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Abstract

We demonstrate diversification rather than optimization for highly interacting organisms in a well-mixed biological system by means

of a simple model of coevolution. We find the cause to be the complex network of interactions formed, allowing species that are less well

adapted to an environment to succeed, instead of the ‘best’ species. This diversification can be considered as the construction of many

coevolutionary niches by the network of interactions between species. The model predictions are discussed in relation to experimental

work on dense communities of the bacteria Escherichia coli, which may coexist with their own mutants under certain conditions. We find

that diversification only occurs above a certain threshold interaction strength, below which competitive exclusion occurs.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Understanding how diversity arises through evolution
and is sustained in an ecosystem is an important issue. One
of the key questions therein is whether interactions between
organisms enhance or suppress diversity. If there is no
explicit symbiotic interaction, it would be expected that the
competition for a given resource leads to exclusion of many
types. This results in monodominance, i.e. the survival of
the fittest, as determined by Gause’s competitive exclusion
principle (Gause, 1934). In contrast, in the presence of
strong interactions, diversification has been shown to occur
both in numerous models and in experiment (Helling et al.,
1987; Czárán et al., 2002). We attempt to understand the
relationship between interaction and diversity at a general
level, and will relate our work to experimental findings on
evolution in Escherichia coli (Kashiwagi et al., 2001).

We show that the diversification can indeed be facilitated
by the interaction, using a range of different fitness
concepts. We do this by adopting a slightly modified
version of the Tangled Nature (TaNa) model (Christensen
e front matter r 2006 Elsevier Ltd. All rights reserved.
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et al., 2002; di Collobiano et al., 2003; Hall et al., 2002). In
addition to the standard inter-specific interaction in the
TaNa model, we allow types to differ in ‘intrinsic fitness’—
the fitness of a type in the environment, in the absence of
other types. A self-supporting, dominant genotype may
coexist with, or be displaced by, a number of other
genotypes that are less efficient competitors for the
resource individually, provided that strong enough inter-
actions are permitted. Diversity is maintained via the
complex network of interactions, and we demonstrate a
cutoff interaction strength below which monodominance
persists. We split the ‘intrinsic fitness’ of a type into density

dependent (i.e. the interaction with own type) and density

independent parts, and study them separately. The condi-
tions on the interaction strength are, respectively: (1) the
net positive interaction with other types is greater than the
density-dependent fitness, (2) the net positive interaction
with other types is greater than the density-independent

fitness difference between types.
The idea that diverse states can be supported by

interaction is not new. Gause’s competitive exclusion
principle states, in the general case (Dieckmann et al.,
2003), that ‘the dimension of the environmental interaction
variable is an upper bound for the number of species
that can generically exist at steady state’. Although
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1When discussing the model, we refer to points in genotype space as a

type. It is a matter of interpretation whether we consider genotype space to

be ‘coarse-grained’ (resulting in each genotype being a different species—

valid when k and � are ‘large’ so that genotype differences affect

reproduction probability greatly; see Eq. (2) for definitions), or whether

we consider genotype space to be a small sample of a much larger space,

meaning genotypes are types of a base species (which would be valid when

k and � are small, and so all genotypes have similar reproduction

probabilities). As we operate in neither extreme and reproduction is

asexual, the distinction between species and type is difficult.
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environmental interactions cannot in general be uniquely
identified, and so this dimension is not known, it is still
possible to support high diversities robustly (Tokita and
Yasutomi, 2003; Meszéna et al., 2006) (i.e. still supported
with a small change in the environmental parameters). This
diversity remains finite even in the case of an infinite
environment interaction variable (Gyllenberg, 2005), as
species must be ‘different enough’ (MacArthur and Levins,
1967) to coexist stably. In addition, a greater number of
species than environmental factors may be supported by
oscillations or chaos, e.g. Vandermeer et al. (2002),
Huisman and Weissing (1999), and Kaneko and Ikegami
(1992). The appearance of diversity in a system with strong
interaction is therefore not a surprise by itself, as each
interaction contributes to the effective dimensionality. Still,
it is important to understand how diversity is mediated by
the interaction.

We follow May (1973) in using generalized, random
interactions. In his book he discusses the ecological
implications of such models in detail; we will be looking
at the effects of evolution on that stability. Such
simple models may most accurately describe molecular
replicators (e.g. Eigen et al., 1988), and simple bacterial
systems. However, because only the net interaction and
reproduction probability is considered, there are other
biological cases which can be approximated by this
approach.

Our model is individual-based without any individual
aging, considering a generalized system of organisms so
that interactions are random. Genotype space is pre-
defined, so that the interactions between all possible
organisms are fixed from the start, and mutations are
local. In the spirit of other null models, these interactions
are not correlated in this version of the model. We consider
one reproduction attempt as the basic unit of time, and we
allow mutation to occur during the population dynamics.
The total population is a result of the dynamics. We will
consider an intrinsic fitness landscape in the presence of
strong interactions. For general background reading on
individual-based modelling and for discussion on many
basic features the reader is referred to Drossel (2001), to
Droz and Pȩkalski (2004) for a population dynamics
perspective, and Pigliucci and Schlichting (1997) for a
genetics point of view.

The features described above mean that the existence of
diversity can be seen to arise in the following way: from an
initially monodominant state we find that evolution forces
a search of genotype space for the most stable configura-
tions. Often these states are diverse, provided the intra-
specific competition exceeds inter-specific competition (or,
equivalently, the beneficial inter-specific interaction is
greater than the intrinsic fitness). Such diverse states do
not exist for low interaction strength, and all states are
diverse in the limit of very high interaction strength.
Stability is determined by the properties of a given
configuration in genotype space, and states are, on average,
more stable as time progresses. In addition, we find a sharp
threshold in interaction strength below which diversity
does not occur.

2. Definition of the model

We now define the TaNa model. Individuals are
represented as a vector Sa ¼ ðSa

1;S
a
2; . . . ;S

a
LÞ in genotype

space S. The Sa
i take the values �1, and we use L ¼ 20

throughout, giving 220 ¼ 1 048 576 possible types. Each S

string represents an entire type with unique, uncorrelated
interactions. The small value of L is necessary for
computational reasons as all types exist in potentia and
have a designated interaction with all other types.1 There
are therefore ð220Þ2 interactions to be considered in this
model. We consider random interactions for simplicity,
which would be correlated in reality. Introducing signifi-
cant correlation whilst maintaining randomness in this
relatively small hypercubic genotype space has proved
difficult, and so we consider uncorrelated interactions here.
Note that controlled correlations have been achieved in
another version of the model (Laird and Jensen, 2006).
We refer to individuals by Greek letters a; b; . . . ;¼

1; 2; . . . ;NðtÞ. Points in genotype space are referred to as
Sa;Sb; . . . , and any number of individuals may belong to a
point in genotype space Sa.
In the original TaNa model, individuals a are chosen

randomly and allowed to reproduce with probability poff :

poff ðS
a; tÞ ¼

exp½HðSa; tÞ�

1þ exp½HðSa; tÞ�
2 ð0; 1Þ. (1)

They are then killed with probability pkill , which is a
constant parameter. The difference between the original
model and the one used here is the definition of the weight
function HðSa; tÞ. The original version used was

H0ðS
a; tÞ ¼

k

NðtÞ

X

S2S

JðSa;SÞnðS; tÞ � mNðtÞ. (2)

Here k (� 1=c from previous papers) determines the
maximum strength of interactions, NðtÞ is the total number
of individuals at time t, and nðS; tÞ is the number of
individuals with genotype S at that time. The interaction

matrix JðSa;SÞ represents all possible couplings between all
genotypes, with Jii ¼ 0 always and Jij ¼ Jji ¼ 0 with
probability Y. If the interaction is not zero, then Jij and
Jji are both generated randomly in the range ð�1; 1Þ, so
that mutualism, predator–prey, and competition are all
possible, but amensalism and commensalism only occur in
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the case when one interaction is randomly generated to be
very small. Since the functional form of JðSa;SbÞ does not
affect the dynamics, provided that it is non-symmetric with
mean 0, we choose a form of the interaction matrix that
speeds computation (Christensen et al., 2002). In the
analysis sections, we will use shorthand versions: Jab as the
interaction of an individual from type b on an individual
from type a, and na as the number of individuals with
genotype a.

In the extended model we consider here, we also allow an
intrinsic fitness term, representing the different ability of
types to survive in the environment. There are at least two
possible ways of doing this—either as a density-dependent

fitness term, or a density-independent fitness. With these
fitness concepts, correlations can be introduced easily so we
will look at both the case of uncorrelated and correlated
landscapes. The correlation we choose is a type of Fujiyama

landscape2 (Drossel, 2001) defined as follows. One type a
has a fitness of 1, and with each mutational step away from
this type we subtract D (¼ 0:1 in simulations), down to a
minimum of 0. An uncorrelated landscape is generated
with each type having a fitness drawn uniformly from ð0; 1Þ.
See Section 3.2 for an explanation and Fig. 2 for results.
The modified weight functions take the following forms:
1.
2

3

val
Density-dependent fitness (or equivalently, the interac-
tion with an individual’s own type), defined by

HdðS
a; tÞ ¼ H0ðS

a; tÞ þ
�

NðtÞ
nðSa; tÞEðSaÞ. (3)

Here, � is the magnitude of the density-dependent part
of the ‘intrinsic fitness strength’ and �EðSaÞ is the
intrinsic fitness3 of individual a. EðSaÞ is determined
according to the case studied:
1(a) Uncorrelated, density-dependent intrinsic fitness

landscape.
1(b) Correlated, density-dependent intrinsic fitness

using a ‘Fujiyama’ landscape.
Name

We do

ues of
2.
 Density-independent fitness, defined by

HiðS
a; tÞ ¼ H0ðS

a; tÞ þ �I EðSaÞ. (4)

Here, �I is the magnitude of the density-independent
part of the intrinsic fitness strength. Ei is again
determined by the case studied:
2(a) Uncorrelated, density-dependent intrinsic fitness

landscape.
2(b) Correlated, density-dependent intrinsic fitness

using a ‘Fujiyama’ landscape.
All individuals of the same type will have the same
weight function and therefore the same offspring prob-
ability at a given time; i.e. if individual a was from type a

then HðSaÞ ¼ HðSaÞ. Reproduction occurs asexually, and
d because it has a single, large peak.

not merge it with the J term in Eq. (2) in order to allow different

the strengths.
on a successful reproduction attempt two daughter
organisms replace the parent, with each Sa

i mutated
(flipped from 1 to �1, or from �1 to 1) with probability
pmut. Thus mutations are equivalent to moving to an
adjacent corner of the L-dimensional hypercube in
genotype space, as discussed in Christensen et al. (2002).
A time step consists of choosing an individual4 a

randomly, and processing according to:
�

4

and

rep

fluc
a is allowed to reproduce with probability poff .

�
 a is killed with probability pkill (if a reproduced, it is one
of the two daughter organisms that is killed).
We define a generation as the amount of time for all
individuals to have been killed, on average, once. For a
stable population size, this is also the time for all
individuals to have reproduced once, on average. The
diversity is defined as the number of genotypes with
occupancy greater than 20 to eliminate unsuccessful
mutants from our count, and is called the wild-type
diversity. This definition comes from the observed popula-
tion structure, as discussed in the next section. The total
number of genotype points occupied is approximately L

times the wild-type diversity.
Unless otherwise stated, the parameters used will be:

Y ¼ 0:2, m ¼ 0:01, pmut ¼ 0:015, � ¼ 2:0, and pkill ¼ 0:1; see
Christensen et al. (2002) for more details. These parameters
are selected to allow the population to remain moderately
high (to avoid accidental extinction), and to be well away
from the mutation threshold present in this system
(di Collobiano et al., 2003) (cf. (Eigen et al., 1988): as the
mutation probability is increased, the time spent for the
system to find a quasi-stable state—described in the next
chapter—increases until it becomes infinity, and the quasi-
stable structure described below is lost). The results are
robust to moderate parameter changes; that is, the same
qualitative behaviour can be found for all small parameter
changes by making an appropriate small change in the
other parameters. In particular, the cutoff for diversity
persists over a region of other parameters, although the
value of the cutoff might change slightly.
For case 1(a) and case 2(a), the initial conditions are

determined by allowing the system to find a monodomi-
nant state by running the system for 5000 generations with
all interaction disabled ðk ¼ 0Þ (starting from a random set
of individuals), thus one of the best competitors in the
initial set is selected. Then the interaction was enabled by
setting k to the desired value. For case 1(b) and 2(b) of the
Fujiyama landscape, we simply start the whole population
on the fitness peak.
In previous versions a different individual was chosen for reproduction

killing actions. Here, we select only one individual and process it for

roduction and killing for code efficiency reasons—above the level of

tuations the two methods are equivalent.
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5Named after Maynard Smith’s ‘evolutionarily stable strategies’. ‘Quasi’

refers to the (in)stability of the strategy to collective stochastic

fluctuations. See Lawson and Jensen (2006) for a more detailed discussion.
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2.1. The reproduction equation

Eq. (2) consists of two terms: the first is an average

interaction term, and the second a resource competition

term with all other individuals. Thus, k controls the
strength of the average interaction and therefore has
relation to a density (as closer individuals will interact
more strongly). This makes our model valid for systems in
which the population density is roughly constant in time,
and individuals compete for a single, fixed quantity of
resource (determined by m). Clearly, this is true of all
systems in steady state and will be approximately true of
many other systems.

The introduction of Eq. (1) is in order to turn the infinite
ranged H into a probability. One could instead treat H as a
stochastic growth rate, and use e.g. the Gillespie algorithm
(Gillespie, 1976; Bernstein, 2005); this defines the time step
as the expected waiting time to the next event instead of
using a fixed time step as we do. We do not choose to do it
this way for two reasons. Firstly, there is no reason to
assume that the rate of increase of a species (given by
poff � pkill) will be linear in the quantities defined in H. We
have exchanged linearity for the logical simplicity of having
an explicit poff . Secondly, our method is computationally
easier. The form of Eq. (1) was chosen for its simplicity,
and the particular form is not essential to the model.
Almost any monotonic continuous mapping of H to poff

will give equivalent qualitative results (this is tested for a
few functions, although no proof can be given due to the
complexity of the results).

Our reproductive form, then, assumes that interactions
sum additively only when close to equilibrium, and that the
reproductive advantage gained decreases for additional
interactions giving a nonlinear form. This can be con-
sidered as a rule of diminishing returns—if there is a net
benefit for an individual, each additional benefit results in a
smaller effect (in poff ). The ordering of offspring prob-
abilities poff ðS

a; tÞ is unchanged by this map; only the
differences between offspring probabilities will change. The
effect is therefore limited to fluctuations as all features of
fHðSa; tÞga will exist in fpoff ðS

a; tÞga as well. The form of
this equation does not appear in many mean-field
equations—see Section 3.2 and Rikvold (2006).

Using a constant killing probability pkill is a simplifying
approximation, as selection certainly will act by differential
killing as well as differential reproductive success. How-
ever, the dynamics in our model are qualitatively the same
without this restriction (provided pkill is not close to 1).
This symmetry between selection (i.e. killing probability)
and reproductive ability exists in our model because we do
not include any individual aging. More complex relations
are required in models which permit reproduction only for
individuals which have reached a certain age (Chowdhury
et al., 2003).

To understand the meaning of the additional density-
dependent fitness term in case 1 (Eq. (3)), we consider the
weight function of a system with only one type a, HðSaÞ ¼
�EðSaÞ � mnðSaÞ since N ¼ nðSaÞ. If we assume that the
system is in a steady state (poff ¼ pkill), then HðSaÞ ¼

H� ¼ � lnð1=pkill � 1Þ, which is constant. Thus, we find
nðSaÞ ¼ ð�EðSaÞ þ jH�jÞ=m, meaning that EðSaÞ determines
how numerous type Sa would be if alone in the system. The
same result is obtained for case 2—the differences are
apparent only when more than one species is introduced;
see Section 3.2.
3. Results

3.1. Observed behaviour

As in the basic TaNa model, the system experiences a
number of ‘quasi-evolutionarily stable strategies’ (called q-
ESSs5 for brevity), during which a single genotype or set of
genotypes is present with constant average occupancy.
These q-ESS may end abruptly, leading to a transition
phase before a new q-ESS is found. For the parameter
ranges we study, the transition phase usually lasts for tens
of generations and so is instantaneous on an evolutionary
time-scale. This behaviour is shown in Fig. 1, with some
major events labelled. The qualitative behaviour described
here is observed regardless of the form of the intrinsic
fitness.
The q-ESS phases have several species (from one for

small k up to about six for large k) with large, stable
populations, and we call these species wild types. The wild
types are generally separated in genotype space and are
surrounded by mutant types with much lower population.
These mutants do not have poff large enough to counteract
the death rate, and as such are dependent on the mutations
from the wild-type species for their existence; therefore
their species lifetimes are short. The species abundance
distribution is log-normal on average (Christensen et al.,
2002) if only wild types are considered. Transitions
between q-ESS states last for only tens of generations at
these parameter values; however, it is still possible for a
species to mutate over large distances in genotype space in
this time. When a new type is successful, it increases in
number at the expense of the types it interacts with; by this
time another type which benefits from the first may be
found, and so there is an effective ‘selection gradient’
against the dominant species until a q-ESS is reached
(Christensen et al., 2002).
Fig. 2 shows that fitness of case 2(a) (uncorrelated,

density-independent landscape) yields a non-unity diversity
at k ¼ 0, due to the high level of neutrality in the system.
This is because species with similar (high) fitness are
plentiful (as �I is uniform distributed) and the transition
time between them is high, so average diversity measures
pick up diverse states often. This would not be the case if
density-independent fitness peaks were very sparse and of
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monodominant state. Then at (d) the system returns to a new diverse state.
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different heights, in which case Gause’s Competitive
Exclusion Principle would act.
In contrast, the appearance of diversity in cases 1(a),

1(b), and 2(b) follow another pattern. In these cases, at low
k there is monodominance, and at high k there is high
diversity. Also in all cases, the cross-over region behaves in
the same way, with a rapid increase from zero at some
characteristic kmin, and then a steady increase towards a
saturation diversity. Diverse states occur for lower k values
for case 2(b) than case 1, and the existence and
approximate value of a cross-over in these cases can be
shown by a mean-field argument (see Section 3.2).
For case (b), we consider the proportion of time that the

most efficient type is observed in the system for varying k

values in Fig. 3. We see that the most efficient type is
always in existence for small k, and there is a threshold at
around k ¼ 0:8 (case 2(b)) or k ¼ 1:8 (case 1(b)) above
which the most efficient type is no longer always present—
it may be entirely replaced or drop in numbers to the
point at which it is not observed during every generation.
This means that in case 1 the most efficient type can be
replaced, but not coexist, for a range of k; for case 2, the
most efficient type can coexist without possibility of
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replacement for a range of k. These results are understood
in Section 3.2.

We now analyse case 1(a) (uncorrelated density-depen-
dent fitness) in more detail. Fig. 4(a) shows the selective
drop of Ei with increasing k. The appearance of diversity is
clear when considering the ratio of total interactions to
intrinsic fitness, R ¼ hk

P
Jijnj=�Einii shown in Fig. 4(b).

At k � 5:55, R ¼ 1, so the average interaction is greater
than the average intrinsic fitness for k45:55. For k\10,
R�k as interaction becomes the dominant driving force
and selection acts to maintain positive interactions. For
large k, each term in

P
Jijnj is already maximized by

selection, and is therefore independent of k (again ignoring
fluctuations).

For kp5:55, interactions do not contribute to fitness of
the wild type. For k 2 ð5:55; 10Þ, the relative importance of
the two selection forces changes. Below k ¼ 5:55 diverse
q-ESS states are not found6 as interaction is always weaker
than intrinsic fitness leading to monodominance. Manual
examination of the runs confirms that the diverse states
found for ko5:55 never have temporal stability, and that
diverse, temporally stable states exist for k ¼ 5:55 which
correspond to q-ESS.

The number of q-ESS switches is higher in high-k
systems than in low k. At low interaction strengths,
monodominant q-ESSs tend to remain for the entire run,
with a small possibility of a switch to another mono-
dominant q-ESS with higher intrinsic fitness. As interaction
strength increases, the number of q-ESS switches also
increases leading to a greater rate of exploration in
genotype space. It was shown in Christensen et al. (2002)
that the length of q-ESS epochs increases logarithmically
with time, as does the average population size. It would
appear that the additional stability of large populations to
fluctuations plays a role in determining the stability of the
q-ESS. In addition, the properties of the genotype space
6The apparent non-unity diversity below the threshold value appears to

be due to occasional mutant fluctuations above the wild-type threshold

chosen.
near extant types plays a large role in determining the
stability of a state.

3.2. Mean-field predictions

For cases 1 and 2(b), we can show the existence of a
cross-over from monodominance to diverse states in k by a
simple argument from the definition of H, although the
nature of the cross-over is not determined by this
argument. This mean-field result ignores any fluctuations
in the system; however, the result provides a surprising
match with observation. We can also simply show that
random, density-independent fitness will not allow mono-
dominance.
We consider the weight function H for the case where

species a dominates, and a new species b is added to the
system (nabnb), and require na þ nb ¼ N � na. The re-
quirement for invasion is that Hb4Ha so that pb

off 4pa
off .

However, when nbbna a diverse state must exist if
Ha4Hb, and competitive exclusion will occur if HaoHb

in this case.

3.2.1. Case 1: density-dependent fitness

For type a, Eq. (3) becomes

Ha ¼
knbJab

ðna þ nbÞ
þ �I Ea

na

ðna þ nbÞ
� mðna þ nbÞ ð5Þ

� �I Ea � mna. ð6Þ

Similarly for type b,

Hb ¼
knaJba

ðna þ nbÞ
þ �I Eb

nb

ðna þ nbÞ
� mðna þ nbÞ ð7Þ

� kJba � mna. ð8Þ

From above, we require Hb4Ha for invasion; therefore
k4�Ea=Jba. For a diverse state, the converse must be true:
k4�Eb=Jab.
For case 1(a), Ea has been selected to be high initially, as

a was successful on its own; similarly Jba will be selected to
be high to ensure b can proliferate. Thus, we can take Ea ¼

1 and Jba � 1 for both cases 1(a) and (b). Thus, there is a
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positive threshold at around kmin � � ¼ 2. It should be a
little less for case 1(a) as there is a small variation in Ea

below unity.
The inverse relation provides a different value, as neither

Eb nor Jab have been selected—we take mean values to get
an estimate. Eb is uniform distributed on ð0; 1Þ and thus has
mean 0:5, and we take the mean7 Jab � 0:2. We therefore
find that the minimum value of k for a diverse state to exist
is around kmin ¼ 2:5� ¼ 5. For k 2 ð2; 5Þ invasion is
possible, coexistence is highly unlikely. Fig. 3 shows that
replacement of the wild type occurs at just below k ¼ 2 and
Fig. 2 shows that diverse states exist for k45:55.

In this case, all interactions should be mutualistic; the
ratio na=nb ¼ ðkJab � �EbÞ=ðkJba � �EaÞ should be positive
and of order 1 for stability; this requires both Jab and Jba

are positive.

3.2.2. Case 2: density-independent fitness

For type a, Eq. (4) becomes

Ha ¼
knbJab

ðna þ nbÞ
þ �I Ea � mðna þ nbÞ ð9Þ

� �I Ea � mna. ð10Þ

Similarly for type b,

Hb ¼
knaJba

ðna þ nbÞ
þ �I Eb � mðna þ nbÞ ð11Þ

� kJba � mna þ �I Eb. ð12Þ

Using Hb4Ha we find k4ð�I=JbaÞðEa � EbÞ for inva-
sion. For diversity the converse must also be true:
k4ð�I=JabÞðEb � EaÞ. For ka0 and case 2(a) of a random
fitness landscape, the difference Eb � Ea can be arbitrarily
small and so can always be satisfied for some Jab and Jba.
Therefore, diverse states always exist (for large enough
genotype spaces). However, diverse states are not always
realized depending on whether such a configuration exists
in the local genotype space.

For case 2(b) with a Fujiyama fitness landscape,
Ea � Eb ¼ D ¼ 0:1. Therefore, invasion will occur for
k4�ID=Jba � 0:2 (as Jba can be selected to be high). The
converse equation requires k4� �ID=Jba which can al-
ways be satisfied; therefore, diversification can always
follow invasion. Only for both k\1 and negative Jba will
exclusion of the fittest type occur. Fig. 3 shows that
replacement of the wild type occurs at just below k ¼ 1 and
Fig. 2 shows that diverse states exist for k40:5.

Note that in case 2, diverse states may be parasitic/
predatory or mutualistic, depending on the difference in
fitness between types. Simple rearrangement of the above
weight function yields

na=nb ¼ ðJab þ ð�=kÞðEa � EbÞÞ=ðJba � ð�=kÞðEa � EbÞÞ.

This ratio must be positive for a diverse state to exist, and
of order 1 for stability. Unless ð�=kÞðEa � EjÞ is small, this
7J has a mean of zero, but here we are taking the mean of the positive

part of the distribution, which has non-zero mean.
implies Jba and Jab are of opposite signs. Thus, both
mutualism and predator–prey interactions are possible.
This very simplistic analysis shows that typical species

should not be able to coexist below the value of kmin. It is
surprising that the system explores many exceptional
species and even these cannot remain in stable coexistence
below the mean-field threshold value (approximately, at
least). A diverse state at low k is not stable to invasion from
mutations; i.e. neighbouring types in genotype space that
satisfy the above condition that Jba and Jab both large are
not stable to fluctuations. Therefore, these states are not
realized for long periods of time (when compared to q-
ESS), and appear infrequently in time average measures.
On a mean-field level, a cutoff at some value is inevitable as
coexistence is impossible for kp� (case 1) or kp�D (case
2(b)). The analysis required to show the true nature of the
cross-over is too complex for inclusion here and will be
studied in future work.

4. Discussion

In our model, we have found that there will be a cross-
over from monodominance to a diverse state as the
interaction increases. There appears to be a critical value
of interaction strength beyond which the monodominance
is broken down. For rugged fitness landscapes, it is vital
that the fitness of individuals is (to some degree) density

dependent for a cutoff in diversity to exist. The cutoff
appears in the density-dependent part of fitness for very
rough fitness landscapes, and also appears in the density-
independent part for highly peaked fitness landscapes. The
relative importance of each will depend on the specifics of
the system studied. In future work, it will be important to
understand the nature of the cross-over theoretically,
beyond the naive estimate of the mean-field type calcula-
tion given in Section 3.2.
Using density-dependent intrinsic fitness predicts that

replacement of a ‘fitter’ type can occur at lower interaction
strength than coexistence. Using density-independent
intrinsic fitness predicts that coexistence should occur at
lower interaction strength than replacement of a ‘fitter’
type. This is certainly a feature of working in a fixed
genotype space; it will be important to establish whether
this is still true in models with correlated interaction
matrices.
Each evolutionary course can be different in the

simulation. If the initial type has neighbours in genotype
space that interact favourably with each other and
negatively against the wild type, then it will quickly go
extinct and (possibly several) q-ESS switches are observed.
Other initial conditions allow the interactions of local
mutants to favour the wild type, and monodominance
continues for a longer time, possibly beyond the time-scale
of the simulation. On a transition from one q-ESS state to
another, our model predicts that at low interaction
strengths only monodominant states can occur. However,
if the interaction strength kXkmin then all initial wild types
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should be able to diversify eventually via an adaptive walk.
If kbkmin (4�), the contribution to the weight function
from the intrinsic fitness becomes negligible and the system
reduces to the original TaNa model with the weight
function H0, meaning all states are diverse.

A similar cutoff was observed for diversification of
several types of E. coli by Kashiwagi et al. (2001). In this
experiment the culture was well mixed and fed with
glutamate, the sole nutrition source (of nitrogen). Through
mutagenesis, evolution of a single gene was studied—the
gene for glutamine synthetase production, which synthe-
sizes glutamine from glutamate. Since the glutamine
synthesis is necessary for the growth of the bacteria in this
experiment, those with the higher activity of glutamine
synthetase will result in faster growth of the bacteria.
Indeed, in a low population density condition, only the
fittest type (i.e. that with highest enzyme activity) survives.
However, in a dense condition, multiple types including
those with much lower enzyme activity coexist. Interaction
is (amongst other things) via leakage of glutamine, and
removal of glutamine from the environment confirms
survival of the fittest.

We can identify our interaction strength k as a surrogate
to bacterial density in the experimental set-up, as the
strength of interaction felt between cells will increase when
they are packed together more closely.8 The comparison is
valid for approximately constant population size, which is
approximately the case in both experiment and model.
Increased density will increase inter-specific interactions
more than intra-specific interactions, as the addition of a
new substance to the cell will be more significant than the
addition of the same amount of an already present
substance. Our predictions appear to be consistent with
the experiment, and with the subsequent observation that
cutting off the interaction prevents the diversification
(Kashiwagi et al., 2005).

Our theoretical results enable us to probe the underlying
factor allowing diversification that is unobservable in real
systems. Essentially we require both:
1.
8

inc

ind
The mean realized interactions for all types are equal to
or greater than their own intrinsic fitness. ‘Intrinsic
fitness’ is an absolute measure if fitness is density
dependent, but a relative measure if fitness is density
independent. The greater the ratio of the interaction
strength to the intrinsic fitness strength, the less selection
pressure acts via the type’s efficiency in the environment.
Thus, all types gain more from each other than they do
from the environment.
2.
 The possible mutations from the wild type reinforce
themselves, or other types, more than the wild type. This
is a constraint of the local genotype space, and means
Note that this is an additional density dependence to the one explicitly

luded in the first term in Eq. (2), which represents the likelihood of and

ividual a meeting an individual of type S.
that the mutant does not interact more positively with
the wild type than with itself.
Our model is quite general and so can be considered of
relevance to many evolutionary systems. The only fitness
concept that fails to give a reasonable interaction vs.
diversity graph is uncorrelated density-independent fitness;
this would not be considered realistic. We conclude that
there should be an interaction cutoff below which no
diverse states are found, above which diversity can arise in
the absence of space with a single resource.
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