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The discovery of two fundamental laws concerning
cellular dynamics with recursive growth is reported.
Firstly, the chemical abundances measured over many
cells were found to obey a log-normal distribution and
secondly, the relationship between the average and stan-
dard deviation of the abundances was found to be linear.
The ubiquity of these laws was explored both theoreti-
cally and experimentally. By means of a model with a
catalytic reaction network, the laws were shown to exist
near a critical state with efficient self-reproduction.
Additionally, by measuring distributions of fluorescent
proteins in bacteria cells, the ubiquity of log-normal
distribution of protein abundances was confirmed.
Relevance of these findings to cellular function and bio-
logical plasticity is briefly discussed.
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The search for universal statistics with regards to fluc-

tuations in cellular dynamics is an important topic in bio-

physics. Generally, the molecule numbers of the various

chemical species (e.g., proteins) change from cell to cell.

Since many intra-cellular reaction processes are finely tuned

to specific functions, one would initially expect the number

distributions of the involved chemical species to be sharp in

order to suppress fluctuations. In reality, however, they are

far from sharp, and large fluctuations do occur. In order to

understand how cells can function nonetheless, it is essen-

tial to gain an insight into the statistics of chemical abun-

dances.

Indeed, fluctuations in cellular processes have been ex-

tensively studied in stochastic gene expressions and signal

transduction recently1–5. In particular, significant advances

have been made in the study of their distributions using

fluorescent proteins6,7. In light of these recent advances, it is

important to look for general laws that hold for such distri-

butions.

Previously, by using a simple reaction network model,

we found a universal power-law distribution in the average

abundances of chemicals in cells8. The theoretical conclu-

sions were confirmed with the help of large-scale gene ex-

pression data8–10. The above power-law concerned an aver-

age over all chemical species and formed a first step in the

study of universal statistics in cellular dynamics. As for the

next step, it is important to explore universal characteristics

with regards to the distribution of each chemical over the

cells.

Here, we report two basic laws for the number distribu-

tions of chemicals in cells that grow recursively. The first

law is a log-normal distribution of chemical abundances

measured over many cells, and the second law is a linear

relationship between the average and standard deviation of

chemical abundances. We give a heuristic argument as to
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why these laws should hold for a cell with steady growth,

and demonstrate the laws numerically using a simple model

for a cell with an internal reaction network. Lastly, the

results of an experimental study confirming the two laws

are presented.

Indeed, the log-normal distribution is clearly different

from the Gaussian distribution normally adopted in the

study of statistical fluctuations, and has a much larger tail

for greater abundances. Hence the generality of the laws we

report is of considerable significance for all the statistical

studies of cellular fluctuations, and is essential to under-

standing cellular function, adaptation, and evolution.

Heuristic argument

Cells contain huge numbers of chemicals that catalyze

each other and form complex networks. For a cell to repli-

cate itself recursively, a set of chemicals has to be synthe-

sized from nutrients supplied from the outside through

biochemical processes driven by the same set of chemicals.

Consequently, it is natural to consider an auto-catalytic

process as the basis of biochemical dynamics within repli-

cating cells.

As a very simple illustration, let us consider an auto-cata-

lytic process where a molecule (or a set of molecules) xi is

replicated with the aid of other molecules. Then, the growth

of the number ni(t) of the molecule species xi is given by

dni(t)/dt=Ani(t) with A describing the rates of the reaction

processes that synthesize the molecule xi. Clearly, this kind

of synthetic reaction process depends on the number of the

molecules involved in the catalytic process. At the same

time, however, all chemical reaction processes are inevi-

tably accompanied by fluctuations arising from the stochas-

tic collisions of chemicals. Thus, even when the reactions

that synthesize a specific chemical to subsequently convert

it to other chemicals are balanced in a steady state, fluctua-

tion terms will remain. Consequently, the above rate A has

fluctuations η(t) around its temporal average  such that

dni(t)/dt=ni(t)( +η(t)), and hence we obtain

d log ni(t)/dt= + η(t). (1)

In other words, the logarithm of the chemical abundances

shows Brownian motion around its mean, as long as η(t) is

approximated by random noise. Accordingly, one would

expect the logarithm of the chemical abundances (i.e. mole-

cule numbers) to obey a normal (Gaussian) distribution (this

kind of a distribution is known as a log-normal distribu-

tion)11. In contrast to the Gaussian distribution, the log-

normal distribution has a longer tail, representing the

higher frequencies of greater abundances when plotted in the

original scale without taking the logarithm.

In general, at each step of the auto-catalytic process, a

multiplicative stochastic factor η(t)ni can appear. Conse-

quently, a log-normal distribution of chemical abundances,

rather than a Gaussian distribution, may be common for

cells that reproduce recursively.

Of course, the above argument is too simplistic to de-

scribe the dynamics of actual cells. For example, fluctua-

tions may be suppressed since an increase in chemical abun-

dance does not continue forever due to cell divisions, which

may thus alter the form of the distribution. Furthermore, in

a complex biochemical reaction network, several reaction

processes may work in parallel for the replication of a

chemical. This leads to the addition of fluctuation terms,

and the central limit theorem of probability theory could

imply that the distribution becomes Gaussian.

Hence it is far from clear whether the simple argument to

support the log-normal distribution is valid or not. Never-

theless, since the log-normal distribution is rather different

from the standard Gaussian distribution, its universality is

of great importance for understanding the fluctuations in

cells and stochastic gene expressions. Here we will confirm

the validity of the law both theoretically and experimentally.

Model study with catalytic reaction network

In order to search for universal laws of replicating cells

which are independent of details, we employed a simple

reaction network model following Ref. 8. Consider a cell

consisting of a variety of chemicals. The internal state of the

cell can be represented by a set of numbers (n1, n2, ..., nk),

where ni is the number of molecules of the chemical species

i with i ranging from i=1 to k. We chose a randomly gen-

erated catalytic network among these k chemicals, where

each reaction from some chemical i to some chemical j

was assumed to be catalyzed by a third chemical l, that is

(i+ l→ j+ l). For simplicity all the reaction coefficients were

chosen to be equal, while the connection paths of this

catalytic network were chosen randomly, such that the

probability of any two chemicals i and j to be connected

is given by the connection rate ρ.

Some chemicals diffuse between the cell and the environ-

ment with the diffusion coefficient D. Among the penetrable

chemicals, nutrients without catalytic activity are supplied

by the environment. Through the catalytic reactions to syn-

thesize impenetrable chemicals, the total amount of chemi-

cals N=Σini in a cell increases, and when the total amount of

chemicals is beyond some threshold Nmax, the cell divides

into two. This growth and division process is repeated. In

the numerical simulations, we randomly picked up a pair of

molecules in a cell, and transformed them according to the

reaction network. In the same way, diffusion through the

membrane was also computed by randomly choosing mole-

cules inside the cell and nutrients in the environment (see

Ref. 8 for details of the model).

As the diffusion coefficient D increases, the growth speed

of the cell increases up to a critical value Dc after which the

cell ceases growing because the flow of nutrients from the

environment is so fast that the internal reactions transform-

ing them into chemicals sustaining its ‘metabolism’ cannot

a
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keep up. As discussed in Ref. 8, the intra-cellular dynamics

at D≈Dc is biologically relevant due to the efficient re-

cursive growth for this value, and its statistical property of

chemical abundances, i.e., the power-law distribution with

exponent-1 was confirmed experimentally for almost all the

cells we investigated. Accordingly, this simple model cap-

tures enough basic properties of a cell to adequately reflect

universal statistical properties and we therefore chose it to

measure the distribution of each chemical’s abundance over

many cells, by sampling them over a large number of divi-

sions.

Results of simulations

In Fig. 1, the number distributions of several chemicals

for D≈Dc were plotted*
1. Here we measured the number of

molecules of each chemical when a cell divides into two

and the distribution indeed was nearly log-normal. i.e.

P(ni)≈ exp ( ), (2)

where  indicates the average of ni over the cells.

This log-normal distribution holds for the abundances of

all chemicals except for those that are supplied externally as

nutrients which obey the standard Gaussian distribution. In

other words, those molecules that are reproduced in a cell

obey a log-normal distribution, while nutrients that are just

transported from the outside of a cell follow a Gaussian dis-

tribution.

Why would the log-normal distribution law generally

hold, in spite of the fact that the central limit theorem im-

plies that the addition of several fluctuation terms should

lead to a more Gaussian distribution? This can be under-

stood by considering that the recursive production process

is a cascade reaction near the critical state D≈Dc
8. At this

point, a small part of au the possible reaction pathways is

dominant and organized in a cascade of catalytic reactions,

so that a chemical in the j-th group is catalyzed by a chemi-

cal in the ( j+1)-th group. In other words, a “modular struc-

ture”, with groups of successive catalytic reactions, is

self-organized in the network. In this cascade of catalytic

reactions, fluctuations propagate “multiplicatively”; for

example, the concentration fluctuation of a chemical in the

( j+2)-th group influences multiplicatively that of the ( j+1)-

th group, which then influences multiplicatively that of the

i-th group, and so forth. The result of this multiplicative

effect is the log-normal distribution of ni*
2. Note that, at the

critical state with which we are concerned, this cascade of

catalytic reactions continues over all chemical species that

are reproduced, and that the log-normal distribution holds

firm. The importance of cascade processes for a log-normal

distribution is also studied in the theory of turbulence12,

where an energy cascade leads to a multiplicative creation

Figure 1. The number distribution of the molecules of chemical abundances of our model. Distributions were plotted for several chemical
species with different average molecule numbers. The data were obtained by observing 178800 cell divisions.

*1 In the simulation used to generate Fig. 1, the total number of mole-
cules N is much larger than the number of chemical species k. In this
case, the population ratios {n

i
/N} generally fall into a unique steady

state and fluctuate around it, while the daughter cells inherit the
chemical compositions of their mother cells. On the other hand, when
k>N

max
, the population ratios do not settle down and can change from

generation to generation. In this case, the number distribution of each
chemical does not obey the log-normal distribution as shown in Fig. 1,
but seems to follow a Poisson-like distribution.
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i
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2
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----------------------------------------–
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*2 The heuristic argument on the log-normal distribution in the sec-
tion “Heuristic argument” intended for auto-catalytic processes is not
directly applicable here, since in the present study, catalysts are gen-
erally other molecule species, and such direct auto-catalytic process is
not particularly enhanced. Still, some revision might be possible, since
a set of chemical species could work as an auto-catalytic set to synthe-
size the same set of chemicals, for a recursive production of a cell.
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of vortices. In the present case, a cascade in the catalytic

reaction is essential for a log-normal distribution.

The width of the distribution for each chemical, shown in

Fig. 1, looks almost independent of its average. This sug-

gests a connection between the fluctuations and the aver-

ages of the chemicals. We therefore plotted the standard

deviation of each chemical  as a function of the

average  in Fig. 2, and indeed found a linear relationship

between the standard deviation (not the variance) and the

average number of molecules. This can be understood by

considering the steady growth and cascade structure of the

catalytic reactions. Take two chemicals i and j, one of

which (j) catalyzes the synthesis of the other in the cascade.

During the steady growth phase of a cell, the synthesis and

conversion of chemical i should be balanced, i.e., nj×A−

ni×B=0, where A and B are average concentrations of other

chemicals involved in the catalytic reaction. The average

concentration then satisfies / =A/B. Taking into account

that the relation remains satisfied as ni, nj, ... increase

while the cell grows, it is natural to assume that the relation-

ship holds for the fluctuations of the average as well:

<δnj>
2/<δni>

2= (A/B)2= 2/ 2. Hence the variance is ex-

pected to be proportional to the square of the mean, yielding

the linear relationship between the mean and the standard

deviation.

A linear relationship was also found with regard to the

variation of the chemical abundances when changing the

external conditions. For example, we computed the change

from  to  by varying the concentrations of the supplied

nutrients. The variation | − | was again found to be pro-

portional to  for each chemical i, similar to the data plotted

in Fig. 2.

Through extensive simulations of a variety of related

models, we confirmed that the discovered laws hold gener-

ally and do not rely on the details of the model, such as the

kinetic rules of the reactions, or the structure of the reaction

network, including networks with heterogeneous path con-

nectivity as scale-free topology. They are universal proper-

ties of replicating cellular systems near the critical state

D≈Dc.

Of course, the arguments for the two laws thus far are

based on the recursive production of a cell. In general, there

can be deviations from the two laws if the steady growth

condition for a cell is not satisfied. In the present case, for

example, recursive production is not possible when the

parameter D is much smaller than Dc, as all the possible

reaction pathways occur with similar weights, or if the cas-

cade of catalytic reactions is replaced by a random reaction

network. In this case, the fluctuations of the molecule

numbers were highly suppressed, and the distributions were

close to normal Gaussian. The multiplicative stochastic

process supported by the cascade of catalytic reaction was

replaced by several parallel catalytic processes, and the

central limit theorem for the addition of stochastic processes

would lead to a Gaussian distribution of chemicals.

Furthermore, we confirmed numerically that the variance

(not the standard deviation) increases linearly with the aver-

age concentrations. In other words, the “normal” behavior

expected from the central limit theorem is observed.

Experiment

Here, we report experimental confirmations of the two

basic laws on the distributions of abundances. Recalling

that these laws are expected to hold for the abundances of a

protein synthesized within cells with recursive (steady)

growth, we measured the distribution of protein abundances

in Escherichia coli that are in an exponential phase of

growth, i.e., in a stage of steady growth*3. To obtain the dis-

tribution of protein abundances, we introduced fluorescent

proteins with appropriate promoters into the cells, and mea-

sured the fluorescence intensity by flow cytometry. To dem-

onstrate the universality of the laws, we carried out several

sets of experiments, by using a variety of promoters and

also by changing the places were the reporter genes were

introduced (i.e., on the plasmid or on the genome).

The detailed experimental procedures are as follows.

Method

Plasmids and strains. Reporter plasmids were con-

Figure 2. Standard deviation versus average number of mole-
cules. Using the same data set and parameters as for Fig. 1, the rela-
tionship between the average and standard deviation was plotted for all
chemical species. The solid line is for reference.

ni ni–( )2

ni

nj ni

nj ni

ni n′i
n′i ni

ni

*3 Concentration dynamics of a given protein is controlled by many
factors, including concentrations of transcriptional factors, several
subunits of RNA polymerases, ribosomal proteins, RNA and protein
degradations, number of plasmids, and so forth. Since these factors
regulate each other through chemical reactions, it is natural to describe
the dynamics of a protein concentration using a network of reactions
as our model.
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structed by subcloning tetA promoter from pASK-IBA3

(Sigma Genosys) and egfp gene (BD Biosciences Clontech)

into pPROTet.E 6xHN (BD Biosciences Clontech) and

dsred.t4 gene coding red fluorescence protein (RFP)13 into

pTrc99A (Amersham Biosciences). E. coli strain OSU2, a

derivative of DH5α that lacks glutamine synthetase gene,

was transformed with these reporter plasmids. E. coli strain

OSU5 was constructed by replacing glnA gene with tetA

promoter and gls-h14 fused with gfpuv515 gene by homolo-

gous recombination16.

Culture and measurements. Cultures of strain OSU2

with the reporter plasmid were grown in LB medium with

100 µg/ml ampicillin for 6 h at 37°C. To obtain a high ex-

pression level of RFP, the culture was grown to mid-expo-

nential growth and then induced with 1 mM isopropyl-β-D-

thiogalactoside (IPTG) for 3 h at 37°C. E. coli OSU5 was

grown in a minimal medium (0.1 M Sodium L-Glutamate

Monohydrate, 4 g/l glucose, 10.5 g/l K2HPO4, 4.5 g/l

KH2PO4, 50 mg/l MgSO47H2O, 50 mg/l thiamine HCl,

10 µM FeSO47H2O, 0.5 µM CaCl2, micronutrient solution17,

25 µg/ml kanamycin) for 24 h at 37°C. All expression data

were collected using a COULTER®EPICS®ELITE flow

cytometer with a 488-nm argon excitation laser and band-

pass filter at 525±25 nm for GFP fluorescence and 600-nm

dichroic filter for RFP fluorescence. For each culture,

10,000 events were collected. We confirmed that the flow

cytometer was within its dynamic range, by using com-

mercialized beads with a known amount of fluorescent dye.

All flow data were converted to text format using WinMDI

Version 2.8.

Results

In Fig. 3, we plotted the distributions of the emitted fluo-

rescence intensity from Escherichia coli cells with reporter

plasmids containing either EGFP (enhanced green fluores-

cent protein) under the control of the tetA promoter without

repression, or dsRed.t4 (monomeric red fluorescent protein)

under the control of the trc promoter with and without IPTG

induction18. In general, the fluorescence intensity (the abun-

dance of the protein) increased with the cell size. To avoid

the effect of variation in cell size, which may also obey log-

normal distribution, we normalized the fluorescence inten-

sity with the volume of each cell. Here we adopted the

forward-scatter (FS) signal from the flow cytometry to esti-

mate cell volume. Infact, by plotting data of the fluores-

cence intensity versus FS signal, the two were proportional

in general. (The data points were distributed around the pro-

portionality line between the two, as was generally observed

in the plot of fluorescence intensity made by flow cyto-

metry). Thus, we normalized the fluorescence intensity by

dividing it with the FS signal. Fig. 3 is the distribution of

this normalized fluorescence intensity. Note that all these

data fit well with log-normal, rather than Gaussian, distribu-

tions, even though each of the expressions is controlled by

a different condition of the promoter.

To clarify the existence of a larger tail for greater abun-

dances of proteins, in Fig. 4, we plotted the distribution of

protein abundances both in a logarithmic scale and in a nor-

Figure 3. The number distribution of the proteins measured by fluorescence intensity, normalized by the cell volume. Distributions were
obtained from three Escherichia coli cell populations containing different reporter plasmids (see text). Note that, although the IPTG induction
changes the average fluorescence intensity, both the distributions (with and without the induction) can be fitted to log-normal distributions well.
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mal scale. The abundances of fluorescent protein expressed

from the chromosome was also found to obey the log-

normal distribution, as shown in Fig. 4. Here, the data was

obtained from Escherichia coli cells with an expression of

glutamine synthetase (GS) fused to GFP in the chromo-

some, whose expression is controlled by an upstream tetA

promoter. In Fig. 4, the distribution of fluorescence inten-

sity, again normalized by cell volume, is plotted. As can be

seen, when using the logarithmic scale (a), the distribution

is roughly symmetrical and close to Gaussian, while when

using the normal scale (b), the distribution has a larger tail

on the side of greater abundances. The fact that a log-

normal distribution was also observed when genes were

located on the genome indicates that the nature of the log-

normal distribution was not due to a variation in plasmid

copy number. We also examined several other cases using

different reporter genes both on the plasmids and on the

genome, and obtained similar results supporting the univer-

sality of log-normal distributions. It is furthermore interest-

ing to note that the abundances of fluorescent proteins,

reported in the literature so far, have been often plotted

with a logarithmic scale7.

It should be noted that the log-normal distribution of pro-

tein abundances is observed when the E. coli are in the

exponential phase of growth, i.e., when the bacteria are in a

steady growth stage. For other phases of growth without

steady growth, the distribution often deviates from a log-

normal distribution, and sometimes shows distribution with

double peaks, as will be reported in the future. Note that this

theory supports the log-normal distribution for the steady

growth case only.

As for the linear relationship between the variation and

the average, Banerjee et al.19 recently reported that the stan-

dard deviation of gene expressions in cell population is pro-

portional to the average expression level, which supports

the relationship discovered in our study. However, using a

different system, Ozbudak et al.20 showed that the standard

deviation of gene expression is not proportional to its aver-

age, but that the variance increases linearly with the aver-

age. However, in these studies, the dynamic ranges of the

measurements were relatively narrow and the growth condi-

tions of cells were not kept precisely in the log phase, so

that the conditions for the steady growth were not satisfied.

To confirm the linear relationship between the standard

deviation and the average, further experimental studies with

a wide dynamic range of measurements and precise control

of the steady cellular growth are required.

Discussion

To sum up, we report universal laws on the distributions

of chemical abundances in cells with steady growth. Firstly,

the distribution of chemical abundance obeys a log-normal

distribution due to the multiplicative propagation of fluctua-

tions. Secondly, there is a linear relationship between the

average and standard deviation of chemical abundances.

Since the laws generally appear near the critical state D≈Dc,

and the dynamics at the critical state provides a faithful and

efficient self-reproduction of a cell8, it is natural to conclude

that cells generally hold these laws. We have also shown

experimental confirmations of the law using E. coli cells,

where the number distribution of fluorescent proteins obeys

the log-normal distribution, independent of the conditions

of promoters and locations of reporter genes. The ubiquity

of the discovered log-normal distributions can be a solid

basis for the study of fluctuations in cells. It should be

stressed that a log-normal distribution of chemical abun-

dances implies that the average magnitude of the fluctua-

tions is much larger than what one would observe for a

normal distribution. However, at the present time, analysis

Figure 4. The distribution of the fluorescence intensity normal-
ized by the cell volume, plotted (a) with a logarithmic scale and (b)
with a normal scale. Data were obtained from a population of isogenic
bacterial cells with an expression of GFP-GS fusion protein in the
chromosome. It is clear that the distribution with the logarithmic scale
is symmetric and close to a Gaussian form.
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of cellular heterogeneity mostly relies on a Gaussian distri-

bution in the abundance of chemicals. Hence, our discovery

for the ubiquity of log-normal distribution sets drastic and

essential changes to future studies concerned with fluctua-

tions in cellular dynamics.

Clearly, these laws bear relevance to adaptation and

evolution21, since the role of phenotypic fluctuations cannot

be neglected. With these two laws in mind, it is important to

study how cells maintain their functions and replicate

themselves successfully, despite being subjected to such

large fluctuations, and to search for possible relationships

between the topology of the reaction networks and the fluc-

tuations in intra-cellular reaction dynamics. Likewise, the

search for some ‘exceptional’ chemicals that do not follow

the log-normal distribution that may be located at specific

positions in the network will be of interest. Indeed, the log-

normal distribution appears as a result of multiplicative

propagation of noise in cascade catalytic reaction processes,

and the distribution could be sharpened by an interference

of parallel reaction processes, including a negative feed-

back loop.

Finally, we note again that the observed laws hold for a

cell that grows recursively. For cells undergoing a change

of state, the distribution may be distorted or have double

peaks, as was observed when the condition of the culture

was changed or in the course of cell differentiation. The

present two laws could be a basis for studying such a

change of distribution as a measure of biological plasticity.
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