An Evolutionary Relationship between Genetic
Variation and Phenotypic Fluctuation

Kunihiko Kaneko! ? Chikara Furusawa?® 2,

! Department of Pure and Applied Sciences, Univ. of Tokyo, 3-8-1 Komaba, Meguro-ku,
Tokyo 153-8902, Japan
2 ERATO Complex Systems Biology Project, JST, 3-8-1 Komaba, Meguro-ku,
Tokyo 153-8902, Japan
% Department of Bioinformatics Engineering, Graduate School of Information Science and

Technology, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan

Corresponding Author: Kunihiko Kaneko

Department of Pure and Applied Sciences, Univ. of Tokyo,
Komaba, Meguro-ku, Tokyo 153-8902, Japan

Tel /JFAX: +81-3-5454-6746

E-mail: kaneko@complex.c.u-tokyo.ac.jp



Abstract

The relevance of phenotype fluctuations among clones (i.e., organisms with identical genes) to
evolution has recently been recognized both theoretically and experimentally. By considering the
stability of the distributions of genetic variations and phenotype fluctuations, we derive a general
inequality between the phenotype variance due to genetic differences and the intrinsic phenotype
variance of clones. For a given mutation rate, an approximately linear relationship between the
two is obtained which elucidates the consistency between the fundamental theorem of natural
selection by Fisher and the evolutionary fluctuation-response relationship (fluctuation dissipation
theorem) proposed recently. A general condition for the error catastrophe is also derived as the
violation of the inequality, which sets up the limit to the speed of stable evolution. All of these
theoretical results are confirmed by a numerical evolution experiment of a cell that consists of a
catalytic reaction network. Based on the relationships proposed here, relevance of the phenotypic

plasticity to evolution as well as the genetic assimilation is discussed.
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1 Introduction

The importance of genetic variation to evolution has been discussed for over a century and is
outlined in classic books by Fisher (Fisher 1930, 1958; Edwards, 2000), Kimura (Kimura 1983), and
so forth. Among the prominent results is the so-called ‘fundamental theorem of natural selection’
by Fisher which states that the evolution speed is proportional to the phenotypic variance brought
about by the genetic variance of the population. Here it should be noted that in the established
field of population genetics, the existence of a single phenotype from a single genotype under a
given environmental condition is implicitly assumed in the formulation of the theory.

On the other hand, the phenotypes of clones can fluctuate from individual to individual (Spu-
dich & Koshland 1976), even though they have identical genes, and are put in the same environ-
ment, as has been recently confirmed quantitatively for bacteria in an investigation involving the
fluctuations of abundances of fluorescent proteins (Elowitz et al. 2002; Ueda et al. 2001; Hasty et
al. 2000; Sato et al. 2003; Furusawa et al. 2005). Furthermore, the relevance of phenotypic fluctu-
ations of clones to evolution has also been discussed along the lines of the fluctuation-dissipation
theorem in physics (Kubo 1985) which suggests a linear relationship, or at least a positive cor-
relation, between phenotypic fluctuations and evolution speed. This theoretical prediction has
been confirmed in an artificial selection experiment involving fluorescence in proteins in E. Coli
(Sato et al. 2003). Since Fisher’s theorem states the proportionality between evolution speed
and phenotypic variance due to genetic variation, while the above recent study concerns evolution
speed and intrinsic phenotypic fluctuations of clones, the question arises whether there should
be some relationship between phenotypic variance by the distribution of genes (genetic variation)
and phenotypic fluctuations of clones.

In general, however, a straightforward relationship between the two is not so easily expected
since the genetic fluctuations generally depend on the mutation rate and the population dis-
tribution of organisms with different genes, while the phenotypic fluctuations of clones do not.
The existence of a relationship, if there is any at all, must originate in some evolutionary con-
straints concerning stability. In the present paper, we propose a possible relationship between
the two through a stability analysis of the two-variable probability distribution function both in

phenotypes and genotypes, where the existence of such distribution itself is our most important



assumption. First, we give a possible inequality between the two fluctuations, and then, we show
that for the mutation rate that achieves the highest evolution speed, this inequality is replaced by
an equality. From this we derive the proportionality between the phenotypic variance due to the
distribution of genes and the phenotypic variance of the clones of the most dominant genotype.
Through these considerations, the recent fluctuation-response relationship in evolution and the
Fisher’s theorem are shown to be consistently related with each other. To confirm the validity
of our theory we have carried out several simulations where a simple cell model consisting of a
catalytic reaction network evolves. The relationship between phenotypic fluctuations of clones
and those by genetic variations proposed theoretically is confirmed, as well as the evolutionary
fluctuation-response relationship.

Remark

Note that the relationship between phenotypic plasticity and evolution has often been dis-
cussed. The term “phenotypic plasticity” usually refers to the changeability of the phenotype
under a change of the environment. Here, however, we are concerned with the fluctuations of the
phenotypes of clones, in a given fixed environment. Only recently there are some studies on it
in relationship with the Baldwin effect (Ancel 1999, 2000; Ancel & Fontana 2002) or epigenetic
inheritance (Pal and Miklos 1999).

2 Theoretical Formulation

2.1 Evolutionary Stability in the Distribution Function

Let us consider a phenotype x that is controlled by a gene, while the genetic change is assumed
to be represented by a (scalar) parameter (variable) a, as is often adopted in the population
genetics. For example, take the concentration of some protein z whose expression is coded by
some gene, represented by a variable a, that is a Hamming distance in the genetic sequence from
a given sequence. In the earlier paper (Sato et al. 2003) we have studied the fluctuations of the
phenotypic variable z, in relationship with a genetic change given by a parameter a, where we

have discussed the probability distribution P(z;a). The most dominant value of the phenotype



z for a given genotype a is written by a function z = zy(a), which is the peak position of the
distribution. The phenotype is distributed around x = x,.

In considering the evolution, we need to consider also the distribution of genotype a, instead
of regarding it as a given parameter. Through the evolutionary process, the dominant genotype a
changes, and the dominant phenotype z¢(a) also changes accordingly. Now, to consider the evolu-
tion both with regards to the distribution of phenotype and genotype, we introduce a two-variable
distribution P(z,a; h) with h a given environmental condition. Then by changing the environment
h (or selection pressure in artificial evolution experiment), the most dominant genotype a and the
phenotype change in accordance with the peak in this two-variable distribution P(x,a;h). Exis-
tence of such distribution function is the first assumption here. The second assumption we make
here is that at each stage of evolution, the distribution has a single (sharp) peak in this (z,a)
space (see Fig.1). Through the evolutionary course, the dominant genotype a changes, which is
given by the peak position of P(z,a : h), that changes depending on the environmental condition
h. This second assumption means a kind of evolutionary stability, i.e., at each stage of evolution,
neither the phenotype nor the genotype distribution is spread out, and the distribution has a clear
peak around a dominant gene and phenotype. This stability condition might be a bit strong to
postulate for every evolutionary process, but as a gradual evolution (without speciation), it would
be a reasonable assumption. In the artificial selection experiment, gradual change of phenotype
could be reinterpreted as a gradual increase of selection pressure, to increase the parameter h
(e.g., as increasing the threshold value beyond which a cell (or an organism) is selected so that it
has a higher concentration of some protein or function). Or, by borrowing the term in thermo-
dynamics it may be formulated as ’quasi-static process’, where a transition process is represented
as a successive change over equilibrium states.

Following the above discussion on the assumption of a single peak in the distribution, let us
denote P(z,a;h) = exp(—V (z,a;h)). For a given h (environmental condition), let us denote the
peak of the distribution by a = a¢(h) and ¢ = z¢(a). As discussed, we assume evolutionary
stability in the sense that a single dominant type of species exists in phenotype and genotype

through the course of evolution. In other words, the distribution P(z,a) has a single peak at



(ag,z¢(ay)). Then the stability condition is given by
(8°V/)da®) ' >0; (0*V/oz*) ' > 0. (1)

For a two-variable probability function to have a single peak, however, another stability stability

condition is necessary. It is given by the Hessian, i.e.,

(0°V/02)(8°V/8a’®) — (0*V/Badz)* > 0. (2)

Now let us recall that x¢(ay) is the peak of the distribution of phenotype x for a clone of the
genotype ag. Then, the following condition has to be satisfied:

OV/0%|s0, =0 (3)

Writing OV (x,aq + da)/0%|,=s,+s5. = 0, and expanding up to da and dz, as 8°V/0z?|,—,, 0z +
9/0a(0V (x,a)/0x)|s=r,0a = 0, and dx = (Ox(/Oa)da, we then get

O’V /02?|1=2, (020/00) | 4=a, + (0*V (z,0)/0a0T)|s=r, = 0. (4)

Using this expression, the Hessian condition (eq.3) is rewritten as

O?V/0x28*V /8a* — (Oxy/0a)*(8*V/0x?)* > 0, i.e.,
0*V/0a® — (0xy/0a)*(8°V/0z*) > 0. (5)

If the distribution is Gaussian-type, the variance of # and a around this dominant type are
represented by < (da)? >= (8*V/8a?)~" and < (dz)? >= (8°V/0x*)~!. Using these expressions,
we then obtain

V, = (01y/8a)?* < (6a)” > << (62)? >=V,. (6)

Here all the quantities are computed around the peak of the distribution located at ag and z((ao)
that depends on the environmental condition h. This inequality is expected to be satisfied for any
stationary probability distribution given an environment h. By assuming that evolution passes
through stationary states successively by generations, the conditions should be satisfied for each

generation belonging to the evolution path.



Now we discuss the meaning of eq. 6. The right-hand side V;, is nothing but the phenotypic
variance of the clones (of the dominant genotype ao), that is intrinsic phenotypic fluctuation,
while the left-hand side is (if we borrow the term in physics) the genetic variance multiplied
by the square of the phenotypic ‘susceptibility’ by genetic change. This left-hand side can be
interpreted as the variance of the average phenotype distributed over genes (a around ay), i.e.,
the phenotypic variance by the genetic variance, which is nothing but the quantity adopted in
Fisher’s theorem. This correspondence can be understood as follows: Assume that the variance
of a is not so large and that the deviation of a from a is small. Then the average phenotype of a
clone with gene a is given by

ox

T, = /xewp(—V(:v,a))dx X Ty, + (a— ao)%. (7)

where 7, is the average over x for the genotype a. Now, the variance of this average phenotype

due to the gene distribution, given by < (z, — Z,,)? >, is written as

333[)

%)2 = tha (8)

< Ty —Tuy)? > =< (0a)* > (

which confirms the above interpretation. Summing up, the variance of the average phenotype over
genes (denoted by V) should be smaller than or equal to the phenotypic variance of the clones of

the dominant genotype (denoted as intrinsic phenotypic variance V;,).

2.2 Derivation of the evolutionary fluctuation-response relationship

Generally speaking, even though the genetic variance in the population < (da)? > is not simply
proportional to the mutation rate, it is nevertheless natural to expect that it increases with the
mutation rate. In other words, the above condition eq. 6 gives a limit to the mutation rate, so
that the population can maintain the peak around the fittest species.

Indeed, such a limit to the mutation rate for a single-peaked distribution has already been
discussed for a fitness landscape where one type is the fittest among other neutral types by
Eigen and Schuster and was called error catastrophe (Eigen & Schuster 1979). They have shown
that there is a critical mutation rate beyond which the fittest organisms cannot maintain their

dominance in the population, (i.e., the distributions lose the single peak and become flat). Since



our formulation assumes a continuous change of genes by mutation, and explicitly takes into
account phenotypic fluctuations, it differs from the Eigen’s argument, but the two are similar
with regards to the limit on the mutation rate required to maintain the stability of the single-
peaked distribution.

Now, consider a selection experiment to increase some phenotypic characteristic (e.g., to in-
crease x by changing the condition h). If the mutation rate is increased, the evolution speed is
expected to increase accordingly until it becomes too high, when the progressive evolution leading
to successively better types no longer works since the above error catastrophe occurs giving a
break-down of the single peak distribution. Hence the highest evolution speed is achieved just
before this catastrophe occurs. This condition is given by simply replacing the inequality of eq.6
by an equality, i.e.,

(8z9/0a)? < (da)* > = < (6z)* >, (9)

or V, = V,,. With this mutation rate, the evolutionary path passes through marginally stable
states so that the phenotypic fluctuations due to the distribution of genes equals the phenotypic
variance of the clones. (As for the marginal stability hypothesis for growth to a new state, the
argument could also be related to that proposed for crystal growth by Langer (Langer 1980)).
Recall that Fisher’s fundamental theorem of natural selection states that the evolution speed
is proportional to V,, the phenotypic variance by genetic variance. Then, at the state with
optimal evolution speed, the above relationship means that the phenotypic variance of the clones
is proportional to the evolution speed. When the mutation rate is smaller than this optimal
value, the original inequality is satisfied. In this case, < (da)? > and accordingly V, generally

increase with the mutation rate p. Now V is written as a function of mutation rate f(u), which

) 7
f(pmaz) * P°

Since V, is proportional to the evolution speed, it is also proportional to V;,, for a given mutation

is an increasing function and f(fm..) = Vip,. Hence for given mutation rate y, V, =

rate. Thus the fluctuation-response relationship in (Sato et al. 2003) is derived. Furthermore, for
small mutation rate, the function f(u) is expanded as f'(0)u + o(p) as V, = 0 for y = 0. Hence

Viptt < V,  (evolution speed) follows.



2.3 Remark on the Distribution

It should be stressed that the derivation of our expression uses only the stability condition, and it
does not depend on specific mechanisms of evolution or selection pressure, which influences only
on the proportion coeflicient to the evolution speed. The assumption we made is the existence of
P(z,a) = exp(—V(z,a)), (or in other words, the existence of the ’potential function’ V' (z,a) ) and
the evolutionary stability, where we assume that at each generation in the evolutionary course,
the distribution has a single peak, i.e., stability both in genetic and phenotypic space.

Since "fitness” (or ”selection”) is not explicitly referred to in the above formulation, one might
wonder if it is included here. Indeed, the selection process is included in the the potential V(z, a).
The evolution of the distribution function in the above formulation can be rephrased as follows: By
changing an environmental condition h, the selection pressure is changed, and thus the P(z,a) =
exp(—V(z,a)) changes accordingly. Hence, if we explicitly include the process of evolution under
the change of environmental condition, it is written as P(z,a;h) = exp(—V(z,a;h)). With the
change of h, the fittest (z,a), i.e., the peak of the distribution P(z,a;h) changes accordingly.
With the change of h, each generation passes through such stable states ‘quasi-statically’. In the
present derivation eq.(1)-(8), we have not explicitly written the environment h, but it is included
implicitly therein. Or, it is also possible to explicitly introduce the environmental change as
another ”external field” h, e.g., by introducing V(z,a;h) = Vj(z,a) + zh to obtain a change of
the peak (ay, 9) with a change of h. With this form, the inequality (6) is also straightforwardly

obtained.

2.4 A simple example

To elucidate the above argument explicitly, it may be useful to give a simple example by taking

a superposition of Gaussian distributions. We set

1
V(z,a) = S{ala — a)’ + &(a)(z — 29(a))” — logé(a)}, (10)
where the last term —log€(a) is required to assure the normalization of P(xz,a) when integrated

over . Noting that the peak in a is given by a* = ay + ¢'(a*)/a,2* = z¢(a*), with c¢(a) =

(1/2)logé(a), and ' as the derivative by a, it is straightforward to obtain %i‘; =¢(a*), 8°V/0a* =

9



a—c"(a) +&(dzy/da)?, and (8°V/Dadz) = —&(dxy/da). Then it is straightforward to confirm the
rewriting of the Hessian stability condition by eq.(5) which leads to

a—c"(a*) > 0. (11)

2 . .
~1= 2V is not equal to . The variance of

In these expressions, one should note that < (da)* >
the genotype is shifted due to the a-dependence of the variance of . Here, when considering the
adopted Gaussian form exp{—V(z,a)}, it may be natural to assume that o' is proportional to
the mutation rate, and accordingly that the variance of a deviates from it. Note that if ¢"(a) > 0,
then for small « ( corresponding to a large mutation rate p), this Hessian condition is violated, and
the critical value gives the maximal mutation rate p,,,, discussed above. Recalling that £(a) is the
inverse of the variance of z, this loss of stability generally occurs when log(phenotypic variance)

is convex at a = a*.

3 Model Simulation

As an illustration of the above theory we consider a simple cell model with intra-cellular catalytic
reactions allowing for cell growth and division. We employ a simple reaction network model studied
earlier (Furusawa & Kaneko 2003; Furusawa et al. 2005), consisting of a variety of chemicals whose
concentrations are given by (cy, s, -+, ¢y ), for K chemical species in a cell. Depending on whether
there is an enzymatic reaction from i to j catalyzed by some other chemical £ or not, a reaction
path is connected in the network as (i +¢ — j+/£). Here, some chemicals including nutrients (that
have no catalytic activity) are transported through the cell membrane with the aid of some other
chemicals, that are ‘transporters’. Transported nutrients are successively transformed to other
chemicals through catalytic reactions, including transporters. When these reactions progress due
to the flow of nutrients, the number of molecules in a cell increases, until it goes beyond a given
threshold N and the cell divides into two. The model, in spite of its simplicity, is found to capture
universal statistical behaviors of a cell as has also been confirmed in experiments(see for details
(Furusawa & Kaneko 2003; Furusawa et al. 2005)).

Of course, how these reactions progress depends on the network. Here, we carry out evolution

10



experiments where those reproducing cells are selected that have a higher concentration c;, of
a given specific chemical i,. To be specific, we take n parent cells which evolve such that they
grow recursively, starting from a catalytic network chosen randomly. From each parent cell, L
mutant cells are generated by randomly adding or removing m reaction paths to the reaction
network of the parent cell. Thus the mutation rate u is given by m/M, with M the total number
of paths. For each of the networks, the reaction dynamics are simulated to identify cells that
continue reproduction. Among such networks the top n cells with regards to the abundances of
the chemical species i, are selected for the next generation.

As the number of molecules is finite, there are fluctuations in the abundances of each chemical.
Indeed, the simulation of the reaction process is carried out by picking up molecules stochastically.
Hence, for a given network, there are fluctuations in the abundances of the chemicals. Correspond-
ing to the variable  in the theory is the concentration ¢;.. To be precise, we choose & = log(c;,), as
the distribution of ¢; is close to the log-normal distribution (as is also true experimentally (Sato et
al. 2003; Furusawa et al. 2005), since our theory is better applied for a variable  whose distribu-
tion is close to a Gaussian distribution. (Note that logarithm of the concentration is adopted also
for an experimental confirmation of the evolutionary fluctuation-response relationship in (Sato et
al. 2003). As Vj,, we compute the variance of 2, for a network that gives the peak abundances at
each generation. On the other hand, the network itself is regarded as the ‘genotype’. The variance
V, is computed, from the variance of the distribution of z, over the L mutant networks at each
generation.

The evolutionary changes in the phenotype distribution of the clones P(z) and that of the
genetic variation P(a) are plotted in Fig.2. As shown, the distributions evolve jointly, satisfying
Vip >V, as expected from the theory. Quantitatively, we first check the validity of the fluctuation-
response relationship (Sato et al. 2003) that is between the evolution speed and V;,. We have
plotted the increment of the phenotype # (i.e., logarithm of the concentration of the selected
species i) at each generation for the selected species successively. As shown in Fig.3, the data
plotted against V;, are fitted well by a linear relationship.

Next, we have plotted V, versus V;, in Fig.4. We found that the expected inequality is satisfied,

and also that for each evolutionary process with a fixed mutation rate, V;, oc V, holds. As the
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mutation rate p increases, the slope of V,/V;, increases, and it approaches the diagonal line
V, = Vip. On the other hand, with the increase of p, mutant populations exhibiting very low
values of z (the abundances of selected species i,) increase, which corresponds to the collapse
of catalytic reaction process for cell growth. As shown in Fig.5, beyond some mutation rate
i, the distribution becomes flat, and the peak in the distribution starts to shift downwards.
By comparing the V, — V;, relationship, we confirmed that around g =~ ., the relationship
approaches the diagonal line V, ~ V;,. Indeed, for a higher mutation rate allowing for V, >V},
the evolution does not progress, as the distribution is almost flat, and the value of x after selection
cannot increase by generations. Thus the evolution speed is optimal at around p = .. Summing
up, there is a threshold mutation rate u beyond which the evolution does not progress (i.e., an
error catastrophe occurs), where V, approaches V;,. All of these numerical results support the
theoretical prediction described earlier. It should also be stressed that the result here does not
depend on the specific algorithm for evolution, such as the ratio of selected networks for the next
generation. The selection pressure, given by the fraction of selected networks, influences only on
the proportion coefficient between the evolution speed and V, as predicted by Fisher’s theorem,

but it does not influence the relationship between V, and V;,.

4 Discussion

In summary, we have proposed an inequality between phenotype variation over genetically different
individuals, V;, and the (intrinsic) phenotypic variance of clones V;,, as a result of the stability of
their distributions. It is found that there is an optimal mutation rate beyond which this inequality
is violated, leading to the collapse of the single-peak distribution around the fittest type. The
evolution speed is bounded by this optimal mutation rate, at which the genetic variance measured
by phenotypes approaches the phenotypic variance of clone. Following this argument, a linear
relationship (or correlation) between the two variances is implied, leading to the evolutionary
fluctuation-response relationship in (Sato et al. 2003). Now, the consistency between Fisher’s
theorem and the evolutionary fluctuation-response relationship is demonstrated. By taking a

simple cell model with a catalytic reaction network, this proposition is numerically confirmed.
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Since in this model, V/, is the fluctuation over different mutated networks, and V;, is the fluctuation
through the dynamics for a given single network, there is no a priori reason that the two should
be correlated. Still, we have found the linear relationship between the two as a result of the course
of evolution.

Our theory is based on the existence of the probability distribution P(z,a). This is not obvious
at all. Since the phenotype is a function of gene, existence of two-variable distribution is a tricky
assumption, because genetic and phenotypic fluctuations there are treated in the same way. Hence,
the confirmation of the theory by numerical experiment is not trivial at all. Although we have not
yet completely clarified why the theory is valid here, one possible reason for it is that some genetic
change can give rise to the same effect to the reaction dynamics with that by the phenotypic
fluctuation. For example, consider reaction process i to j catalyzed by {. If the concentration
¢, changes by fluctuation, the rate of the reaction changes, while such change in the rate can be
resulted by changing the path in the network or the catalytic activity of the reaction, which are
coded by gene. In this sense there exists some genetic change that corresponds with the phenotypic
change by fluctuation.

Indeed, Waddington, in his pioneering study, proposed the concept ‘genetic assimilation’
(Waddington 1957), in which the phenotypic change by the environmental change is later ‘as-
similated’ by genetic changes. Here we should note that the degree of such phenotypic change as
a response to the environmental change is also correlated with the fluctuations of the phenotype
as a result of fluctuation-response relationship (Sato et al. 2003). Then by using the linear re-
lationship between the evolution speed and phenotypic fluctuations, it is naturally expected that
the evolution speed is correlated with the so-called phenotypic plasticity (Callahan, Pigliucci, &
Schlichting 1997; West-Eberhard 2003), the response rate of the phenotype against environmental
change. Based on our present study, it will be possible to reformulate Waddington’s genetic assim-
ilation or the Baldwin effect (Baldwin 1896; Bonner 1980; Ancel & Fontana 2002) quantitatively,
and study the evolutionary process in terms of the plasticity (de Visser et al. 2003) measured
through phenotypic fluctuations.

Another assumption in our theory is the use of (scalar) variable for the genetic change. In

general, genetic change occurs in a very high-dimensional space. The choice of a (or a few) suitable
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parameter(s) a is not trivial at all, whose validity should be examined in the future. In this sense
also, the confirmation of the theory by the numerical model, presented here, is not obvious, since
the number of degrees of freedom in the model is huge, as the change in the network paths has
a huge variety of directions. In spite of this, this assumption on the existence of a and P(z,a)
seems to be valid in the numerical model we discussed. In the artificial selection experiment where
fitter types are chosen successively, evolution can occur by accumulating mutations successively,
so that a one-dimensional path along the evolutionary course acts as a parameter describing the
process of the evolution. Indeed, the fitness landscape over one or a few parameters is also adopted
generally in such theoretical or experimental studies of evolution (Kauffman & Levin 1987; Eigen,
McCaskill, & Schuster 1989; Aita & Husimi 1996).

The inequality V;, > V, concerns with the phenotypic variances due to genetic and non-genetic
origin. If these variance are independent and added naively, the total phenotypic variance we
observe from the wild-type population could be represented as V;,, = Vi, + V, (or V;, + V, + V,,
when the phenotypic variance due to environmental fluctuation V, is also added independently).
In this simple representation, the inequality we propose implies that phenotypic fluctuation by
genetic variation is smaller than that of the non-genetic origin, i.e., V,/V,, is less than half. In
the standard population genetics, the phenotypic variance of non-genetic origin is attributed to
environmental factors, V., while the ratio to V, to V,,;, = V, + V, is defined as the heritability
h* (Futsuyma 1986; Maynard-Smith 1989). However, “intrinsic” phenotypic fluctuation through
‘developmental noise’ (Spudich & Koshland 1976; West-Eberhard 2003; de Visser et al 2003),
as discussed here, contributes to the total phenotypic fluctuation as well. Although we need
careful re-consideration on correlation among the variances and also on the quantitative estimate
of V,, it will be important to discuss the heritability in the light of our inequality with regards to
the intrinsic phenotype fluctuation. Furthermore, studies on the environmental fluctuations and
extension to multiple traits are necessary in future. It should also be noted that most of theoretical
argument presented here is still valid under sexual recombination, while only the argument on the
relationship between V, and the mutation rate needs reconsideration.

Of course it is very important to verify our proposition experimentally. One good candidate is

an artificial selection experiment by using bacteria, adopted in (Sato et al. 2003; Ito et al. 2004).
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Indeed, preliminary data from the experiments seem to suggest the validity of our proposition.
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Figure Legends

Fig. 1

Schematic representation of the two variable distribution P(z,a) on phenotype z and genotype a.
The thick curve shows z¢(a).

Fig. 2

Histogram of the phenotype z, that is the logarithm of the concentration c;_ in the reaction-net cell
model. Distributions at 5 generations in the course of evolution with mutation rate 4 = 0.01 are
plotted with changing colors. (a) distribution of the phenotype = log(c;,) of the selected clones
at each generation. The distribution if obtained from 10000 cells of the clone. (b) distribution of
the phenotype ¢ = log(c;,) over 10000 mutants from the selected clones at each generation. The

phenotype is computed as the average over 200 cells of each clone.

Fig. 3

Evolution speed versus the phenotype fluctuation of a clone. The evolution speed is measured by
the difference between the phenotypes x of the two successive generations, while the fluctuation
is measured by the variance of z of the clone of the selected cells, at each generation, computed

by the distribution over 200 cells of the clone.

Fig. 4
The relationship between V;, the variance of the phenotype z of the clone as measured in Fig.2,
and V,, the variance of the phenotype z over 10000 mutants from the selected cell. Plotted over

generations in each course of evolution, given by a fixed mutation rate displayed in the figure.

Fig. 5
Distribution of the phenotype x over 10000 mutants, generated with the mutation rates 0.003,0.01, 0.02, 0.0:
and 0.05. Around the mutation rate 0.03, the distribution is flattened, and the peak position starts

to shift downward.
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