
ARTICLE IN PRESS
0022-5193/$ - se

doi:10.1016/j.jtb

�Correspond
University of T

fax: +813 5454

E-mail addr
Journal of Theoretical Biology ] (]]]]) ]]]–]]]

www.elsevier.com/locate/yjtbi
An evolutionary relationship between genetic variation and
phenotypic fluctuation

Kunihiko Kanekoa,b,�, Chikara Furusawab,c

aDepartment of Pure and Applied Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
bERATO Complex Systems Biology Project, JST, 3-8-1, Komaba, Meguro-ku, Tokyo 153-8902, Japan

cDepartment of Bioinformatics Engineering, Graduate School of Information Science and Technology, Osaka University, 2-1 Yamadaoka,

Suita, Osaka 565-0871, Japan

Received 14 July 2005; received in revised form 29 August 2005; accepted 29 August 2005
Abstract

The relevance of phenotype fluctuations among clones (i.e., organisms with identical genes) to evolution has recently been recognized

both theoretically and experimentally. By considering the stability of the distributions of genetic variations and phenotype fluctuations,

we derive a general inequality between the phenotype variance due to genetic differences and the intrinsic phenotype variance of clones.

For a given mutation rate, an approximately linear relationship between the two is obtained which elucidates the consistency between the

fundamental theorem of natural selection by Fisher and the evolutionary fluctuation–response relationship (fluctuation dissipation

theorem) proposed recently. A general condition for the error catastrophe is also derived as the violation of the inequality, which sets up

the limit to the speed of stable evolution. All of these theoretical results are confirmed by a numerical evolution experiment of a cell that

consists of a catalytic reaction network. Based on the relationships proposed here, relevance of the phenotypic plasticity to evolution as

well as the genetic assimilation is discussed.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The importance of genetic variation to evolution has
been discussed for over a century and is outlined in classic
books by Fisher (Fisher, 1930, 1958; Edwards, 2000),
Kimura (Kimura, 1983), and so forth. Among the
prominent results is the so-called ‘fundamental theorem
of natural selection’ by Fisher which states that the
evolution speed is proportional to the phenotypic variance
brought about by the genetic variance of the population.
Here it should be noted that in the established field of
population genetics, the existence of a single phenotype
from a single genotype under a given environmental
condition is implicitly assumed in the formulation of the
theory.
e front matter r 2005 Elsevier Ltd. All rights reserved.
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On the other hand, the phenotypes of clones1 can
fluctuate from individual to individual (Spudich and
Koshland, 1976), even though they have identical genes,
and are put in the same environment, as has been recently
confirmed quantitatively for bacteria in an investigation
involving the fluctuations of abundances of fluorescent
proteins (Elowitz et al., 2002; Ueda et al., 2001; Hasty
et al., 2000; Sato et al., 2003; Furusawa et al., 2005).
Furthermore, the relevance of phenotypic fluctuations of

clones to evolution has recently been discussed by
borrowing the idea of the fluctuation–dissipation theorem
in physics (Kubo et al. 1985). The theorem, pioneered by
Einstein’s theory of Brownian motion (Einstein, 1905,
1906), states the proportionality between the fluctuation of
a thermodynamic variable and the response rate of the
variable against external force, i.e., the shift of its average
1The term ‘‘clones’’ is used in the original sense in biology, i.e.,

genetically identical organisms, and is nothing to do with the recent results

of somatic nuclear transfer experiments.
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value divided by the magnitude of the applied force. In the
recent paper of Sato et al. (2003), genetic change is
regarded as that of a parameter which controls the
phenotype. Thus the change through evolution (artificial
selection to a given direction) is represented as an external
force to shift the phenotype value in concern. Then, the
original fluctuation–dissipation theorem is extended to
study a relationship between the phenotypic change
through evolution (as a response) and the phenotypic
fluctuation. Following this general argument, linear rela-
tionship, or at least a positive correlation, between the
evolution speed (of phenotype change) and phenotypic
fluctuations was proposed. This theoretical prediction has
been confirmed in an artificial selection experiment
involving fluorescence in proteins in Escherichia coli (Sato
et al., 2003).
Recall that Fisher’s theorem states the proportionality

between evolution speed and phenotypic variance due to
genetic variation, whereas the above recent study concerns
evolution speed and intrinsic phenotypic fluctuations of
clones. As both state the proportionality with the evolution
speed, the question arises whether there should be some
relationship between phenotypic variance by the distribu-
tion of genes (genetic variation) and phenotypic fluctua-
tions of clones.
In general, however, a straightforward relationship

between the two is not so easily expected since the genetic
fluctuations generally depend on the mutation rate and the
population distribution of organisms with different genes,
while the phenotypic fluctuations of clones do not. The
existence of a relationship, if there is any at all, must
originate in some evolutionary constraints concerning
stability. In the present paper, we propose a possible
relationship between the two through a stability analysis of
the two-variable probability distribution function both in
phenotypes and genotypes, where the existence of such
distribution itself is our most important assumption. First,
we give a possible inequality between the two fluctuations,
and then, we show that for the mutation rate that achieves
the highest evolution speed, this inequality is replaced by
an equality. From this we derive the proportionality
between the phenotypic variance due to the distribution
of genes and the phenotypic variance of the clones of the
most dominant genotype. Through these considerations,
the recent fluctuation–response relationship in evolution
and the Fisher’s theorem are shown to be consistently
related with each other. To confirm the validity of our
theory we have carried out several simulations where a
simple cell model consisting of a catalytic reaction network
evolves. The relationship between phenotypic fluctuations
of clones and those by genetic variations proposed
theoretically is confirmed, as well as the evolutionary
fluctuation–response relationship.

Remark: Note that the relationship between phenotypic

plasticity and evolution has often been discussed. The term
‘‘phenotypic plasticity’’ usually refers to the changeability
of the phenotype under a change of the environment.
Here, however, we are concerned with the fluctuations of
the phenotypes of clones, in a given fixed environment. Only
recently there are some studies on it in relationship with the
Baldwin effect (Ancel, 1999, 2000; Ancel and Fontana,
2002) or epigenetic inheritance (Pal and Miklos, 1999).

2. Theoretical formulation

2.1. Evolutionary stability in the distribution function

Let us consider a phenotype x that is controlled by a
gene, while the genetic change is assumed to be represented
by a (scalar) parameter (variable) a, as is often adopted in
the population genetics. For example, take the concentra-
tion of some protein x whose expression is coded by some
gene, represented by a variable a, that is a Hamming
distance in the genetic sequence from a given sequence. In
the earlier paper (Sato et al., 2003) we have studied the
fluctuations of the phenotypic variable x, in relationship
with a genetic change given by a parameter a, where we
have discussed the probability distribution Pðx; aÞ. The
most dominant value of the phenotype x for a given
genotype a is written by a function x ¼ x0ðaÞ, which is the
peak position of the distribution. The phenotype is
distributed around x ¼ x0.
In considering the evolution, we need to consider also

the distribution of genotype a, instead of regarding it as a
given parameter. Through the evolutionary process, the
dominant genotype a changes, and the dominant pheno-
type x0ðaÞ also changes accordingly. Now, to consider the
evolution both with regards to the distribution of
phenotype and genotype, we introduce a two-variable
distribution Pðx; a; hÞ with h a given environmental
condition. Then by changing the environment h (or
selection pressure in artificial evolution experiment), the
most dominant genotype a and the phenotype change in
accordance with the peak in this two-variable distribution
Pðx; a; hÞ. Existence of such distribution function is the first
assumption here. The second assumption we make here is
that at each stage of evolution, the distribution has a single
(sharp) peak in this ðx; aÞ space (see Fig. 1). Through the
evolutionary course, the dominant genotype a changes,
which is given by the peak position of Pðx; a : hÞ, that
changes depending on the environmental condition h. This
second assumption means a kind of evolutionary stability,
i.e., at each stage of evolution, neither the phenotype nor
the genotype distribution is spread out, and the distribu-
tion has a clear, single peak around a dominant gene and
phenotype. This stability condition might be a bit strong to
postulate for every evolutionary process, but as a gradual
evolution (without speciation), it would be a reasonable
assumption. In the artificial selection experiment, gradual
change of phenotype could be reinterpreted as a gradual
increase of selection pressure, to increase the parameter h

(e.g. as increasing the threshold value beyond which a cell
(or an organism) is selected so that it has a higher
concentration of some protein or function). Or, by
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Fig. 1. Schematic representation of the two variable distribution Pðx; aÞ
on phenotype x and genotype a. The thick curve shows x0ðaÞ, given by the

evolutionary course. Three distributions Pðx; aÞ at three generations

through this evolutionary course are depicted, as are seen in the change of

peak positions.
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borrowing the term in thermodynamics it may be
formulated as ‘quasi-static process’, where a transition
process is represented as a successive change over
equilibrium states.
Following the above discussion on the assumption of a

single peak in the distribution, let us denote
Pðx; a; hÞ ¼ expð�V ðx; a; hÞÞ. For a given h (environmental
condition), let us denote the peak of the distribution by
a ¼ a0ðhÞ and x ¼ x0ða0Þ. As discussed, we assume evolu-
tionary stability in the sense that a single dominant type of
species exists in phenotype and genotype through the
course of evolution. In other words, the distribution Pðx; aÞ
has a single peak at ðx0ða0Þ; a0Þ. For it, the potential V ðx; aÞ
must have a minimum at ðx0; a0Þ. Let us then expand
V ðx; aÞ around this peak position ðx0; a0Þ as

V ðx; aÞ ¼ V ðx0; a0Þ þ
1

2

q2V
qa2

����
x¼x0; a¼a0

ða � a0Þ
2

þ
q2V
qaqx

����
x¼x0; a¼a0

ðx � x0Þða � a0Þ

þ
1

2

q2V
qx2

����
x¼x0; a¼a0

ðx � x0Þ
2
þ � � �

by noting that the first derivative vanishes at this peak
position. To have a minimum at ðx0; a0Þ, the above
quadratic form must be positive definite, which gives a
stability condition for the potential. Accordingly the
following condition has to be satisfied;

ðq2V=qa2Þ�1X0; ðq2V=qx2Þ�1X0. (1)

For the minimum condition of a two-variable function
however, another condition for the positive definite
quadratic form is necessary. It is given by the Hessian, i.e.

ðq2V=qx2Þðq2V=qa2Þ � ðq2V=qaqxÞ2X0. (2)
The conditions (1) and (2) are necessary for Pðx; aÞ to have
a peak at ðx0; a0Þ. Now let us recall that x0ða0Þ is the peak of
the distribution of phenotype x for a clone of the genotype
a0. Then, the following condition has to be satisfied:

qV=qxjx¼x0
¼ 0. (3)

Writing qV ðx; a0 þ daÞ=qxjx¼x0þdx ¼ 0, and expanding up
to da and dx, as q2V=qx2jx¼x0

dx þ q=qaðqV

ðx; aÞ=qxÞjx¼x0
da ¼ 0, and dx ¼ ðqx0=qaÞda, we then get

q2V=qx2jx¼x0
ðqx0=qaÞja¼a0

þ ðq2V ðx; aÞ=qaqxÞjx¼x0
¼ 0.

(4)

Using this expression, the Hessian condition (Eq. (2)) is
rewritten as q2V=qx2q2V=qa2 � ðqx0=qaÞ2ðq2V=qx2Þ2X0,
i.e.

q2V=qa2 � ðqx0=qaÞ2ðq2V=qx2ÞX0. (5)

If the distribution is Gaussian-type, the variance of x and
a around this dominant type are represented by hðdaÞ2i ¼

ðq2V=qa2Þ�1 and hðdxÞ2i ¼ ðq2V=qx2Þ�1. Using these ex-
pressions, we then obtain

Vg 
 ðqx0=qaÞ2hðdaÞ2iphðdxÞ2i 
 Vip. (6)

Here all the quantities are computed around the peak of
the distribution located at a0 and x0ða0Þ that depends on
the environmental condition h. This inequality is expected
to be satisfied for any stationary probability distribution
given an environment h. By assuming that evolution passes
through stationary states successively by generations, the
conditions should be satisfied for each generation belong-
ing to the evolution path.
Now we discuss the meaning of Eq. (6). The right-hand

side V ip is nothing but the phenotypic variance of the
clones (of the dominant genotype a0), that is intrinsic
phenotypic fluctuation, while the left-hand side is (if we

borrow the term in physics) the genetic variance multiplied
by the square of the phenotypic ‘susceptibility’ by genetic
change. This left-hand side can be interpreted as the
variance of the average phenotype distributed over genes (a
around a0), i.e., the phenotypic variance by the genetic
variance, which is nothing but the quantity adopted in
Fisher’s theorem. This correspondence can be understood
as follows: Assume that the variance of a is not so large and
that the deviation of a from a0 is small. Then the average
phenotype of a clone with gene a is given by

xa 


Z
x expð�V ðx; aÞÞdx � xa0 þ ða � a0Þ

qx

qa
. (7)

where xa is the average over x for the genotype a. Now, the
variance of this average phenotype due to the gene
distribution, given by hðxa � xa0 Þ

2
i, is written as

hðxa � xa0Þ
2
i ¼ hðdaÞ2i

qx0

qa

� �2
¼ Vg, (8)

which confirms the above interpretation. Summing up, the
variance of the average phenotype over genes (denoted by
Vg) should be smaller than or equal to the phenotypic
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variance of the clones of the dominant genotype (denoted
as intrinsic phenotypic variance V ip).

2.2. Derivation of the evolutionary fluctuation– response

relationship

Generally speaking, even though the genetic variance in
the population hðdaÞ2i is not simply proportional to the
mutation rate, it is nevertheless natural to expect that it
increases with the mutation rate. In other words, the above
condition Eq. (6) gives a limit to the mutation rate, so that
the population can maintain the peak around the fittest
species.
Indeed, such a limit to the mutation rate for a single-

peaked distribution has already been discussed for a fitness
landscape where one type is the fittest among other neutral
types by Eigen and Schuster and was called error
catastrophe (Eigen and Schuster, 1979). They have shown
that there is a critical mutation rate beyond which the
fittest organisms cannot maintain their dominance in the
population, (i.e. the distributions lose the single peak and
become flat). Since our formulation assumes a continuous
change of genes by mutation, and explicitly takes into
account phenotypic fluctuations, it differs from the Eigen’s
argument, but the two are similar with regards to the limit
on the mutation rate required to maintain the stability of
the single-peaked distribution.
Now, consider a selection experiment to increase some

phenotypic characteristic (e.g. to increase x by changing
the condition h). If the mutation rate is increased, the
evolution speed is expected to increase accordingly until it
becomes too high, when the progressive evolution leading
to successively better types no longer works since the above
error catastrophe occurs giving a break-down of the single-
peak distribution. Hence the highest evolution speed is
achieved just before this catastrophe occurs. This condition
is given by simply replacing the inequality of Eq. (6) by an
equality, i.e.

ðqx0=qaÞ2hðdaÞ2i ¼ hðdxÞ2i, (9)

or V g ¼ Vip. With this mutation rate, the evolutionary
path passes through marginally stable states so that the
phenotypic fluctuations due to the distribution of genes
equals the phenotypic variance of the clones. (As for the
marginal stability hypothesis for growth to a new state, the
argument could also be related to that proposed for crystal
growth by Langer (1980)).
Recall that Fisher’s fundamental theorem of natural

selection states that the evolution speed is proportional to
Vg, the phenotypic variance by genetic variance. Then, at
the state with optimal evolution speed, the above relation-
ship means that the phenotypic variance of the clones is
proportional to the evolution speed. When the mutation
rate is smaller than this optimal value, the original
inequality is satisfied. In this case, hðdaÞ2i and accordingly
Vg generally increase with the mutation rate m. Now V g is
written as a function of mutation rate f ðmÞ, which is an
increasing function and f ðmmaxÞ ¼ V ip. Hence for given
mutation rate m, Vg ¼ ðf ðmÞ=f ðmmaxÞÞV ip. Since V g is
proportional to the evolution speed, it is also proportional
to Vip, for a given mutation rate. Thus the fluctuation–
response relationship in (Sato et al., 2003) is derived.
Furthermore, for small mutation rate, the function f ðmÞ is
expanded as f 0

ð0Þmþ oðmÞ as Vg ¼ 0 for m ¼ 0. Hence
Vipm / Vg / ðevolution speedÞ follows.

2.3. Remark on the distribution

It should be stressed that the derivation of our
expression uses only the stability condition, and it does
not depend on specific mechanisms of evolution or
selection pressure, which influences only the proportion
coefficient to the evolution speed. The assumption we made
is the existence of Pðx; aÞ ¼ expð�V ðx; aÞÞ, (or in other
words, the existence of the ‘potential function’ V ðx; aÞ) and
the evolutionary stability, where we assume that at each
generation in the evolutionary course, the distribution has
a single peak, i.e. stability both in genetic and phenotypic
space.
Since ‘‘fitness’’ (or ‘‘selection’’) is not explicitly referred

to in the above formulation, one might wonder if it is
included here. Indeed, the selection process is included in
the potential V ðx; aÞ. The evolution of the distribution
function in the above formulation can be rephrased as
follows: By changing an environmental condition h, the
selection pressure is changed, and thus Pðx; aÞð¼
expð�V ðx; aÞÞÞ changes accordingly. Hence, if we explicitly
include the process of evolution under the change of
environmental condition, it is written as
Pðx; a; hÞ ¼ expð�V ðx; a; hÞÞ. With the change of h, each
generation passes through such stable states ‘quasi-
statically’, and the fittest ðx; aÞ, i.e., the peak of the
distribution Pðx; a; hÞ changes accordingly. In the present
derivation Eqs. (1)–(8), we have not explicitly written the
environment h, but it is included implicitly therein. Of
course, it is also possible to explicitly introduce the
environmental change as another ‘‘external field’’ h, e.g.
by introducing V ðx; a; hÞ ¼ V0ðx; aÞ þ xh to obtain a
change of the peak ða0;x0Þ with a change of h. With this
form, the inequality (6) is also straightforwardly obtained.

2.4. A simple example

To elucidate the above argument explicitly, it may be
useful to give a simple example by taking a superposition of
Gaussian distributions. We set

V ðx; aÞ ¼ 1
2
faða � a0Þ

2
þ xðaÞðx � x0ðaÞÞ

2
� log xðaÞg, (10)

where the last term � log xðaÞ is required to assure the
normalization of Pðx; aÞ when integrated over x. Noting
that the peak in a is given by a� ¼ a0 þ c0ða�Þ=a;
x� ¼ x0ða

�Þ, with cðaÞ ¼ ð1
2
Þ log xðaÞ, and 0 as the derivative

by a, it is straightforward to obtain q2V=qx2 ¼ xða�Þ,
q2V=qa2 ¼ a� c00ðaÞ þ xðdx0=daÞ2, and ðq2V=qaqxÞ ¼
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�xðdx0=daÞ. Then it is straightforward to confirm the
rewriting of the Hessian stability condition by Eq. (5)
which leads to

a� c00ða�Þ40. (11)

In these expressions, one should note that hðdaÞ2i�1 ¼

q2V=qa2 is not equal to a. The variance of the genotype
is shifted due to the a-dependence of the variance of x.
Here, when considering the adopted Gaussian form
expf�V ðx; aÞg, it may be natural to assume that a�1 is
proportional to the mutation rate, and accordingly that the
variance of a deviates from it. Note that if c00ðaÞ40, then
for small a (corresponding to a large mutation rate m), this
Hessian condition is violated, and the critical value gives
the maximal mutation rate mmax discussed above. Recalling
that xðaÞ is the inverse of the variance of x, this loss of
stability generally occurs when log(phenotypic variance) is
convex at a ¼ a�.

3. Model simulation

As an illustration of the above theory we consider a
simple cell model with intra-cellular catalytic reactions
allowing for cell growth and division. We employ a simple
reaction network model studied earlier (Furusawa and
Kaneko, 2003; Furusawa et al., 2005). In the model, the
cellular state can be represented by a set of numbers
ðn1; n2; . . . ; nK Þ, where ni is the number of molecules of the
chemical species i with i ranging from i ¼ 1 to K. For the
internal chemical reaction dynamics, we chose a catalytic
network among these K chemical species, where each
reaction from some chemical i to some other chemical j is
assumed to be catalysed by a third chemical ‘, i.e.
ði þ ‘ ! j þ ‘Þ. Some resources (nutrients) are supplied
from the environment by transportation through the
membrane with the aid of some other chemicals, that are
‘transporters’. The concentrations of nutrient chemicals in
the environment are kept constant, and they have no
catalytic activity in order to prevent the occurrence of
catalytic reactions in the environment. Through the
catalytic reactions, these nutrients are transformed into
other chemicals, including the transporters. With the intake
of nutrient chemicals from the environment, the total
number of chemicals N ¼

P
i ni in a cell can increase, and

accordingly the cell volume will increase. For simplicity the
division is assumed to occur when the total number of
molecules N ¼

P
i ni in a cell exceeds a given threshold

Nmax. Chosen randomly, the mother cell’s molecules are
evenly split among the two daughter cells. In our numerical
simulations, we randomly pick up a pair of molecules in a
cell, and transform them according to the reaction
network. In the same way, transportation through the
membrane is also computed by randomly choosing
molecules within the cell and nutrients in the environment.
The model, in spite of its simplicity, is found to capture
universal statistical behaviors of a cell as has also been
confirmed in experiments (see for details (Furusawa and
Kaneko, 2003; Furusawa et al., 2005; Furusawa and
Kaneko, 2005)).
Of course, how these reactions progress depends on the

reaction network. Here, we carry out evolution experi-
ments where those reproducing cells are selected that have
a higher abundance nis of a given specific chemical is. To be
specific, we take n parent cells which evolve such that they
grow recursively, starting from a catalytic network chosen
randomly such that the probability of any two chemicals i

and j to be connected is given by the connection rate r.
From each parent cell, L mutant cells are generated by
randomly replacing m reaction paths to the reaction
network of the parent cell. Thus the mutation rate m is
given by m=M, with M ¼ rK2 the total number of paths.
For each of the networks, the reaction dynamics are
simulated to identify cells that continue reproduction.
Among such networks the top n cells with regards to the
abundances of the chemical species is are selected for the
next generation.
As the number of molecules is finite and the simulation

of the reaction process is carried out by picking up
molecules stochastically, there are fluctuations in the
abundances of each chemical. Here, corresponding to the
variable x in the theory, we choose the abundance nis , when
the total number of molecules in a cell reaches the
threshold Nmax. To be precise, we choose x ¼ logðnis Þ, as
the distribution of ni is close to the log-normal distribution
(as is also true experimentally (Sato et al., 2003; Furusawa
et al., 2005)), since our theory is better applied for a
variable x whose distribution is close to a Gaussian
distribution. As V ip, we compute the variance of x over
200 clonal cells having a network that gives the peak
abundances at each generation. On the other hand, the
network itself is regarded as the ‘genotype’. As for the
variance V g, first we calculate the peaks of abundance x for
all L mutant networks. (In the simulation, L is set at
10,000.) For each of mutant networks, we compute the
phenotype of x over 200 clonal cells, to get the peak
position of the phenotype distribution. This peak position
of phenotype x differs by mutants, and over L mutants we
can obtain the distribution QðxÞ, which is the distribution
of phenotype x over mutants. Vg, the variance of the peak
positions over all mutant networks, is nothing but the
variance of QðxÞ.
The evolutionary changes in the phenotype distribution

of the clones PðxÞ and that of the genetic variation QðxÞ

are plotted in Fig. 2. As shown, the distributions evolve
jointly, satisfying Vip4V g as expected from the theory.
Quantitatively, we first check the validity of the fluctua-
tion–response relationship (Sato et al., 2003) that is
between the evolution speed and Vip. We have plotted
the increment of the phenotype x (i.e. logarithm of the
abundance of the selected species is) at each generation for
the selected species successively. As shown in Fig. 3, the
data plotted against V ip are fitted well by a linear
relationship.
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Fig. 2. Histogram of the phenotype x, that is the logarithm of the number

of molecules nis in the reaction-net cell model. Distributions at 5

generations in the course of evolution with mutation rate m ¼ 0:01 are
plotted with changing colors. (a) Distribution PðxÞ of the phenotype x ¼

logðnis Þ of the selected clones at each generation. The distribution plotted

here is obtained from 10 000 cells of the clone. (b) Distribution QðxÞ of the

phenotype x ¼ logðnis Þ over 10 000 mutants from the selected clones at

each generation. Throughout the simulations presented in this paper, the

parameters were set as k ¼ 1� 103, Nmax ¼ 1� 104, and r ¼ 0:01. The
number of mutant networks L is 1� 104, and the top n ¼ 500 cells with

regards to the abundances of the chemical species is are selected for the

next generation.
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Next, we have plotted Vg versus Vip in Fig. 4. We found
that the expected inequality is satisfied, and also that for
each evolutionary process with a fixed mutation rate, V ip /

Vg holds. As the mutation rate m increases, the slope of
Vg=Vip increases, and it approaches the diagonal line
Vg ¼ V ip. On the other hand, with the increase of m,
mutant populations exhibiting very low values of x (the
abundances of selected species is) increase, which corre-
sponds to the collapse of catalytic reaction process for cell
growth. As shown in Fig. 5, beyond some mutation rate
mthr, the distribution becomes flat, and the peak in the
distribution starts to shift downwards. By comparing the
Vg � Vip relationship, we confirmed that around m � mthr,
the relationship approaches the diagonal line V g � V ip.
Indeed, for a higher mutation rate allowing for Vg4Vip
the evolution does not progress, as the distribution is
almost flat, and the value of x after selection cannot
increase by generations. Thus the evolution speed is
optimal at around m � mthr. Summing up, there is a
threshold mutation rate m beyond which the evolution
does not progress (i.e. an error catastrophe occurs), where
Vg approaches Vip. All of these numerical results support
the theoretical prediction described earlier. It should also
be stressed that the result here does not depend on the
specific algorithm for evolution, such as the ratio of
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selected networks for the next generation. The selection
pressure, given by the fraction of selected networks,
influences only the proportionality coefficient between the
evolution speed and V g as predicted by Fisher’s theorem,
but it does not influence the inequality and proportionality
between V g and Vip.

4. Discussion

In summary, we have proposed an inequality between
phenotype variation over genetically different individuals,
V g and the (intrinsic) phenotypic variance of clones V ip, as
a result of the stability of their distributions. It is found
that there is an optimal mutation rate beyond which this
inequality is violated, leading to the collapse of the single-
peak distribution around the fittest type. The evolution
speed is bounded by this optimal mutation rate, at which
the genetic variance measured by phenotypes approaches
the phenotypic variance of clone. Following this argument,
a linear relationship (or correlation) between the two
variances is implied, leading to the evolutionary fluctua-
tion–response relationship in Sato et al. (2003). Now, the
consistency between Fisher’s theorem and the evolutionary
fluctuation–response relationship is demonstrated. By
taking a simple cell model with a catalytic reaction
network, this proposition is numerically confirmed. Since
in this model, V g is the fluctuation over different mutated
networks, and Vip is the fluctuation through the dynamics
for a given single network, there is no a priori reason that
the two should be correlated. Still, we have found the linear
relationship between the two as a result of the course of
evolution.
Our theory is based on the existence of the probability

distribution Pðx; aÞ. This is not obvious at all. Since the
phenotype is a function of gene, existence of two-variable
distribution is a tricky assumption, because genetic and
phenotypic fluctuations there are treated in the same way.
Hence, the confirmation of the theory by numerical
experiment is not trivial at all. Although we have not yet
completely clarified why the theory is valid here, one
possible reason for it is that some genetic change can give
rise to the same effect on the reaction dynamics as can a
phenotypic fluctuation. For example, consider reaction
process i to j catalysed by ‘. If the concentration c‘ changes
by fluctuation, the rate of the reaction changes, while such
change in the rate could as well be induced by changing the
path in the network or the catalytic activity of the reaction,
which are coded by gene. In this sense there exists some
genetic change that corresponds with the phenotypic
change by fluctuation
Indeed, Waddington, in his pioneering study, proposed

the concept ‘genetic assimilation’ (Waddington, 1957), in
which the phenotypic change by the environmental change
is later ‘assimilated’ by genetic changes. Here we should
note that the degree of such phenotypic change as a
response to the environmental change is also correlated
with the fluctuations of the phenotype as a result of
fluctuation–response relationship (Sato et al., 2003). Then
by using the linear relationship between the evolution
speed and phenotypic fluctuations, it is naturally expected
that the evolution speed is correlated with the so-called
phenotypic plasticity (Callahan et al., 1997; West-
Eberhard, 2003), the response rate of the phenotype
against environmental change. Based on our present study,
it will be possible to reformulate Waddington’s genetic
assimilation or the Baldwin effect (Baldwin, 1896; Bonner,
1980; Ancel and Fontana, 2002) quantitatively, and study
the evolutionary process in terms of the plasticity (de Visser
et al., 2003) measured through phenotypic fluctuations.
Another assumption in our theory is the use of (scalar)

variable for the genetic change. In general, genetic change
occurs in a very high-dimensional space. The choice of a
(or a few) suitable parameter(s) a is not trivial at all, whose
validity should be examined in the future. In this sense also,
the confirmation of the theory by the numerical model,
presented here, is not obvious, since the number of degrees
of freedom in the model is huge, as the change in the
network paths has a huge variety of directions. In spite of
this, this assumption on the existence of a and Pðx; aÞ seems
to be valid in the numerical model we discussed. In the
artificial selection experiment where fitter types are chosen
successively, evolution can occur by accumulating muta-
tions successively, so that a one-dimensional path along the
evolutionary course acts as a parameter describing the
process of the evolution. Indeed, the fitness landscape over
one or a few parameters is also adopted generally in such
theoretical or experimental studies of evolution (Kauffman
and Levin, 1987; Eigen et al., 1989; Aita and Husimi,
1996).
In the numerical example in Section 3, we discussed an

evolutionary process with incremental process without
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complex fitness landscape with many local optima. Our
theoretical discussion, on the other hand, can be applied to
a general case with any complex fitness landscape. As the
phenotypic fluctuation changes depending on the land-
scape and the location in the landscape, study of the
evolutionary process based on our theory will be important
in future. Furthermore, extension of our theory to a higher
dimensional case will be important, whereas, in the present
paper, the influence of high-dimensional effect is discussed
only through the error catastrophe leading to the flattening
of the landscape.
According to our theory, evolution speed is highly

correlated with the phenotypic fluctuation, which depends
on intra-cellular reaction process, developmental process,
and so forth. Even if the mutation rate is identical, the
evolution speed can differ depending on such phenotypic
fluctuations. This viewpoint will be important to under-
stand the tempo in evolution, e.g. why in some organisms
called living fossil the phenotype has changed only little
over generations. Furthermore, by considering that the
phenotype fluctuation can also depend on the environ-
mental condition, it is expected that the evolution speed
can be enhanced in some environmental condition which
amplifies the phenotypic fluctuation. Such dependence of
evolution speed on environment may shed a new light on
the controversy on the so-called adaptive mutation (Cairns
et al., 1988; Shapiro, 1995).
The inequality Vip4V g concerns with the phenotypic

variances due to genetic and non-genetic origin. If these
variance are independent and added naively, the total
phenotypic variance we observe from the wild-type
population could be represented as V tot ¼ Vip þ Vg, (or
Vip þ Vg þ Ve, when the phenotypic variance due to
environmental fluctuation V e is also added independently).
In this simple representation, the inequality we propose
implies that phenotypic fluctuation by genetic variation
is smaller than that of the non-genetic origin, i.e., V g=V tot

is less than half. In the standard population genetics,
the phenotypic variance of non-genetic origin is attri-
buted to environmental factors, V e, while the ratio to
Vg to V tot ¼ Vg þ V e is defined as the heritability h2

(Futuyma, 1986; Maynard-Smith, 1989). However,
‘‘intrinsic’’ phenotypic fluctuation through ‘developmental
noise’ (Spudich and Koshland, 1976; West-Eberhard, 2003;
de Visser et al., 2003), as discussed here, contributes to the
total phenotypic fluctuation as well. Although we need
careful re-consideration on correlation among the var-
iances and also on the quantitative estimate of V g,
it will be important to discuss the heritability in the
light of our inequality with regards to the intrinsic
phenotype fluctuation. Furthermore, studies on the envir-
onmental fluctuations and extension to multiple traits are
necessary in future. It should also be noted that most of
theoretical argument presented here is still valid under
sexual recombination, while only the argument on the
relationship between V g and the mutation rate needs
reconsideration.
Of course it is very important to verify our proposi-
tion experimentally. One good candidate is an artificial
selection experiment by using bacteria, adopted in (Sato
et al., 2003; Ito et al., 2004). Indeed, preliminary data from
the experiments seem to suggest the validity of our
proposition.
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