aggregate through chemotaxis against a concentration gradient of signals secreted
by themselves. We have numerically studied a model consisting of elements with intracellular
dynamics, random walks with a state-dependent turnover rate, and secretion of attractant. Three
phases with and without aggregation, as well as partial aggregation, were obtained as to the diffusion
and decomposition rates of the attractant, and conditions for cellular aggregation were analyzed.
The size of aggregated clusters was shown to be independent of cell density, as is consistent with
experiment.
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Chemotaxis is a ubiquitous phenomenon in microor-
ganisms, and has attracted much attention both from
the experimental and theoretical sides[1, 2, 3, 4, 5]. The
external concentration of signal molecules is interpreted
by an intracellular signal transduction network, which
changes the motility of the cell, so that it moves toward
a region with a higher concentration of the attractive sig-
nal molecule[3]. The signal pathways governing chemo-
taxis have been revealed experimentally[6]. In bacteria,
Escherichia coli, the turnover rate for the random walk
is modulated by the signal concentration toward the di-
rected motion on average[7, 8]. This is also true for
several micro-organisms together. In fact, from exper-
iments on Paramecium, Oosawa and Nakaoka proposed
a condition for chemotaxis, which states that the time
scale of tumbling must be smaller than that of adapta-
tion and greater than that of sensing[1]. By using a sim-
plified model for internal signal transduction and random
turnover, we have recently confirmed that the condition
is valid for a variety of environments and for both short-
and long-term behavior by suitable renormalization of
the parameters for the timescale[9].

Just as the chemotaxis of a single microorganism is
of interest, the collective chemotaxis of microorganisms
interacting with each other is also of interest[10, 11].
For example, E. coli aggregate to form a cluster by
using chemotaxis[12] or sometimes generate complex
patterns[13]. The aggregation is spontaneous, the re-
sult of chemotaxis toward a chemical that is secreted by
the bacteria themselves. Recently, Mittal et al.[12] stud-
ied this chemotactic aggregation and found that the size
of the bacterial cluster is independent of the number of
bacteria therein. Some analysis was performed by im-
posing the localized signal pattern in advance[12]. How-
ever, such a concentration pattern is generated by the
aggregating cells themselves, and thus it is essential to
obtain a self-consistent condition between the bacterial
distribution and the signal field to allow for chemotac-

tic aggregation. In the present Letter, we will study a
simple model of elements that show chemotaxis and se-
crete signal molecules, in order to obtain the conditions
for chemotactic aggregation. Dependence of the cluster
size on the bacterial number will also be examined.

Our model consists of cells with internal chemical re-
actions showing response to and adaptation against the
signal molecule[14]; the turnover rate of the random walk
of cells depends on the internal chemical state, while the
speed of motion is fixed at vspeed for simplicity. Signal
molecules are secreted from the cells into the medium,
become diffused, and are decomposed. The intracellular
process for chemical concentration variables cu and cv is
based on[9, 15]. These chemicals respond to the exter-
nal signal concentration S, and the intracellular adaptive
dynamics is represented by

dcu

dt
=

S − (cu + cv)

τs
,
dcv

dt
=

S − cv

τa
. (1)

Following the increase (decrease) in the signal concen-
tration S, cu increases (decreases) from its steady state
value (c∗u = 0[16]), but after some time span it returns to
the original value c∗u. The timescale for the response is
given by τs, while that for the relaxation to the original
value (i.e., adaptation) is given by τa.

Following the experimental result[7, 8], we set the tum-
bling rate to become smaller when cu > c∗u and larger
when cu < c∗u. With the average tumbling time-interval
τ∗ and the speed vspeed, we set the tumbling probability
(per unit time) as

Ptmb(cu) =
1.0 − 0.5 × tanh(κ∆(cu − c∗u))

τ∗
. (2)

The tumbling frequency decreases (increases) as S in-
creases (decreases). Unless otherwise mentioned we
choose κ∆ = 1000.0, so that the Ptmb(cu) exhibits a
threshold behavior. Although the tumbling occurs ran-
domly, this simple model can show chemotaxis: i.e., cells
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move toward an attractant-rich area under the condition
τs < τ∗ < τa, which we term the Oosawa condition[9].
(The response time τs and adaptation time τa need to
be properly rescaled depending on the profile of signal
concentration[9]).

Now we consider the process of secretion of signal
molecules S by the cells, to consider the spontaneous
chemotactic aggregation. The chemical is assumed to be
secreted continually with a constant rate σ from each cell,
diffuses through the space with the diffusion coefficient
Ds, and is decomposed at the rate ν. Thus, the time
evolution of the signal concentration is given by

∂S(x, t)

∂t
= σ

Ncell
∑

i

δ(x − xcell
i ) + Ds

∂2S

∂x2
− νS. (3)

When cells are distributed homogeneously in space, the
signal concentration approaches a homogeneous steady
state S∗ = σρ/ν with ρ density of cells Ncell/L, Ncell as
the number of cells and L as the system size[17].

In our model, the concentration pattern of the signal
chemical changes over time, influenced by the configura-
tion of cells. On the other hand, cells move according
to the signal pattern. Cells regulate the signal pattern,
which controls the cells’ motion. Chemotactic aggrega-
tion is possible, when a stationary self-consistent solution
between cells’ motion and the time evolution of the signal
pattern is realized.

If the signal concentration and cell density change
smoothly in space, and each cell’s adaptation dynamics is
averaged out to consider only the distribution of cells, it
would be possible to make a coarse-grained description at
suitable temporal and spatial scales. Indeed, Erban and
Othmer derived a partial differential equation consider-
ing a continuum approximation for chemotactic parti-
cles under suitable conditions[15]. The derived equation
agrees with the so-called Keller-Segel model[18], origi-
nally introduced for the study of chemotactic aggregation
of amoeba[19]. By denoting the cell density in space as
N(x, t), the derived equation is written as

∂

∂t
N(x, t) = −

∂

∂x

[

χ
∂S(x, t)

∂x
− Dn

∂

∂x

]

N(x, t),

∂

∂t
S(x, t) = σN(x, t) − νS(x, t) + Ds

∂2

∂x2
S(x, t). (4)

where χ represents the mobility of the cell against the
signal gradient, and Dn is the diffusion of cells due to
their random walk. In this continuum limit, cells are
assumed to show directed motion even at any slight gra-
dient in the signal chemical. From a straightforward lin-
ear stability analysis, it is shown that the Keller-Segel
model has a steady uniform solution under the condition
of ν > νc = σχN∗/Dn, where N∗ is given by the density
of cells ρ. In the one-dimensional case, Childress and Per-
cus obtained a stationary localized solution for ν < νc,
which represents the aggregation[20].

Here we consider the cell model in one-dimensional
space, without taking a continuum limit, and study the
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Fig. 1: (Color online) Three characteristic behaviors of cells.
The time evolution of the density distribution of cells is plot-
ted. The distribution is computed by averaging over 1,000
time units. Parameters are commonly set as τs = 5.0, τa =
50.0, τ∗ = 70.0, σ = 0.0005, Ncell = 100, and L=3000, while
Ds and ν are chosen to be (A) Ds = 300, ν = 0.002, (P)
Ds = 0.1, ν = 0.002, and (H)Ds = 300, ν = 0.1.

conditions for chemotactic aggregation, in particular de-
pendence on Ds and ν. The parameters for intracellu-
lar dynamics, i.e., τs, τa, τ∗, are fixed so that they sat-
isfy the Oosawa condition: i.e., at the single cell level,
chemotaxis is possible. Unless otherwise mentioned, the
number of cells is 100. Although we present simulations
of the one-dimensional case only, the preliminary results
suggest that the basic properties, such as the conditions
for aggregation and the cluster size, are invariant even
for the two-dimensional case, as adopted experimentally.

By fixing the parameter values of the intracellular pro-
cess, we studied the temporal evolution of distribution
by changing the parameter values Ds and ν, and found
three distinct types of behavior, i.e. aggregation(A), ho-
mogeneous distribution(H), and partial aggregation(P),
as shown in Fig.1.

At the aggregation phase, cells aggregate into a sin-
gle cluster, which is localized in space and stable in time.
This single cluster is formed irrespective of the initial dis-
tribution of cells. At the partial-aggregation phase, cells
aggregate to form a cluster for some time span, but then
this cluster collapses so that cells are broadly scattered
until they aggregate again. Intermittent aggregation and
collapse is repeated. At the homogeneous phase, cells are
distributed uniformly over the space. Tiny fluctuations
in cell density are evident from time to time, but on the
average the density is uniform in space.

To characterize these behaviors, we computed the fol-
lowing two quantities: dA, which characterizes the aver-
age spatial inhomogeneity of cells at a particular time,
and dV , which characterizes the temporal variation of
cell aggregation. These are measured from the average
cell-cell distance at each time

d(t) =

√

√

√

√

1

Ncelll(Ncell − 1)

Ncell
∑

i,j

‖xi
cell(t) − xj

cell(t)‖2. (5)
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Fig. 2: (Color online) Phase diagram with regards to the dif-
fusion constant of signal chemical Ds (abscissa axis) and its
decay rate ν (ordinate axis). Density plots of dA (upper) and
dV (lower) are shown. Four phases, H1, P, A, and H2, were
obtained from these values. Parameters other than Ds and ν
are identical as adopted in Fig.1. The values dA and dV are
computed from the average of 50,000 to 100,000 time steps,
by starting from a homogeneous distribution.

Then, dA is defined by the temporal average of d(t)
and dV by its temporal variance. The three phases
are characterized by (A) dA << duni

A , dV ∼ 0; (P)
dA ∼ duni

A , dV > 0; and (H) dA ∼ duni
A , dV ∼ 0 where

duni
A = L/(2

√
3), the value when cells are uniformly dis-

tributed. The parameter dependence of these quantities
is plotted in Fig.2, from which the phase diagram is ob-
tained. The diagram consists of four regions: i.e., ag-
gregation(A), partial aggregation(P) and two regions of
homogeneous phases(H1,H2). Now, we discuss the tran-
sitions among these phases.

Recall that there are only two phases in the contin-
uum limit, i.e., in the Keller-Segel model. The boundary
is given by ν = νc, beyond which the uniform solution
of cell density and signal concentration is stable. This
boundary line agrees with that separating the H1 phase
and the other three phases in our model. In fact, in
H1, the signal decay rate is too large to keep a sufficient
signal amount for cells to detect. Since the aggregation
cluster is always stable under ν < νc in the Keller-Segel
model, the P and H2 phases are a result of cell dynamics
uncovered by the continuum limit.

The boundary between A and P is given by the straight
line of ν ∝ DS . Considering eq.(3), the spatial scale
for a signal molecule to diffuse within its lifetime (λs) is
given by

√

Ds/ν. Each cell has to respond to the signal
change within this spatial scale. Now, we define the spa-
tial scale for the cell’s motility λn as the average length
a cell moves before it tumbles after it passes the cen-
tral top of the signal field. This is estimated as follows.
The cell’s response against the change in signal concen-
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Fig. 3: (Color online) Phase diagram of aggregation and par-
tial aggregation phases, with regards to the cellular tumbling
timescale τ∗ (abscissa axis) and the parameter λs =

p

Ds/ν
(ordinate axis). The symbol × represents the aggregated
phase (dA < duni

A ) and + the partial aggregation phase(dA >
duni

A ). We set σ = 0.5, while other parameter values are iden-
tical with those adopted in Fig.2.The dashed line represents
λn (see the text).

tration requires the time delay of τs. Up to this time
scale, the tumbling frequency does not change and cells
seldom tumble. Since the tumbling probability is given
by 1/τ∗ per unit time, cells show diffusion going straight
for the time span of τ∗, on the average. Hence, before
the response to the signal the cells travel with the scale
λn ∼ vspeed(τs +

√
2τ∗) on average[21].

For a cell to respond to the change, the spatial scale
of the signal change should be larger than the average
length of the cell motion before response. Thus, the con-
dition λs > λn is imposed. This gives the boundary
between the A and P phases in Fig.2, while we have ex-
plicitly confirmed the relationship between λs and τ∗, as
shown in Fig.3.

When the aggregation condition in the continuum
model (ν < νc) is satisfied but λs < λn, the signal field
once formed cannot trap cells within, and they wander
out so that the original cluster is destabilized. This leads
to intermittent formation and collapse of clusters. This
is nothing but the behavior in the partial aggregation
phase. Note that in the continuous Keller-Segel model,
there is always a drift in the cell motion towards a region
with higher signal concentration, and the P-phase does
not exist. By considering each cell as a discrete element
with response by internal dynamics, the instability of the
aggregated cluster under λs < λn is introduced.

The instability of the aggregated cluster at large Ds,
as observed in the H2 phase, is not predicted in the
Keller-Segel model either. As the diffusion constant is
larger, the gradient of the signal concentration pattern is
smaller. If a cell can respond to any small signal gradient,
as assumed in the continuum model, cells can aggregate
even for any large Ds. On the other hand, in the present
model of intracellular dynamics, there exists a minimum
value of the gradient in signal concentration required for a
cell to respond. Indeed, this value depends on the sharp-
ness of the change of tumbling frequency against cu, i.e.,
the value κ∆ in eq.(2). As long as κ∆ is finite, there ex-
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Fig. 4: (Color online) Dependence of the cluster size (esti-
mated by dA) on the number of cells. Parameters are τs =
5.0, τa = 50.0, τ∗ = 70.0, σ = 0.0005, ν = 0.002, Ds = 200.
The cluster size is estimated by dA, computed by the aver-
ages from 70,000 to 80,000 (∗), from 80,000 to 90,000 (+),
and from 90,000 to 100,000(x). Values from three temporal
regions are computed to check the stability of the aggregated
cluster.

ists minimum slope, which gives a maximum value of Ds

to make aggregation possible. Thus, the H2 phase exists
as long as κ∆ is finite. This value κ∆ corresponds to the
Hill coefficient in cell biology, and with its increase eq.(2)
approaches a step function. As long as the Hill coefficient
is finite, even if it is large, the H2 phase exists at large
Ds, in contrast to the case with the Keller-Segel model.

Finally, we study the dependence of the cluster size
upon the number of cells at the aggregation phase. As
plotted in Fig.4, the cluster size (computed by dA) is
independent of the number of cells, as long as it is large
enough to form a stable cluster (In the figure, the number
is about 50).

Even when the cell number is large, the cellular den-
sity in the cluster is sufficiently low (0.01 µm2 and a
single bacterium is about 2 ∼ 3µm in length[12]), com-
pared with the colony pattern, and so cells do not col-

lide with each other and move independently. Owing to
this independency, the cluster size is determined by the
length beyond which the cell returns to the original clus-
ter, given by λn, which is independent of the number
of cells. In fact, Mittal et al. reported that the size of
formed bacterial cluster is independent of the number of
bacteria contained in it[12]. Our numerical result agrees
with their experiment.

In the present Letter, we have obtained conditions for
chemotactic aggregation. One is the condition for de-
cay of attractant in the medium, given by ν < νc, which
is also derived from the continuum limit model, the so-
called Keller-Segel model. The other concerns the in-
equality between the diffusion scale of the signal molecule
within its lifetime and the motility scale of the random
walk of cells, λs > λn. This latter condition, in addition
to the condition for diffusion constant of signal molecule
to be detected by the signal transduction, is not obtained
in the continuum limit model. These conditions, as well
as the Oosawa condition for chemotaxis, are general, and
can be tested experimentally by varying the nature of the
medium and signal molecules and by adopting mutants.
As the cluster size constancy against cell density agrees
with experimental data, experimental verifications of the
predicted phases will be promising. In particular, par-
tial aggregation may underlie intermittent expansion of
cellular aggregates[22].

In the present model, the secretion of attractant from
cells is independent of the intracellular state. It will be an
important future issue to consider state-dependent secre-
tion of chemicals and/or richer intracellular dynamics, to
find complex spatiotemporal patterns[13] as well as dif-
ferentiation of intracellular states[22].
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