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How can a microorganism adapt to a variety of environmental conditions despite the existence of a limited number of
signal transduction mechanisms? We show that for any growing cells whose gene expression fluctuate stochastically,
the adaptive cellular state is inevitably selected by noise, even without a specific signal transduction network for it. In
general, changes in protein concentration in a cell are given by its synthesis minus dilution and degradation, both of
which are proportional to the rate of cell growth. In an adaptive state with a higher growth speed, both terms are
large and balanced. Under the presence of noise in gene expression, the adaptive state is less affected by stochasticity
since both the synthesis and dilution terms are large, while for a nonadaptive state both the terms are smaller so that
cells are easily kicked out of the original state by noise. Hence, escape time from a cellular state and the cellular
growth rate are negatively correlated. This leads to a selection of adaptive states with higher growth rates, and model
simulations confirm this selection to take place in general. The results suggest a general form of adaptation that has
never been brought to light—a process that requires no specific mechanisms for sensory adaptation. The present
scheme may help explain a wide range of cellular adaptive responses including the metabolic flux optimization for
maximal cell growth.
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Introduction

Cells adapt to a variety of environmental conditions by
changing the pattern of gene expression and metabolic flux
distribution. These adaptive responses are generally ex-
plained by signal transduction mechanisms, where extrac-
ellular events are translated into intracellular events through
regulatory molecules. For example, the Lac operon of
Escherichia coli encodes proteins involved in lactose metabo-
lism, and expression of the operon is controlled by a
regulatory protein so that, when lactose is available, these
proteins are expressed in an efficient and coordinated
manner [1]. In general, adaptive responses are depicted by a
prewired logic circuit that takes an environmental condition
as an input and gene expression as an output.

However, such program-like descriptions may not always
apply, since the number of possible environmental conditions
to which a cell must adapt is so large compared to the limited
repertoire of gene regulatory mechanisms. For example,
experiments using phenotype microarrays [2] revealed that E.
coli cells grow in hundreds of environmental conditions,
including different carbon and nitrogen sources and stress
environments, in which they are distinctly altered states of
gene expression [3]. Considering that the number of E. coli
genes categorized as ‘‘signal transduction mechanisms’’ in the
genome is less than a few hundred [4], it is less plausible that
cells have gene regulatory programs to adapt to such a variety
of environmental conditions. Indeed, in case of bacterial
growth, a general adaptation process that occurs over
generations seems to exist in addition to adaptation through
gene regulation by signal transduction mechanisms [5,6].

Two recent studies indicated the possibility that cells can
respond to environmental changes adaptively without pre-
programmed signal transduction mechanisms. Braun and
colleagues demonstrated using yeast cells that even when the

promoter of the essential gene (HIS3) is detached from the
original regulatory system, expression of the gene is regulated
adaptively in response to environmental demands [7,8].
Furthermore, Kashiwagi et al. demonstrated that E. coli cells
select an appropriate intracellular state according to environ-
mental conditions without the help of signal transduction
mechanisms [9]. There, an artificial gene network composed
of two mutually inhibitory operons was introduced into E. coli
cells, so that states of gene expression are bistable. These
authors found that the cells shift to the adaptive cellular state
by expressing the gene required to survive in the environ-
ment. They also demonstrated that the selection of the
adaptive attractor between bistable states by noise is possible
by introducing phenomenological activity that governs the
synthesis and degradation of protein.
In the present study, we move beyond the two-gene model

and demonstrate that cells select states most favorable for
their survival among a large number of other possible states
as an inevitable outcome of the very fact that cells grow and
that gene expression is inherently stochastic [10–14]. By
studying a model that consists of a protein regulatory
network and a metabolic reaction network, we show that
cellular states with high growth rates are selected among a
huge number of possible cellular states, and this selection is
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only mediated by fluctuations of gene expressions. This
selection of a higher growth state is theoretically explained by
noting that a state with lower growth speed is more
influenced by stochasticity in gene expression, so that it is
easily kicked away, triggering a switch to a state with a higher
growth rate. We show that there is generally a negative
correlation between the rate of noise-driven escape from a
given state and the cellular growth rate. Due to this negative
correlation, an optimal growth state is selected spontane-
ously. Noting the generality of this selection mechanism, we
provide a possible answer to the question how cells generally
adapt to a larger variety of environmental conditions by
changing their gene expression pattern, even without a
specific signal transduction mechanism.

Model

A schematic representation of our model is shown in
Figure 1. It consists of two networks, i.e., a regulatory network
that controls expression levels of proteins through each
other, and a metabolic reaction network whose fluxes are
regulated by the expression levels of the proteins. The
internal state of a cell is represented by a set of expression
levels of n proteins (x1,x2, � � � , xn) and concentrations of m
metabolic substrates (y1,y2, � � � , ym). The change in expression
levels of proteins over time is determined by (i) the synthesis
of proteins, (ii) dilution of proteins by the cell volume growth,
and (iii) molecular fluctuation arising from stochasticity in
chemical reactions. The dilution of proteins is proportional
to the growth rate of cell volume vg, which is determined by
the metabolic fluxes. Also, we assume that the rates of protein
synthesis are proportional to the growth rate vg. This
assumption is natural and is necessary to maintain a steady
state, since the decrease in protein concentration by dilution
due to the cell growth has to be compensated by synthesis (the
biological plausibility of the assumption will be discussed in
the section Discussion). Thus, we write the dynamics of

expression level of the i-th protein as follows:

dxiðtÞ
dt
¼ f ð

Xn

j¼1
WijxjðtÞ � hÞvgðtÞ � xiðtÞvgðtÞ þ gðtÞ ð1Þ

The first and second terms in r.h.s. represent synthesis,
dilution of the protein i, respectively. In the first term, the
regulation of protein expression levels by other proteins are
indicated by regulatory matrix Wij, which takes 1, 0, or �1,
representing activation, no regulatory interaction, and
inhibition of the i-th protein expression by the j-th protein,
respectively. The synthesis of proteins is given by the
sigmoidal regulation function f(z) ¼ 1 / (1 þ exp(�lz)), where
z ¼ (

P
Wijxj(t) � h) is the total regulatory input with the

threshold h for activation of synthesis, and l indicates gain
parameter of the sigmoid function. The regulatory inter-
actions are determined randomly with the rate qa, qi,
indicating the connection rate of excitatory paths and
inhibitory paths, respectively.
The last term of r.h.s. in Equation 1 represents the

molecular fluctuation. For a specific form of the noise, we
assume that there are fluctuations on the order of

ffiffiffiffi
N
p

for
reactions involving N molecules, then we add a noise term
g ¼ nðtÞ

ffiffiffiffiffiffiffiffiffi
xiðtÞ

p
, where n(t) denotes Gaussian white noise with

Figure 1. Schematic Representation of Our Cell Model

The model consists of two networks, i.e., a gene regulatory network and
a metabolic network. As a schematic example, simple networks consisted
of n¼7 genes and m¼6 metabolic substrates are shown. The red arrows
in the regulatory network represent activation of expressions, while
green lines with blunt ends represent inhibition. The arrows from a gene
to itself mean autoregulation of expressions. As a result of these
regulatory interactions, the dynamics of expression levels of proteins
have multiple attractors. The metabolic reactions, represented by blue
arrows, are controlled by expression levels of corresponding proteins.
The correspondence between metabolic reactions and gene products
(proteins) are shown by the thin black arrows. The regulatory matrix Wij

of the presented network takes W21 ¼W32 ¼W33 ¼W45 ¼W56 ¼W67 ¼
W77 ¼ 1, W24 ¼ W53 ¼ W57 ¼�1, and 0 otherwise. The reaction matrix
Con(i,j,k) metabolic network takes a value 1 for the elements
(1,3,1)(2,3,2)(3,4,3)(6,3,4)(4,5,5)(6,4,6)(5,6,7), and 0 otherwise. The choice
of n¼ 7 in the figure is only for schematic illustration, and in the actual
simulation we used much larger networks with n ¼ 20 ; 100. In the
present paper, we adopt a much larger network with n¼96 genes and m
¼ 32 substrates.
doi:10.1371/journal.pcbi.0040003.g001
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Author Summary

Adaptation of living systems to various environmental conditions is
one of the most universal phenomena in biology. As is well known
from the paradigmatic case in the Escherichia coli lac-operon system,
cellular adaptation is generally understood as a physiological shift
that is elicited by regulation of genes with specific signal
transduction machinery. However, here is an unsolved paradox. If
such strategy is the only means by which cells can adapt to a
different environment, cells cannot survive a novel environment
before a signal transduction apparatus has a chance to evolve. Some
form of nonspecific adaptation must allow cells to grow robustly in
the novel environment, as is also suggested by recent experiments.
This is natural considering that a huge set of signal transduction
mechanisms would otherwise be needed for all potential environ-
mental conditions that cells may face. Our theoretical study
demonstrates that, in fact, changes in gene expression pattern can
be adaptive; i.e., a state most favorable for cells’ survival is selected
without explicit hardwired regulatory circuits. This occurs inevitably
for any cells that grow under stochastic gene expression. Our
mechanism is generic and explains why cells adapt and grow
optimally in a variety of environments, taking advantage of
stochasticity.
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the amplitude r. In this model, we assume that the amplitude
of the noise is independent of the synthesis and dilution
terms of proteins, since the inclusion of noise source that
depends on the rates of synthesis or dilution does not change
the simulation results qualitatively.

Temporal changes in concentrations of metabolic sub-
strates are given by metabolic reactions and transportation of
substrates from the outside of the cell. Each metabolic
reaction is catalyzed by a corresponding protein. Some
nutrient substrates are supplied from the environment by
diffusion through the cell membrane, to ensure the growth of
a cell. Here, the dynamics of i-th substrate concentration yi is
represented as:

dyi
dt
¼ e

Xn

j¼1

Xm

k¼1
Conðk; j; iÞxjyk � e

Xn

j 9¼1

Xm

k9¼1
Conði; j9; k9Þxj 9yi

þ DðYi � yiÞ

ð2Þ

where e indicates the coefficient for the metabolic reactions,
and Con(i,j,k) represents the reaction matrix of the metabolic
network, which takes 1 if there is a metabolic reaction from i-
th substrate to k-th substrate catalyzed by j-th protein, and 0
otherwise. The first and second terms of r.h.s. correspond to
synthesis and consumption of i-th substrate by metabolic
reactions, respectively. The third term of r.h.s. represents the
transportation of the substrate through the cell membrane,
which is approximated by the linear term in the diffusion
process with a diffusion coefficient D. Yi is a constant
representing the concentration of i-th substrate in the
environment. The concentration Yi is nonzero only for
nutrient substrates.

The cellular growth rate vg is determined by the dynamics
in the metabolic reactions. We assume that some of metabolic
substrates are necessary for cellular growth, and the growth
rate vg is determined as a function of the concentrations of
them. Several choices of the function are possible, and the
results to be discussed are generally observed as long as the
growth rate varies drastically depending on the concentra-
tions. Here we assume that the growth rate is proportional to
the minimal concentration among these necessary substrates.
In other words, among m metabolic substrates there are r
substrates (y1,y2, � � � , yr) required for cellular growth, and the
growth rate is represented as vg } min(y1,y2, � � � , yr)

The basic requirements of our model are summarized in
the first column of Table 1. In our model, we use specific
forms to realize these requirements, as summarized in the
second column of Table 1 and Equations 1 and 2, while some
generalizations are possible as long as they do not harm the
requirements, as given in the third column of the Table 1.
The requirement for the network to exhibit multiple

attractors entailed some constraints on the range of the
parameters of the network topology. The parameter values of
network connectivity (e.g., qa ; .03 and qi ; .03) are thus
chosen, which may correspond to Kauffman’s ordered regime
[15]. Also, some positive auto-regulation paths (Wii ¼ 1) are
included, which facilitate coexistence of multiple attractors
(in fact, there is a sufficient number of auto-regulation paths
even for E. coli [16]).
We carried out numerical experiments with the model

using several sets of parameter values obeying the above
constraints that allows for multiple attractors, and evaluated
thousand of different randomly generated reaction networks.
We found that the adaptation processes triggered by noise
are generally observed, as long as the requirements in Table 1
are satisfied. In the next section, we present the typical
behaviors obtained by using networks consisting of n ¼ 96
proteins and m¼ 32 metabolic substrates.

Results

In Figure 2, an example of such a selection process of states
is shown by taking the noise amplitude r¼ 0.2. Time series of
expression levels of arbitrarily chosen proteins and growth
rate of the cell are plotted in Figure 2A and 2B, respectively.
In the example, cells are initially put at a state with a low
growth rate. In such a state, stochasticity dominates the time
evolution of protein levels.
After itinerating among various expression patterns, the

cellular dynamics finds itself in a state with a higher growth
rate. Such transition repeats until the growth rate becomes
sufficiently high. Once a gene expression pattern supporting
the optimal growth is reached, the system maintained it over
time.
This selection of higher growth states is observed for all the

thousand networks we simulated. It also works independently
of initial conditions. As the final state depends on the initial

Table 1. Summary of Basic Requirements for Our Adaptation Mechanism

Basic Assumptions Necessary for Our

Adaptation Mechanism

Representation in the Present Model Possible Generalizations

Multiple stable states in a cell Multiple attractors in gene regulatory dynamics

in Equation 1

The number of attractors can be arbitrary;

attractors can be periodic or chaotic.

Growth rate of a cell vg depends on cell state. Dependence of growth rate on metabolic state

(vg } min(y1,y2, � � � , yr)) while metabolic process is

controlled by gene regulatory dynamics (Equation 2)

Other forms of growth rate dependence on

(y1,y2, � � � , ym); feedback from metabolic process

to gene regulatory dynamics can be included

in Equation 1

Synthesis of protein increases with vg to

compensate the dilution by the volume increase

Rates of both the synthesis and dilution of proteins

are proportional to vg.

Rigorous proportionality can be relaxed.

Stochasticity in expression dynamics Noise term in gene regulatory dynamics in Equation 1 Other forms are adopted as long as the noise

amplitude does not vanish for a state without

cellular growth; stochasticity in metabolic process

can be included.

doi:10.1371/journal.pcbi.0040003.t001
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condition, we have computed the distribution of the final
growth rate reached from randomly chosen initial conditions.
The distribution of final growth rate thus obtained is plotted
in Figure 3A. In the case without noise, i.e., the noise
amplitude r ¼ 0, the cellular state rapidly converges
deterministically into an attractor. In such a case, the final
growth rates exhibit a broad distribution as shown in Figure
3A, representing a wide variety of the final cellular states. In
contrast, under presence of noise (r ¼ 0.2), the final growth
rates exhibit a relatively sharp distribution, due to the
selection process of faster growth states, as we have seen in
Figure 2.

Note that once one of the expression patterns is selected as
an attractor, the flux pattern on the metabolic network is
uniquely determined. As a result, the cellular growth rate vg is
also fixed, which in turn affects the protein expression
dynamics. Here the influence of noise depends on the growth
rate vg for each attractor. When vg is small, the deterministic

part of protein expression dynamics (i.e., the first and second
terms of r.h.s. in Equation 1) is small, so that the stochastic
part in the dynamics is relatively dominant in the protein
expression dynamics. Then, the probability to escape the
attractor due to fluctuation is large. In contrast, when the
growth rate vg is large in the attractor, the magnitude of the
deterministic part of expression dynamics is larger than that
of the stochastic part. As a result, the probability to escape
the state becomes small (even if the attractor of regulatory
dynamics is not a fixed point but oscillatory, our argument
follows by considering the minimal, or average, growth rate of
each oscillatory state). It should be noted that all the protein
concentrations are not necessarily higher for an adaptive
state. Some proteins will increase their concentrations, while
others will not. For an adaptive attractor, the overall synthesis

Figure 2. Selection of a Higher Growth State by Noise

(A) Time series of protein expressions xi(t). Ten out of 96 protein species
are displayed. The vertical axis represents the expression levels of
proteins, and the horizontal axis represents time.
(B) Change in growth rate vg observed during the time interval shown in
(A). Initially, the growth rate of the cell fluctuates due to the highly
stochastic time course of protein expression. After a few short-lived
nearly optimal states (c.f. 4,800 ; 5,600 time steps), the cell finds a state
of protein expression that realizes a high rate of growth. The parameters
are h ¼ 0.5, l ¼ 10, qa ¼ qi ¼ 0.03, e ¼ 0.1, and D ¼ 0.1. In addition, we
enhanced the rate of positive autoregulatory paths, i.e., Wii ¼ 1 for i-th
gene, so that the regulatory network has multiple attractors. In the
simulations, 30% of activating paths are chosen as autoregulatory paths.
doi:10.1371/journal.pcbi.0040003.g002

Figure 3. Distribution of Growth Rate and Escape Probability from an

Attractor

(A) The distribution of growth rate. Starting from randomly chosen 105

initial conditions, the distribution of growth rates after 105 time steps are
computed with and without noise (r¼ 0.2).
(B) Relationship between the growth rate vg and the probability to
escape an attractor within a certain period of time. The probability is
computed by 105 trials starting from randomly chosen initial conditions.
After a cell reaches a stable state, noise (r¼0.2) is added, and the time it
takes the cell to escape from the corresponding attractor is measured.
The y-axis represents the probability that the cellular state is kicked out
of the original state within 103 time steps, and the horizontal axis shows
the growth rate vg of the original state.
doi:10.1371/journal.pcbi.0040003.g003
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rate of proteins is increased, but the overall concentration is
not necessarily increased since the dilution of proteins by cell
growth is also increased.

In Figure 3B, the relationship between the growth rate vg
and the probability of an escape to an attractor within a
period of time is displayed. The probability is higher as the
growth speed of cell is lower. It follows naturally from this
relationship that cells drift with a directional bias toward a
higher growth rate. Hence, as long as the deterministic part
of gene expression (i.e., synthesis minus dilution) increases
with the growth rate vg while the noise amplitude has a vg-
independent part, the selection of attractors with higher
growth rates generally follows.

The emergence of the selection process as presented in
Figure 2 is not restricted to a specific environmental
condition. Instead, the mechanism is a general one ensured
by the physical limitation of the replicating system. The
mechanism makes it inevitable for the cells to seek states with
(nearly) optimal growth independently of environmental
context. To show the adaptation process over several
environmental conditions, we have computed the temporal
evolution of our model, under changing nutrient conditions.

This was achieved by updating the concentrations Yi of a set
of substrates that had nonzero Yi in a few perturbations at
successive time points. We have plotted in Figure 4 a time
series of protein expressions and the growth rate, while
environmental conditions are changed at the time points
indicated by arrows. After the environmental changes, the
fluctuation in expression dynamics is observed. This increase
in fluctuation continues, until the cell finally finds a state that
ensures a high growth rate. Adaptation to a novel environ-
ment is thus possible.
Next, we investigate how this noise-driven adaptation

depends on the noise amplitude. In Figure 5, the final
growth rate vg is plotted against the noise amplitude r. For
small noise amplitude (r , 10�2), the final growth rates are
broadly distributed, since cells cannot escape from the first
attracting state that they encounter. On the other hand, when
the noise amplitude is larger (r . 1), the final growth rates
again exhibit a broad range distribution, because the cellular
state continues to change without settling into any attractor.
In the intermediate range of the noise strength 10�2 , r , 1,
those cellular states are selected that are associated with
significantly higher growth rates than those found in the
other noise ranges. This shift of the final growth rate is due to
the selection of cellular states by fluctuations, as shown in
Figure 2.
Stability of a given attractor against noise is estimated by

whether the first two terms in Equation 1 are larger than the
noise term. One can roughly estimate that the stability
changes at around vg 3 O(x) ; r2, where x represents the
protein expression represented in Equation 1. If the former
term is larger for attractors with higher growth rates, and
smaller for other attractors with lower growth rates, then the
former attractors will be selected. Considering that the term
O(x) is about 0.1 ; 1, higher growth rates are selected when r2

exceeds min(vg)(0.1 ; 1), while the selection no longer occurs
when r2 . max(vg)(0.1 ; 1) where all the states are visited
randomly (here max and min represent the maximum and
minimum of vg over attractors, respectively). The selection

Figure 4. Adaptation Process over Several Environmental Conditions

(A) Time series of protein expressions xi(t) when the environmental
condition is altered. The environmental conditions, i.e., substrates having
nonzero Yi, are changed at time points indicated by arrows.
(B) Change of growth rate vg in the same time interval as (A). After the
environmental changes, both expression levels of all proteins and the
growth rate start to fluctuate until the cell finds a state of protein
expression that realizes a high growth rate. In the simulation, the noise
amplitude r¼ 0.2.
doi:10.1371/journal.pcbi.0040003.g004

Figure 5. The Relationship between the Noise Amplitude r and the

Growth Rate vg

Starting from randomly chosen initial conditions against the noise
amplitude r ranging 10�4 , r ,3, the growth rates vg after 105 time
steps are plotted. In the intermediate range r of the noise strength 10�2

, r ,1, cellular states with high growth rates are selected among a
huge number of possible cellular states, as depicted in Figure 2.
doi:10.1371/journal.pcbi.0040003.g005
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works within the range of noise amplitude min(vg) , r2 / (0.1
;1) max(vg). This estimate is consistent with the numerical
simulation.

Discussion

Numerical simulation and analysis of our model demon-
strate how stochasticity in cellular reaction dynamics results
in the selection of a stable gene expression pattern that
supports higher growth rates. The selection works for any
initial cellular states and environmental conditions. The
results presented in this paper generally appear as long as the
conditions in Table 1 are satisfied, i.e., coexistence of
multiple attractors, dependence of growth rate on attractors,
increase of cellular reaction process with the growth speed,
and stochasticity in reaction dynamics.

As long as these requirements are satisfied, our results on
adaptation are obtained, independently of the details of the
model, such as parameters and model equations. To be
specific, we have confirmed the robustness of our result
against the following changes in the model.

Parameter values of reaction dynamics. The results
presented in this paper are robust with respect to parameter
changes in reaction dynamics, as long as the basic require-
ments in Table 1 are satisfied. For example, if the reaction
coefficient of metabolic reactions changes from e¼ 0.1 to 10,
the selection of higher growth states still occurs, although the
time necessary to approach the final high-growth states may
depend on the parameter values.

Determination of growth rate by metabolites. In the
present model, we assume that some metabolites are required
for cellular growth and a metabolite having minimum
concentration among these metabolites limits the growth
rate. Thus, we use the simple rule that the growth rate vg is
determined to be proportional to the minimum concen-
tration of these metabolites. However, such specific form on
how the growth rate depends on metabolites is not important
for our results; instead, the same results are obtained as long
as the growth rate is somehow determined by metabolite
concentrations.

Network properties. We confirmed robustness of our result
against the change in the properties of regulatory and
metabolic networks, such as the path density or distribution
of number of paths (including scale-free distribution). The
adaptation by noise generally appears when there are
multiple attractors in the regulatory dynamics.

Stochasticity in metabolic reactions. In our model, the
fluctuation of metabolites concentrations is ignored, consid-
ering that the numbers of metabolite molecules are suffi-
ciently large. However, inclusion of fluctuations of metabolite
concentrations does not alter the adaptation process pre-
sented here.

Regulation of protein expression by metabolite. Some
metabolites are known to regulate the protein expression
dynamics, such as lactose and galactose, to transmit informa-
tion on environmental conditions to regulatory dynamics.
However, we do not incorporate such feedback regulations
from metabolites into the model, since the essence of our
results is to demonstrate that the adaptation process to any
environmental condition is possible by the stochastic nature
of regulatory dynamics even without such feedback regula-
tions. It can be expected that the inclusion of such feedback

from metabolite will not alter the adaptation process we
proposed, as long as the requirements in Table 1 are satisfied.
Similarly, inclusion of different types of proteins, such as
regulatory factors, catalysts of metabolic reactions, and
building blocks does not harm the adaptation process.
The selection of an attractor with higher growth rates

works when the cellular states are switched by stochasticity in
protein expressions and there is a negative correlation
between the growth speed and residence time of each cellular
state. In our model, the negative correlation is incorporated
through the property that both the synthesis and dilution of
proteins are proportional to the growth rate, while the noise
amplitude is independent of it.
The rigorous proportionality of protein synthesis and

dilution rate to the growth rate can be relaxed. Indeed, the
present adaptation mechanism works as long as there is a
positive correlation between the synthesis rate and the cell
volume growth rate. There is some experimental support. For
example, the positive correlation between the rate of protein
synthesis and the growth rate was demonstrated in some
microorganisms [17,18]. Furthermore, the fact that the
intracellular protein concentrations are relatively unchanged
in cells against the change in the cell growth rate [17,19]
indicates that the synthesis and dilution of proteins in a cell
are balanced. Since the dilution of proteins is proportional to
the growth rate, this also supports the proportionality
between the protein synthesis and the cell growth rate. Of
course, one could include the degradation process of proteins
in addition to the dilution. Even though the growth-rate
dependence of the degradation process is not clear, the
present adaptation mechanism still will work as long as the
growth-dependent dilution dominates the decrease of pro-
tein concentrations.
Even if the noise form in gene expression is varied, the

attractor selection will work as long as the noise amplitude
does not vanish with the growth rate, or, in other words, as
long as a certain amplitude of the noise is maintained in the
non-adaptive state. For example, we have simulated a model
with another noise term, ffiffiffiffiffivgp gðtÞ, in addition to the noise in
Equation 1, and confirmed that the present adaptive attractor
selection still works.
On the other hand, if the variance of total noise decreased

linearly with the growth rate vg and vanished at vg ¼ 0, the
present selection would not work. However, as long as there
is a basal process for the protein synthesis (and degradation)
even when a cell does not grow, there should exist a growth-
independent part in the noise as in Equation 1. Although that
part of noise has not been measured separately, the fact that
the synthesis of mRNAs, proteins, and metabolites are
maintained even in the stationary phase of a cell [20] suggests
that there exists a growth-independent part in the noise
term.
As for the description of stochastic dynamics in cells, there

are two major methods, i.e., continuous dynamics (Langevin
description) as adopted here and discrete particle dynamics.
An efficient algorithm for the latter description is the
Gillespie method [21]. To confirm the validity of our result,
we have also simulated a stochastic model using the Gillespie
method. Due to technical limitations in the computational
speed, we have simulated a simpler model with a few degrees
of freedom that allows only for two attractors in the
regulatory dynamics. We observed that the attractor with a
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higher growth rate is selected, in agreement with the
simulation of the Langevin equation (Equation 1), as long as
the noise does not vanish with the rates of synthesis and
degradation of proteins. This suggests that the present
attractor selection works if the number of molecules in a
cell is not so large.

The magnitude of protein expression noise quantified by
coefficient of variation could be on the order of 0.1 ; 0.01, as
shown in [22]. In some cases it is suggested that the
fluctuation is large enough to force cells back and forth
between discrete states [23]. This magnitude of noise is within
the estimated range required for the attractor selection,
although separate measurement of the basal noise is
necessary to complete the estimate.

The present study provides a possible explanation for the
establishment of the optimal growth rate in the metabolic
reaction networks, proposed by Palsson and his colleagues
[24–26]. Their study suggested that a metabolic network is
organized so that the growth rate is optimized under given
conditions. For example, it was shown that E. coli strains with
a deletion of a single metabolic gene can adapt to several
environmental conditions, and that the value of the final
growth rate is consistent with that calculated as an optimal
growth rate in these perturbed metabolic networks and
environmental conditions [26]. The observed adjustments of
metabolic fluxes often occur within several days, suggesting
that such an adaptation process is not caused by selection of
mutants having a higher growth rate under the given
condition. These bacteria adjust their intracellular state to
optimize the growth rate, even though they have never
experienced such an environment.

In fact, the attractor selection presented in this paper
provides a mechanism for selecting a cellular state with an
optimal growth rate, over a variety of environmental
conditions. An important point here is that the presented
mechanism requires no fine-tuning of regulatory mecha-
nisms. As long as the cellular states are perturbed sufficiently
by the stochasticity in gene expressions, a negative correla-
tion between the growth rate and the escape probability from
the corresponding cellular state is established. Thus, we
propose that adaptive attractor selection may be at work
behind the observed regulations of metabolic fluxes leading
to optimal growth rate.

The merit of the present adaptive attractor selection
induced by, and optimizing, growth lies in its generality.
The mechanism can work without fine-tuning through
evolution. Indeed, it makes adaptation possible to a novel
environment that the species has not experienced in the
course of evolution. This is important given that organisms
have to survive by adapting to new environments even before
a specific signal transduction network has been developed.
Our mechanism provides such general and nonspecific
‘‘proto-adaptation.’’

Of course, there are demerits in our mechanism also. If the
difference in the growth rates between the two adaptive states
is small, the present mechanism cannot distinguish them.
Either of these states can be selected. Hence it does not work
for very ‘‘fine-grained’’ selection between attractors confer-
ring closely similar growth rates. Also, the selection process
proposed here is not very efficient. The time required for the
adaptation can be long. For example, in the case shown in
Figure 2, a large number of generations is needed to reach the

adapted state with the optimal growth rate. This long
adaptation time is a disadvantage of the present noise-driven
attractor selection, compared with the fine-tuned signal
transduction mechanisms. However, such long adaptation
time for novel environments may not be fatal for organisms
in nature, since not every cell has to adapt to such environ-
ments. For example, let us consider the case that a population
of a large number of cells encounters a novel environment.
Even if the average time required for noise-driven adaptation
is long, some cells in the population will be able to find an
adapted state within a single or a few generations, given the
stochastic nature of the present mechanism. Then these cells
start to increase their population. Adaptive response at the
population level progresses rather fast, even when each
adaptation at the single cell level is inefficient.
The reason that the present adaptation process takes so

long a time is that we have considered selection process over
1,000 attractors, to demonstrate clearly how it works. On the
other hand, if the number of attractors is few for each given
environment, the selection process is generally completed
within a generation or a few. Indeed, the selection over a few
attractors may be sufficient to explain adaptation to most
novel environments.
Also, the time required for adaptation depends on the

choice of network. Here we used regulatory networks
generated randomly. By using an organized network, the
attractor landscape, such as ruggedness, will be changed, so
that the adaptation time can be radically reduced. For
example, it is interesting to study the evolution of attractor
landscapes under the present noise-driven adaptation. We
expect that some nontrivial characteristics in attractor
landscapes (e.g., funnel structures) would emerge to enhance
fast and accurate response to environmental changes, which
may help us to understand how existing signal transduction
mechanisms have evolved. The relationship between adapta-
tion dynamics and the characteristics of attractor landscapes
is an important future topic.
In the adaptation process proposed here, existence of

multiple attractors is necessary. However, there is little
evidence that the regulatory network within a cell has
multiple attractors, so far [23,27–29]. With regard to the
gene regulatory network, there is a certain amount of
(positive) feedback regulatory interactions [16], which can
result in multi-stability of regulatory dynamics. On the other
hand, experimental confirmation of the existence of multiple
attractors in regulatory dynamics is still difficult, since
simultaneous and single-cell level measurements of multiple
genes/proteins are necessary for such study. Furthermore, if
the adaptation process proposed here works, we can observe
only the adaptive attractor, even if there are potentially
multiple attractors (note that the adaptation time is short if
the number of attractors is not huge). The experimental/
theoretical verification of the existence of multiple attractors
in regulatory dynamics remains for future study.
The present noise-induced selection of a higher growth

state has not been directly confirmed in real biological
systems so far. Standard experimental data concern only the
adaptation process based on the signal transduction net-
works, so that we need novel experimental setups to verify the
proposed adaptation mechanism. There are two possibilities.
One is the use of artificial gene networks, as demonstrated in
[9]. In this approach, one can introduce a gene network
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disconnected from the existing signal transduction networks,
and investigate whether the artificial gene network exhibits
selection of a higher growth state. Another possibility is the
study of cellular response against environmental changes that
the cells have never faced, or response of cells in which
known regulatory mechanisms are destroyed. In both cases,
by investigating the response of cells, one can examine if cells
show adaptive behavior to environmental change, without the
sophisticated regulatory mechanisms, but by utilizing the
fluctuation-based selection of a higher growth state, as
presented in this paper.
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