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a b s t r a c t

In multicellular organisms, several cell states coexist. For determining each cell type, cell–cell

interactions are often essential, in addition to intracellular gene expression dynamics. Based on

dynamical systems theory, we propose a mechanism for cell differentiation with regulation of

populations of each cell type by taking simple cell models with gene expression dynamics. By

incorporating several interaction kinetics, we found that the cell models with a single intracellular

positive-feedback loop exhibit a cell fate switching, with a change in the total number of cells. The

number of a given cell type or the population ratio of each cell type is preserved against the change in

the total number of cells, depending on the form of cell–cell interaction. The differentiation is a result of

bifurcation of cell states via the intercellular interactions, while the population regulation is explained

by self-consistent determination of the bifurcation parameter through cell–cell interactions. The

relevance of this mechanism to development and differentiation in several multicellular systems is

discussed.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Complex gene regulatory or protein networks are responsible
for determining cellular behaviors. The function of such networks
has recently been discussed in the light of specific network
structures called network motifs (Shen-Orr et al., 2002; Milo et al.,
2002, 2004). Besides such motifs, several simple network modules
are also considered to operate to give specific dynamical proper-
ties such as bistability, adaptation, or oscillatory behavior (Ferrell
and Machleder, 1998; Sha et al., 2003; Tyson et al., 2003). Recent
experimental results also suggest that such modules provide a
basis for cell differentiation, as studied in competence state in
Bacillus subtilis (Süel et al., 2006; Maamar et al., 2007).

In multicellular organisms, several cell states coexist. Morpho-
genesis with differentiation into distinct cell types, however, is
not an event of independent single-cellular dynamics, but occurs
as a result of an ensemble of interacting cells. For determining
each cell type, cell–cell interactions are often essential besides
intracellular dynamics by functional modules at a single cell level.
In fact, gene regulatory networks responsible for the early
developmental process or the cell specification process of several
kinds of organisms include many intercellular interactions (Ben-
Tabou de-Leon and Davidson, 2007; Davidson et al., 2002; Imai
et al., 2006; Loose and Patient, 2004; Swiers et al., 2006).
ll rights reserved.

(A. Nakajima).
The importance of cell–cell interactions to robust developmental
processes is discussed as the community effect (Gurdon
et al., 1993) and differentiation from equivalent groups of cells
(Greenwald and Rubin, 1992).

When considering the development of a multicellular organ-
ism, not only a set of cell types, but also the number distribution
of each of the cell types, has to be suitably determined and robust
against perturbations during the course of development. The
proportion of the body plan in planarian and in the slug of
Dictyostelium discoideum is preserved over a wide range of body
sizes (Oviedo et al., 2003; Ràfols et al., 2000). In the D. discoideum

slug, the number ratio of two cell types is kept almost constant. In
the hematopoietic system of mammals approximately 10 different
cell types are generated from a hematopoietic stem cell, and their
growth and differentiation are regulated to keep the number
distribution of each cell to achieve homeostasis of the hemato-
poietic system. In this case, in addition to the proportion
regulation, the absolute size of stem cell population is also
important because all the hematopoietic cells will ultimately die
out without their existence. Indeed, regulation of the numbers of
each cell type is rather common in multicellular organisms. As the
distribution of each cell type is a property of an ensemble of cells,
cell–cell interactions should be essential for such regulation.

There are several theoretical studies discussing the importance
of cell–cell interactions. By considering an ensemble of cells with
intracellular genetic (or chemical) networks and intercellular
interactions, synchronization of oscillation (Garcı́a-Ojalvo et al.,
2004; McMillen et al., 2002) or dynamical clusterings (Kaneko
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and Yomo, 1994, 1997; Mizuguchi and Sano, 1995; Furusawa and
Kaneko, 1998; Ullner et al., 2007; Koseska et al., 2007) are
observed. Cell states distinguishable from those of a single-
cellular dynamics are generated, providing a basis for functional
differentiation for multicellularity. The preservation of the
proportion of different cell types is realized by taking advantage
of Turing instability (Mizuguchi and Sano, 1995), while the
robustness in the number distribution of different cell types is
discovered in reaction network models (Kaneko and Yomo, 1994,
1999; Furusawa and Kaneko, 1998). Nevertheless, regulatory
mechanisms for cell type populations are not elucidated in terms
of dynamical systems because of the high dimensionality of the
models.

In the present paper, we propose a regulatory mechanism of
cell differentiation based on dynamical systems theory by taking
simple cell models with biological gene regulation dynamics.
Specifically, we study how cell states are differentiated with the
change in the total cell number following cell–cell interactions. By
incorporating different interaction kinetics, we show how simple
functional modules generate specific cellular behaviors such as a
cell fate switching, population size regulation of each cell type,
and preservation of the number ratio of each cell type.

The present paper is organized as follows. In Section 2, we
introduce an interacting multicellular model which is further
analyzed in the present paper. Each cell has a simple functional
module of genes, and its expression dynamics is modulated by the
interactions with other cells. In Sections 3–5, we consider several
different intercellular interactions, respectively. Although possible
cell states are generated by an intracellular functional module,
selection of one of these possible states or establishment of specific
number distributions of cell states is realized depending on the
manner of intercellular interactions. In Section 6, we extend our
theoretical scheme to discuss the distribution of cell types in cell
differentiation models studied so far (Kaneko and Yomo, 1997, 1999;
Furusawa and Kaneko, 1998, 2001). Although these models have a
complex intracellular reaction network, we show that the same logic
can be applied to explain the cell differentiation observed in these
models. In Section 7, we summarize our results and discuss their
biological relevance and future directions.
Fig. 1. The value u of the fixed point solution as a function of the signal

concentration v in our model. Solid line indicates the stable solution, while the

dotted line indicates the unstable one.
2. Framework of the model

Here, we introduce a basic model of interacting cells with
intracellular gene expression dynamics. Consider N cells with
identical genes which interact through a common medium. The
internal state of i-th cell is represented by the expression pattern
of m genes, as ~ui ¼ ðu

1
i ; . . . ;u

m
i Þ

T. The medium under which cells
are placed is represented by concentrations of n diffuse signals
given by ~v ¼ ðv1; . . . ; vnÞ

T. As the simplest case, we discard the
spatial configuration of cells so that each cell interacts with all the
other cells via common signal chemicals~v. Each intracellular gene
expression dynamics is modulated by these signal molecules,
which give interactions with other cells.

For the sake of simplicity, we mostly examine the dynamics of
single gene expression, in which the state of the i-th cell is
expressed by only one variable, ui, and the intercellular interaction
is mediated by only one global diffusive signal, v. Considering an
inhibitory effect of the intercellular interaction, ui and v obey the
following equation:

duiðtÞ

dt
¼ f ðui; vÞ

¼
1

t
ua

i ðtÞ

Ka
u þ vaðtÞ þ ua

i ðtÞ
� uiðtÞ þ Au

� �
for i ¼ 1; . . . ;N, (1)
dvðtÞ

dt
¼ gðu1; . . . ;uN ; vÞ. (2)

Gene ui activates its own expression through a feedback process,
while the signal v has an inhibitory effect on the expression of the
gene ui. Although we adopt competitive inhibition here, the
results to be discussed are qualitatively same even if other
(anticompetitive or non-competitive) forms of inhibitory kinetics
are chosen. Generally, the signal v is released by each cell
depending on its gene expression level and the signal abundances
at that moment. We adopt Hill-type kinetics for self-activation of
the gene ui. The parameter a denotes the Hill coefficient, i.e., the
cooperativity of its kinetics, while Ku is the threshold for the
activation of gene ui in the absence of the signal v, and Au is the
activation rate of ui by other molecules in the cell. The parameter t
is a time constant of the expression dynamics of ui normalized by
that of the signal v. In the present paper, we focus on the role of
intercellular interaction on differentiation of cells in a population,
so that the time scale of ui is chosen to be much slower than that
of v. This assumption on the time scale is rather natural
biologically, as the gene expression occurs in a slower time scale.
For numerical simulations, we use the following parameter
values; Ku ¼ 0:1, Au ¼ 0:04, a ¼ 2:0, and t ¼ 10:0. In the present
model parameter we study here, attractors of the system are
always fixed points. Neither oscillatory nor more complex
attractors exist. Note that the following results are qualitatively
invariant as long as the Hill coefficient a is larger than unity.

Before studying the dynamics of a population of interacting
cells, we first survey the single intracellular dynamics of Eq. (1)
with v given as a constant control parameter. As is shown
straightforwardly, the equation has a fixed point solution which
exhibits two saddle-node bifurcations with the change in v

(Fig. 1). We denote these bifurcation points as v ¼ v�1 and v ¼ v�2,
and call the upper branch of the stable state as uð1Þ (or cell state 1)
that is stable at vpv�2, and the other lower branch as uð2Þ (or cell
state 2) that is stable at vXv�1. In the parameter region v�1ovov�2,
the bistability of uð1Þ and uð2Þ is observed.

As shown in Fig. 1, the only possible stationary states of each
cell are ui ¼ uð1Þ or ui ¼ uð2Þ. Depending on the value of v and also
on the initial condition of ui, each of the two solutions are
selected. The question we address is as follows: how are these
states selected and what determines a possible range in the
number distribution of the two states when intercellular interac-
tions through v are taken into account. In the following sections,
we analyze three models with different types of the function
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gðu1; . . . ;uN ; vÞ to study how the differences in the kinetics of v

lead to different types of regulation in the number distribution of
cell types.
Fig. 3. The ratio of the number of each cell type (� for Nð1Þ and & for Nð2Þ) plotted

against the total cell number N, for model I. The initial values of ui are chosen

randomly from the interval of ui 2 ½0;1�. Data obtained from 100 different initial

conditions are overlaid. The parameter value is c1 ¼ 0:005.
3. Model I: cell fate determination by total cell number

As a first example of interacting cells, we adopt a model in
which each cell simply emits the signal v with the same rate. The
kinetics of v obey the following equation:

dvðtÞ

dt
¼ g1ðu1; . . . ;uN ; vÞ

¼
XN

i¼1

ci � vðtÞ ¼ c1N � vðtÞ, (3)

while the kinetics of fuig obey Eq. (1). We are interested in the
behavior of the stationary state as a function of the total cell
number N. The stationary state solution of an ensemble of cells is
generally obtained by the following procedure. First, we regard
the signal v as a fixed parameter, not a variable, and obtain the
solution ui as a function of v, as already described in the previous
section. Next, we write down v as a function of N and fuig so that
the self-consistent solution of the coupled equation is obtained,
from which we analyze the dependence of the solution on the
total cell number.

The stationary state is simply obtained by dui=dt ¼ 0 and
dv=dt ¼ 0. In the present case, the solution v is independent of
fuig, and depends only on N, which leads to

f ðui; vÞ ¼ 0; v ¼ c1N. (4)

The solution curve f ðui; vðNÞÞ ¼ 0 is shown in Fig. 2, and the
numerical result of the ratio of the number of each cell type to
the total cell number is shown in Fig. 3. Here, we define a single
cluster of an ensemble of cells as a state in which all the cells take
the same stationary states, i.e.,

ui ¼ uðkÞ ðk ¼ 1 or 2Þ for i ¼ 1;2; . . . ;N, (5)

and a two-cluster state as that in which two cell types with u ¼

uð1Þ and u ¼ uð2Þ coexist, so that

ui ¼
uð1Þ for i ¼ 1; . . . ;Nð1Þ;

uð2Þ for i ¼ Nð1Þ þ 1; . . . ;Nð1Þ þ Nð2Þð¼ NÞ:

(
(6)

Here, Nð1Þ and Nð2Þ denote the number of the cells with u ¼ uð1Þ and
u ¼ uð2Þ, respectively.
Fig. 2. The stationary states of ui in model I are plotted against the total cell

number N. At the interval N�1pNpN�2, two different cell states coexist. The

parameter value c1 is set at 0.005.
When the cell number N is lower than a threshold N�1 (¼ v�1=c1),
the single-cluster state of uð1Þ is realized, while for N larger than a
threshold N�2 (¼ v�2=c1), the single-cluster state of uð2Þ is realized,
irrespectively of the initial cell state. Only within the range of
N�1pNpN�2 are two-cluster states of uð1Þ and uð2Þ possible, where
any population ratio of the cell types with uð1Þ to uð2Þ can be
realized depending on the initial condition. Cell types switch
between uð1Þ and uð2Þ simply by the total cell number, and the
signal v works as a population size detector.
4. Model II: diversification from single state, and population
size regulation of specific cell type

Next, we consider the case in which the signal induction
depends on the expression level of ui. We will show that the cells
are differentiated into two types over a wide range of the total cell
number N, and that the number of type 1 cells remains at a same
level herein.

The kinetics of the signal v in model II is represented as
follows:

dvðtÞ

dt
¼ g2ðu1; . . . ;uN ; vÞ

¼ c2

XN

i¼1

ub
i ðtÞ

Kb
v þ ub

i ðtÞ
� vðtÞ. (7)

Here we adopt Hill-type kinetics for the induction of the signal v

by ui, where b is the Hill coefficient, representing the cooperativity
in the induction, and Kv denotes the threshold value for the signal
induction. The parameter c2 gives the maximum release rate of v

from each cell.
Dependence of the stationary states on the total cell number is

shown in Fig. 4. For a small N, all the cells always fall on a single-
cluster state of uð1Þ. As N gets larger, the bifurcation to a two-
cluster state occurs, where the cells take either uð1Þ or uð2Þ. Here,
the single-cluster state of uð1Þ (uð2Þ) is realized only at a small
(large) number of cells, respectively, so that there is a gap in the
total number of cells between the two single-cluster states. The
two-cluster state exists within this gap.

To understand the observed dependence of the clustering
behavior on the cell number, we first consider the stability of a
single-cluster state. From dui=dt ¼ 0, dv=dt ¼ 0, and ui ¼ uðkÞ
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Fig. 4. The fixed point values of ui in model II are plotted against the total cell

number N. At each N, 100 initial conditions are chosen. The expression levels of ui

for a single-cluster (þ) and two-cluster solutions (�) are plotted as a function of N.

The value for two-cluster solutions is the average over initial conditions. The

parameter values are set at Kv ¼ 2:0, b ¼ 2:0, and c2 ¼ 0:1.

Fig. 5. The stationary state of a single-cluster solution for model II. Solid line

indicates ui of the stable fixed solution, while the broken line denotes that of the

unstable one. The parameters are Kv ¼ 2:0, b ¼ 2:0, and c2 ¼ 0:1.

Fig. 6. The number of cell type 1 (�) is plotted against the total cell number in

model II. The initial condition of ui is chosen randomly from the interval ui 2 ½0;1�.

Solid and broken lines indicate Nð1ÞðN; v
�
1Þ ¼ �Aðv�1ÞN þ Bðv�1Þ and

Nð1ÞðN; v
�
2Þ ¼ �Aðv�2ÞN þ Bðv�2Þ, respectively, where Aðv�1Þ ¼ 0:011, Bðv�1Þ ¼ 24,

Aðv�2Þ ¼ 0:0099, and Bðv�2Þ ¼ 93. The threshold values N�1, ~N
�

1, and ~N
�

2 are indicated

(N�2 is out of the range of this figure). The parameters are Kv ¼ 2:0, b ¼ 2:0, and

c2 ¼ 0:1.
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(k ¼ 1 or 2) for i ¼ 1; . . . ;N, we get

f ðuðkÞ; vÞ ¼ 0; v ¼ c2N
ub
ðkÞ

Kb
v þ ub

ðkÞ

. (8)

By solving the above equations self-consistently, the solution
curve of u is obtained as a function of the total cell number N

(Fig. 5). For No ~N
�

1, a single-cluster state of uð1Þ is always stable.
When the cell number increases beyond ~N

�

1, this single-cluster
state becomes unstable, while for much larger N such that N4 ~N

�

2,
the single-cluster state becomes stable again, where the cell state

is uð2Þ (Fig. 5). The thresholds ~N
�

1 and ~N
�

2 are given by ~N
�

1 ¼

v�2ðK
b
v þ ub

ð1Þðv
�
2ÞÞ=ðc2ub

ð1Þðv
�
2ÞÞ ’ 92 and ~N

�

2 ¼ v�1ðK
b
v þ ub

ð2Þðv
�
1ÞÞ=ðc2ub

ð2Þ

ðv�1ÞÞ ’ 2200, respectively.

Next, consider the condition for the existence of a two-cluster
state. Because the stability of a cell state is determined by the
amount of v, the condition for the existence of a two-cluster state
is given by v�1ovov�2. Accordingly, considering v as a function of
Nð1Þ and N, a two-cluster state is possible if Nð1Þ satisfies
v�1ovðNð1Þ;NÞov�2. Note that v satisfies qvðNð1Þ;NÞ=qNð1Þ40. Thus,
the range of the cell number N in which a two-cluster state exists
is given by N�1oNoN�2, where N�1 ¼ v�1ðK

b
v þ ub

ð1Þðv
�
1ÞÞ=ðc2ub

ð1Þðv
�
1ÞÞ ’

24 and N�2 ¼ v�2ðK
b
v þ ub

ð2Þðv
�
2ÞÞ=ðc2ub

ð2Þðv
�
2ÞÞ ’ 9400, respectively.

These threshold sizes satisfy N�1o ~N
�

1 and ~N
�

2oN�2, so that only
two-cluster states are stable for N satisfying ~N

�

1oNo ~N
�

2. In the
region satisfying N�1oNo ~N

�

1 and ~N
�

2oNoN�2, single-cluster and
two-cluster states coexist, which is demonstrated in Fig. 4. In this
case, either a single-cluster or two-cluster state is realized
depending on the initial condition.

Because the number of each cell type in these two-cluster
states has to satisfy the above condition, the range of possible
numbers of two cell types is limited, depending on the total
number of cells. The number of cell type 1 (Nð1Þ) from a variety of
initial conditions is plotted as a function of N in Fig. 6. As N is
increased beyond N�1, Nð1Þ decreases linearly with N, with a rather
small slope, over a wide range of N, up to N�2. Within this range the
value of N1 does not change so much.

To understand this behavior we obtain the dependency of Nð1Þ
on v and N. In a two-cluster state ðNð1Þ;Nð2Þð¼ N � Nð1ÞÞÞ, v is
expressed by the contribution from the cell type 1 (uð1ÞðvÞ) and
type 2 (uð2ÞðvÞ). By setting dui=dt ¼ 0, dv=dt ¼ 0, and solving
Eq. (7) for Nð1Þ, the number of type 1 cells Nð1Þ is written as a
function of N, given by

Nð1ÞðN; vÞ ¼ �AðvÞN þ BðvÞ (9)

with

AðvÞ ¼
ub
ð2ÞðvÞ=ðK

b
v þ ub

ð2ÞðvÞÞ

ub
ð1ÞðvÞ=ðK

b
v þ ub

ð1ÞðvÞÞ � ub
ð2ÞðvÞ=ðK

b
v þ ub

ð2ÞðvÞÞ
, (10)

BðvÞ ¼
v

c2fu
b
ð1ÞðvÞ=ðK

b
v þ ub

ð1ÞðvÞÞ � ub
ð2ÞðvÞ=ðK

b
v þ ub

ð2ÞðvÞÞg
. (11)

Here, we note that uð1Þ and uð2Þ are determined self-consistently as
functions of v, and that AðvÞ40 and BðvÞ40. For the existence of a
two-cluster state, v has to satisfy v�1ovov�2, that is,
Nð1ÞðN; v

�
1ÞoNð1ÞðN; vÞoNð1ÞðN; v

�
2Þ for each N. By inserting Eq. (9)

into this expression, it is shown that Nð1ÞðN; v
�
1Þ and Nð1ÞðN; v

�
2Þ, i.e.,

the lower and upper bounds of Nð1Þ, decay linearly with N, with
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Fig. 7. The slope Aðb; vÞ is plotted as a function of b. Here, Aðb; vÞ for two different

values of v, i.e., v�1 and v�2 are plotted, which agree within the resolution of the plot

in the figure. The parameter values are Kv ¼ 2:0, and c2 ¼ 0:1.

Fig. 8. The fixed point solutions of model III plotted against the total cell number

N. At each N, 100 initial conditions are chosen. The expression levels of ui for a

single-cluster (þ) and two-cluster solutions (�) are plotted as a function of N. The

value for two-cluster solutions is the average over initial conditions. The parameter

values are ~Kv ¼ 0:2, b ¼ 2:0, and cv1 ¼ cv2 ¼ 0:005.

A. Nakajima, K. Kaneko / Journal of Theoretical Biology 253 (2008) 779–787 783
the slope of Aðv�1Þ and Aðv�2Þ. In fact, a linear decrease in Nð1Þ with
the increase in N is clearly discernible in Fig. 6.

Next, we evaluate the value of the slope AðvÞ. Eq. (9) is written
as AðvÞ ¼ fðuð2Þ=KvÞ

b
þ ðuð2Þ=uð1ÞÞ

b
g=f1� ðuð2Þ=uð1ÞÞ

b
g. If uð2Þ5uð1Þ and

uð2Þ5Kv are satisfied, that is the case for the parameters used in
Fig. 6, AðvÞ is much smaller than unity. As a result, the decrease in
Nð1Þ with N is slow, and Nð1Þ is sustained at a same level over a
wide range of N, satisfying Nð1Þðv

�
1ÞoNð1ÞðvÞoNð1Þðv

�
2Þ (Fig. 6).

By increasing the Hill coefficient b, AðvÞ becomes much smaller
than unity which asymptotically go to zero, even if the value of
uð2Þ is the same level as uð1Þ or Kv as is shown in Fig. 7. Note that
the conditions uð2Þouð1Þ and uð2ÞoKv have to be satisfied. The
value of the slope AðvÞ shows an exponential decrease with b.
AðvÞ�1 gives a measure for the range in which two-cluster states
exist. Hence, Nð1Þ is sustained at an almost constant level and the
population size regulation of cell type 1 is realized with a
sufficiently large b.
~BðvÞ ¼
v

cv1fu
b
ð1ÞðvÞ=ð

~K
b
v þ ub

ð1ÞðvÞÞ � ub
ð2ÞðvÞ=ð

~K
b
v þ ub

ð2ÞðvÞÞg þ cv2
~K
b
vvf1=ð ~K

b
v þ ub

ð2ÞðvÞÞ � 1=ð ~K
b
v þ ub

ð1ÞðvÞÞg
. (15)
5. Model III: proportion preservation of two cell types

For precise body plan or for tissue homeostasis, proportion
regulation of the number of each cell type is required. The fraction
of each cell type has to be sustained at a certain range, against the
change in the total number of cells. Here, we modify the kinetics
of v in the previous model II to seek for the possibility of the
proportion regulation. With this modification, we will show that
the population fraction of the two types of cells is kept at a certain
level against the change of N.

Here, the kinetics of v is modified as follows:

dvðtÞ

dt
¼ g3ðu1; . . . ;uN ; vÞ

¼ cv1

XN

i¼1

ub
i ðtÞ

~K
b
v þ ub

i ðtÞ
� cv2vðtÞ

XN

i0¼1

~K
b
v

~K
b
v þ ub

i0
ðtÞ
� vðtÞ. (12)

The modification to model II is just an addition of the second term
in Eq. (12). In other words, each cell in this model also contributes
to the degradation of the signal v.
As in the previous model, the cellular states fall on stationary
states, and the bifurcation of the stationary state from a single-
cluster to two-cluster states are observed with the increase in N

(Fig. 8). Here, we first note that the two-cluster state remains
stable over a wide range of N. Indeed, non-zero Nð1Þ exists so that
v�1ovðNð1Þ;NÞov�2 is satisfied even for sufficiently large N.

Next, we study the population distribution of two cell types. As
shown in Fig. 9, the ratio Nð1Þ=N stays at a constant level against
the change of N. In the same way as in the previous section, the
dependency of Nð1Þ on v and N for a two-cluster state is written as

Nð1ÞðN; vÞ

N
¼ ~AðvÞ þ

~BðvÞ

N
, (13)

~AðvÞ ¼ 1þ
cv1ub

ð1ÞðvÞ � cv2
~K
b
vv

cv2
~K
b
vv� cv1ub

ð2ÞðvÞ

0
@

1
A ~K

b
v þ ub

ð2ÞðvÞ

~K
b
v þ ub

ð1ÞðvÞ

0
@

1
A

2
4

3
5
�1

, (14)
Here, ~BðvÞ40 is always satisfied. Because v satisfies v�1ovov�2 for
the existence of a two-cluster state, Nð1Þ=N is within the range
ð ~Aðv�1Þ þ

~Bðv�1Þ=NÞoNð1ÞðN; vÞ=Noð ~Aðv�2Þ þ ~Bðv�2Þ=NÞ for each N. As a
result, when N is sufficiently large, the possible range of Nð1Þ=N is
given by

~Aðv�1Þo
Nð1Þ
N

o ~Aðv�2Þ. (16)

From the above expression of ~AðvÞ, if the condition
ðv�2=ub

ð1Þðv
�
2ÞÞocv1=ðcv2Kb

vÞoðv
�
1=ub
ð2Þðv

�
1ÞÞ is satisfied, ~AðvÞ is within

0o ~AðvÞo1. This is the case for the parameter values in Fig. 9.
Thus, the cell type ratio of a two-cluster state has to be within the
range given by Eq. (16), so that its ratio is insensitive to the change
of the total number of cells. In addition, by increasing the Hill
coefficient b, the range given by Eq. (16) gets narrower. Thus, the
ratio Nð1Þ=N is more accurately regulated. As b goes to infinity the
range approaches its minimum, where the boundary is given by
~A1ðvÞ ¼ v=ðcv1=cv2 þ vÞ.

Note that ~AðvÞ here is positive and is not necessarily small, in
contrast to AðvÞ in Eq. (9) for model II. Inclusion of the second term
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Fig. 9. The ratio of the number cell type 1 Nð1Þ to the total cell number N is plotted

against N for model III. The initial condition of ui is chosen randomly from the

interval of ui 2 ½0;1�. Solid and broken lines indicate Nð1ÞðN; v
�
1Þ=N ¼ ~Aðv�1Þ þ

~Bðv�1Þ=N

and Nð1ÞðN; v
�
2Þ=N ¼ ~Aðv�2Þ þ

~Bðv�2Þ=N, respectively, where ~Aðv�1Þ ¼ 0:16, ~Bðv�1Þ ¼ 69,
~Aðv�2Þ ¼ 0:36, and ~Bðv�2Þ ¼ 86. The parameter values are ~Kv ¼ 0:2, b ¼ 2:0, and

cv1 ¼ cv2 ¼ 0:005.
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in Eq. (12) allows for this behavior, and the proportion regulation
of cell types is achieved over a wide range of cells.
6. Cell differentiation model with random network

Here, we briefly discuss a general situation of cell differentia-
tion models with intracellular dynamics and intercellular inter-
actions with more genes (chemical species). As an example, we
use the cell differentiation models of Kaneko–Yomo or Furusa-
wa–Kaneko (Kaneko and Yomo, 1997, 1999; Furusawa and Kaneko,
1998, 2001). Here, we aim at demonstrating that the regulative
behavior of cell differentiation in the previous sections generally
works, which at the same time may provide a possible explana-
tion for differentiation phenomena observed in their models. For
the following analysis, we use one of the models (FK model)
introduced in Furusawa and Kaneko (2001), while it is straight-
forwardly extended to other models.

In the FK model each cell has intracellular metabolic dynamics,
and grows by uptake of the nutrients in the medium, and divides
when the abundance of chemicals in the cell goes beyond a
threshold. Accordingly, the total cell number N is also a time-
dependent variable. As the cells share the same medium, they
interact with other cells through uptake from the medium and
exchange of chemicals with it.

The state of cell l is expressed by P different metabolites,
~x
ðlÞ
¼ ðxðlÞ1 ; . . . ; x

ðlÞ
P Þ

T, and the nutrients are ~X ¼ ðX1; . . . ;XQ Þ
T, ðQpPÞ.

The dynamics of the i-th metabolite in cell l is given as follows:

dxðlÞi ðtÞ

dt
¼ Fiðfx

ðlÞ
i ðtÞg;XiðtÞ; fCijkg; fsigÞ, (17)

A change in the concentration of the i-th nutrient in the medium
with the volume V is given by

dXiðtÞ

dt
¼ DenvðSi � XiðtÞÞ �

D

V

XN

m¼1

ðXiðtÞ � xðmÞi ðtÞÞ. (18)

Si is the external source of the nutrient, Denv is the diffusion
constant between the nutrient reservoir and the medium, and D is
that across the cell membrane. Each cell grows through uptake of
nutrients and changing them to other metabolites by Eq. (17). As
the cells share the same medium, they interact with each other
through competition for nutrients. Here, we confine our con-
sideration only to the behavior of nutrients fXig in the stationary
states for fixed N, and obtain the behavior of the stationary states
as a function of N.

Because the stationary state satisfies the condition dxðlÞi =dt ¼ 0
and dXi=dt ¼ 0,

Fiðfx
ðlÞ
i g;Xi; fCijkg; fsigÞ ¼ 0, (19)

DenvðSi � XiÞ �
D

V

XN

m¼1

ðXi � xðmÞi Þ ¼ 0. (20)

From Eq. (19), possible stationary states of each cell, i.e., stationary
solutions of ~x

ðlÞ
, are obtained as a function of ~X. Next, we describe

how ~X varies with N. As in the previous sections, we assume that
the cell population takes an M-cluster state in the stationary state
for a given N. By solving Eq. (20) for Xi, one obtains

Xi ¼

PM
k¼1Rkx̂

ðkÞ
i þ ðVDenv=DÞSi=N

1þ ðVDenv=DÞ1=N
, (21)

where x̂
ðkÞ
i is the cell type k in an M-cluster state, and Rk ¼ Nk=N,

with Nk as the number of type k cells in the population. Xi is
represented as a function of N and fRkg. The stability condition of
the M-cluster state of concern is expressed by N and fRkg, from
Eqs. (19) and (21). Thus, the realization of an M-cluster state
depends on the number of cells or the ratio of cell types.
Regulation of each cell type, as observed in Kaneko and Yomo
(1997, 1999) and Furusawa and Kaneko (1998, 2001), is expected
accordingly.
7. Summary and discussion

Through the analysis of several models, we see, (i) a switch of
cell types via an increase in the total cell number, and (ii)
diversification to two cell types. In addition, when the cells
differentiate to two types, population size preservation of a
specific cell type or proportion preservation of two cell types
appears, depending on the interaction form with other cells. These
behaviors are explained as a bifurcation of cell states via the
intercellular interactions. First, possible cell types uð1Þ and uð2Þ are
generated by a single positive-feedback loop, which works as a
module for bistability. Secondly, intercellular signal v works as a
bifurcation parameter, whose abundances determine the actual
cell types. This bifurcation parameter is a function of the number
of each cell type, depending on the intercellular interactions.
Then, the resulting bifurcation parameter has to be determined
self-consistently. This constraint restricts the number distribution
of the cell types, which gives the mechanism of the regulation of
the cell differentiation.

In model I, because the total cell number simply corresponds to
the bifurcation parameter of cell states, the switch of the cell types
by the total cell number is straightforward. In models II and III,
since intercellular couplings change the bifurcation parameter, the
transition from the single-cluster state of uð1Þ to a two-cluster
state occurs by the increase in the total cell number. In model II,
the cell type 2 contributes only weakly to the increase in v,
compared with the cell type 1. Thus, the amount of v mainly
depends on the number of the cell type 1. In contrast, in model III,
the cell type 2 degrades v. As a result, the amount of v depends on
the number ratio of two cell types.

If a gene expression network shows bistability with a
bifurcation structure as in Fig. 1, cell differentiation is a general
consequence when cell–cell couplings are introduced. An im-
portant point here is that the same intracellular module can be
used in several different biological contexts by modifying only the
intercellular interaction. This is quite useful in an evolutionary
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perspective because new biological functions can be added by
incorporating new interactions while preserving the intracellular
core module.

Here, we discuss several phenomena in developmental biology
that may be described by our models. First, we refer to two
examples, the community effect and the mid-blastula transition,
corresponding to model I. The community effect was discovered in
muscle formation in reaggregated cells of the Xenopus embryo
(Gurdon et al., 1993). Only when the number of cells is sufficiently
large (i.e., more than 100), the cells differentiate to muscle.
Cell–cell interaction, thus, is important for the differentiation,
which is mediated by the diffusive factor eFGF, generated by each
muscle progenitor cell (Standley et al., 2001; Fisher et al., 2002).
The amount of eFGF increases with the total cell number, just like
the signal v in model I. The precursor cells differentiate to non-
muscle cells (correspond to cell type 1) if they are surrounded
only by a small number of cells, while they differentiate to muscle
cells (correspond to cell type 2) if they are surrounded by a large
number of cells. The possible targets of the inhibition activity of
eFGF are the transcription factors GATA-1 and GATA-2, the
regulators of the erythropoiesis (Xu et al., 1999; Isaacs et al.,
2007). In addition, eFGF can induce a transcription factor MyoD,
the master regulator of myogenesis (Standley et al., 2001; Fisher
et al., 2002). Thus, the differentiation decision between erythro-
poiesis and myogenesis by eFGF is dependent on the cell number,
as in our model I.

Another example of model I may be given by mid-blastula
transition. In the cell cycle machinery in Xenopus, the phosphor-
ylation states of the cyclin dependent kinase Cdc2 have a
fundamental role in the entry into mitosis (Hartley et al., 1996;
Nigg, 2001). Cdc2 positively regulates its own active state via an
activation of the phosphatase Cdc25 and via an inhibition of the
kinase Wee1. As opposed to the positive feedback of Cdc2, the
kinase Chk1 inhibits Cdc25 and activates Wee1, and thus
inactivates Cdc2. Hence it is possible that the amount of active
Cdc2 shows bistability depending on the amount of active Chk1
(Novak and Tyson, 1993). Here, DNA accelerates the phosphoryla-
tion of Chk1 and activates Chk1. Thus, the increase in DNA amount
via cleavage in the early embryo can induce a transition from the
active to inactive state of Cdc2. This transition is considered to
trigger the mid-blastula transition in Xenopus (Novak and Tyson,
1993; Shimuta et al., 2002; Peng et al., 2007). This induced change
can fit well with the transition observed in model I, in the sense
that the system parameter (the concentration of the signal v in
our model or the amount of active Chk1 in the mid-blastula
transition) changes as a function of the cell number, which
induces a transition of the cell state. To be precise, the bifurcation
parameter in the mid-blastula transition refers to the DNA content
instead of the cell number. Also, we should mention that mid-
blastula transition involves many other factors such as the change
in cell motility and the initiation of zygotic gene transcriptions
(Yasuda and Schubiger, 1992), which are not included in the
present study. Still, the core part of the transition could be
described by our mechanism.

It is known that mid-blastula transition occurs when the ratio
of DNA to cytoplasm in each individual cell is increased beyond a
threshold (Newport and Kirschner, 1982a, b). In our model I, the
transition threshold is v�2, which is equal to cN�2. The parameter c

corresponds to the inverse of the amount of a cytoplasmic factor
which has an inhibitory effect to Chk1 or has a competitive effect
on DNA. Then, addition (depletion) of cytosol to an egg in the
experiment corresponds to decrease (increase) in the parameter
value of c in model. Thus, also in model I, the threshold for the
transition is determined by the ratio of the DNA amount N to a
cytoplasmic factor c�1. Before the mid-blastula transition, how-
ever, the amount of cytoplasm shows only little change, and thus
the parameter c�1 is almost constant. Therefore, the DNA amount
works as the bifurcation parameter for the mid-blastula transi-
tion.

Secondly, as for model II, consider the maintenance of the
hematopoietic stem cells in mammals. Here, the transcription
factor GATA-2 is known to play an essential role for the
maintenance of hematopoietic stem cell and hematopoietic
progenitors (Cantor and Orkin, 2002; Swiers et al., 2006). GATA-
2 expression is active in hematopoietic stem cell, while during
erythropoiesis, it is switched off, and is replaced by the active
expression of the transcription factor GATA-1. GATA-2 activates
itself and maintains its expression once activated, while GATA-1
suppresses GATA-2 transcription with FOG-1.

Generally, an environment called stem cell niche is needed for
the maintenance of the stem cell population. In a hematopoietic
system, osteoblasts are known to work as such stem cell niche
(Calvi, 2006). The stem cells compete for some chemical factors
derived from this niche, and the cells which cannot take the
factors differentiate to specific hematopoietic lineages. Indeed, the
competition for these factors has been discussed to be essential to
the regulation of the stem cell population size, while competence
for these factors decrease through the differentiation process
(Radtke et al., 2004). In fact, several factors such as Angiopoietin-
1, Wnt, Notch-ligand Jagged1 are identified as mediators for this
niche-stem interaction (Arai et al., 2004; Adams and Scadden,
2006; Rattis et al., 2004). For example, Notch signals inhibit the
erythroid differentiation by suppressing GATA-1 activity through
Hes1 (Ishiko et al., 2005; Kunisato et al., 2003). Hence, it is
possible that GATA-2/GATA-1 transition is regulated by the degree
of the GATA-1 mediated repression of GATA-2 which is modulated
by Notch (Swiers et al., 2006). Once several cells of the stem cell
population differentiate, the differentiated cells cannot respond to
Jagged1 because of the decrease in the expression of Notch
(Radtke et al., 2004). The competition for the niche is then
relaxed, so that a certain fraction of undifferentiated cells
remained as stem cells stably.

To sum up, the strength of GATA-2 repression increases with
the increase in the number of hematopoietic stem cells. Through
this change, the erythroid differentiation is induced and the
number of stem cells is maintained at a certain level. Following
this discussion, we propose that this process is described by
assigning GATA-2 and Notch-ligand Jagged1 as the chemical ui

and v in our model II, respectively. If this assignment is correct,
GATA-2 expression is expected to show bistability for a certain
range of Jagged1 stimulation. By examining this theoretical
prediction experimentally, it will be possible to confirm the
validity of the application of our model to the hematopoietic stem
cell system. Here, we should mention that, the above example for
Notch often assumes the spatial heterogeneity implicitly. Even
though the spatial heterogeneity was not included in our model
here, extension to include it is rather straightforward, which does
not alter the conclusion here. Recently, it is shown that Wnt uses
the same signaling pathway as Notch for the maintenance of
hematopoietic stem cells and that Wnt signal upregulates
Hes1 (Duncan et al., 2005; Espinosa et al., 2003). Hence it is
possible that GATA-2/GATA-1 transition is also regulated via Wnt
signal.

Thirdly, our model III may be applied to the proportion
regulation of prestalk-cell types and prespore-cell types in the
Dictyostelium slug. Differentiation to prespore cells is induced by
cAMP, and the cell state is maintained by a positive-feedback loop
of prespore cell specific adenylyl cyclase G activity (Hopper et al.,
1993; Williams, 2006; Alvarez-Curto et al., 2007). On the other
hand, differentiation-inducing factor-1 (DIF-1) is necessary for the
differentiation from a prespore-cell to a prestalk-cell (at least for
the differentiation to pstO, which is a subtype of the prestalk-cell)
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(Williams, 2006; Kay and Thompson, 2001). As an intercellular
interaction, this DIF-1 is produced by prespore-cells, and are
degraded by prestalk-cells. This cell-type specific induction/
destruction of DIF-1 is responsible for the proportion preservation
as studied in model III.

Of course, the present multicellular organisms also adopt other
mechanisms of differentiation such as morphogen gradient
(Freeman and Gurdon, 2002; Tabata and Takei, 2004), besides
the intracellular–intercellular dynamical mechanism discussed
here. How the both mechanisms are used cooperatively will be
important for understanding the development of present multi-
cellular organisms. On the other hand, since the mechanism
discussed here requires neither external morphogen gradient nor
detailed gene expression network with finely tuned parameters, it
is natural to expect that it worked at an evolutionarily ancient
stage in multicellular development, whereas sophisticated me-
chanisms as in the present organisms are evolved later (Forgacs
and Newman, 2005). The intracellular–intercellular dynamical
mechanism here requires just a few chemicals, and is easily
accessible. More sophisticated mechanisms of differentiation,
using prepattern of morphogen gradient and/or using well
designed genetic network, could be evolved later to achieve more
complex architecture of body plan with robust and fast develop-
mental process.

Based on our model, we can consider a possible scenario for
evolution of cell differentiation in multicellular organisms. Since
bistability can provide a memory in a cell system, it would also be
beneficial to unicellular organisms as a phenotypic switch to
respond environmental stimulus. Hence, unicellular systems
might attain bistability before evolution to multicellularity. When
these cells emit some chemical factors to which they respond and
communicate, interacting cells begin to show some kind of
differentiation as shown in the present paper. Indeed bacteria in
a biofilm take different cell states from a free living cell, which
may represent ancient type of cell differentiation (Davies et al.,
1998). It is interesting to seek the origin of multicellularity along
this line (Furusawa and Kaneko, 2002) both theoretically and
experimentally.

Although we confine our analysis to a system with only fixed
point solutions, oscillatory and other dynamical behaviors are
often observed in biological systems. The analysis we introduced
here is also applicable to such cases, as long as there are
bifurcations of attractors with the change in relevant chemical
concentrations which are influenced by cell–cell interactions. On
the other hand, oscillatory behaviors may bring about richer
bifurcations, as well as clustering of cells with regards to the
oscillation phase or amplitude, as has been discussed in models
with intracellular oscillatory dynamics and cell–cell interactions
(Kaneko and Yomo, 1994, 1997; Koseska et al., 2007; Ullner et al.,
2007). The study of possible forms on differentiations and
regulations in such dynamical systems will be important in
future. In multicellular systems, cells behave in coordination by
taking advantage of communication with other cells. Such
collective behavior is a result of interacting systems with
intracellular gene expression dynamics. The present self-consis-
tent determination of bifurcation parameters through cell–cell
interactions will be essential to understand organization in
multicellularity.
8. Method

Computer programs for the simulation of each model are
written in C language, and are compiled with gcc version 4.1.2.
Standard 4th order Runge–Kutta method is used for numerical
integration.
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Hopper, N.A., Harwood, A.J., Bouzid, S., Véron, M., Williams, J.G., 1993. Activation of
the prespore and spore cell pathway of Dictyostelium differentiation by cAMP-
dependent protein kinase and evidence for its upstream regulation by
ammonia. EMBO J. 12, 2459–2466.

Imai, K.S., Levine, M., Satoh, N., Satou, Y., 2006. Regulatory blueprint for a chordate
embryo. Science 312, 1183–1187.

Isaacs, H.V., Deconinck, A.E., EPownall, M., 2007. FGF4 regulates blood and muscle
specification in Xenopus laevis. Biol. Cell 99, 165–173.

Ishiko, E., Matsumura, I., Ezoe, S., Gale, K., Ishiko, J., Satoh, Y., Tanaka, H.,
Shibayama, H., Mizuki, M., Era, T., Enver, T., Kanakura, Y., 2005. Notch signals
inhibit the development of erythroid/megakaryocytic cells by suppressing
GATA-1 activity through the induction of HES1. J. Biol. Chem. 280, 4929–4939.

Kaneko, K., Yomo, T., 1994. Cell division differentiation and dynamic clustering.
Physica D 75, 89–102.

Kaneko, K., Yomo, T., 1997. Isologous diversification: a theory of cell differentiation.
Bull. Math. Biol. 59, 139–196.

Kaneko, K., Yomo, T., 1999. Isologous diversification for robust development of cell
society. J. Theor. Biol. 199, 243–256.

Kay, R.R., Thompson, C.R.L., 2001. Cross-induction of cell types in Dictyostelium:
evidence that DIF-1 is made by prespore cells. Development 128, 4959–4966.

Koseska, A., Volkov, E., Zaikin, A., Kurths, J., 2007. Inherent multistability in arrays
of autoinducer coupled genetic oscillators. Phys. Rev. E 75, 031916.

Kunisato, A., Chiba, S., Nakagami-Yamaguchi, E., Kumano, K., Saito, T., Masuda, S.,
Yamaguchi, T., Osawa, M., Kageyama, R., Nakauchi, H., Nishikawa, M., Hirai, H.,



ARTICLE IN PRESS

A. Nakajima, K. Kaneko / Journal of Theoretical Biology 253 (2008) 779–787 787
2003. HES-1 preserves puried hematopoietic stem cells ex vivo and
accumulates side population cells in vivo. Blood 101, 1777–1783.

Loose, M., Patient, R., 2004. A genetic regulatory network for Xenopus mesendoderm
formation. Dev. Biol. 271, 467–478.

Maamar, H., Raj, A., Dubnau, D., 2007. Noise in gene expression determines cell fate
in Bacillus subtilis. Science 317, 526–529.

McMillen, D., Kopell, N., Hasty, J., Collins, J.J., 2002. Synchronizing genetic
relaxation oscillators by intercell signaling. Proc. Natl. Acad. Sci. USA 99,
679–684.

Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U., 2002.
Network motifs: simple building blocks of complex networks. Science 298,
824–827.

Milo, R., Itzkovitz, S., Kashtan, N., Levitt, R., Shen-Orr, S., Ayzenshtat, I., Sheffer, M.,
Alon, U., 2004. Superfamilies of evolved and designed networks. Science 303,
1538–1542.

Mizuguchi, T., Sano, M., 1995. Proportion regulation of biological cells in globally
coupled nonlinear systems. Phys. Rev. Lett. 75, 966–969.

Newport, J., Kirschner, M., 1982a. A major developmental transition in early
Xenopus embryos: I. Characterization and timing of cellular changes at the
midblastula stage. Cell 30, 675–686.

Newport, J., Kirschner, M., 1982b. A major developmental transition in
early Xenopus embryos: II. Control of the onset of transcription. Cell 30,
687–696.

Nigg, E.A., 2001. Mitotic kinases as regulators of cell division and its checkpoints.
Nat. Rev. Mol. Cell Biol. 2, 21–32.

Novak, B., Tyson, J.J., 1993. Numerical analysis of a comprehensive model of m-
phase control in Xenopus oocyte extracts and intact embryos. J. Cell Sci. 106,
1153–1168.

Oviedo, N.J., Newmark, P.A., Alvarado, A.S., 2003. Allometric scaling and proportion
regulation in the freshwater planarian Schmidtea mediterranea. Dev. Dyn. 226,
326–333.

Peng, A., Lewellyn, A.L., Maller, J.L., 2007. Undamaged DNA transmits and enhances
DNA damage checkpoint signals in early embryos. Mol. Cell Biol. 27,
6852–6862.

Radtke, F., Wilson, A., Mancini, S.J.C., MacDonald, R., 2004. Notch regulation of
lymphocyte development and function. Nat. Immunol. 5, 247–253.
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