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Chemotaxis is ubiquitously performed by bacteria. They sense and move toward a region with a higher
concentration of an attractive chemical by changing the rate of tumbling for random walk. We numerically
studied several models with internal adaptive dynamics to examine the validity of the condition for chemotaxis
proposed by Oosawa and Nakaoka �J. Theor. Biol. 66, 747 �1977��, which states that the time scale of tumbling
frequency must be smaller than that of adaptation and greater than that of sensing. Suitable renormalization of
the time scales showed that the condition holds for a variety of environments and for both short- and long-term
behavior.
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I. INTRODUCTION

Chemotaxis is frequently observed in microorganisms and
widely studied experimentally and theoretically �1,2�. For
example, bacteria move in the direction of a higher concen-
tration of an attractive chemical. Although such chemotactic
behavior has been evolved, bacteria never move toward a
goal directly, but instead often tumble by changing direction
randomly. By changing the tumbling frequency, they �and
some other microorganisms� assemble around a region rich
in attractants. Experiments on chemotaxis of bacteria show
that they regulate the tumbling frequency while the direction
is changed randomly. In fact, the tumbling frequency of bac-
teria is smaller when they are located in a region with a
higher concentration of attractant than in a region with a
lower concentration �3,4�.

In particular, Escherichia coli is one of the most thor-
oughly studied organisms with regards to chemotaxis. They
respond to external stimulus �2,5–8� by changing intracellu-
lar chemical concentrations temporally through the internal
signal transduction pathway �9–12�, while the tumbling fre-
quency is changed according to the concentrations. The de-
tailed machinery of signal transduction as well as relevant
proteins to it have been elucidated experimentally, while the-
oretical models on ligand-receptor binding and receptor
modification have succeeded in explaining the intracellular
adaptation process observed experimentally �13–18�.

Although intracellular process bridging between the exter-
nal attractant concentration and the change of tumbling fre-
quency has been clearer both experimentally and theoreti-
cally, we need also to understand how the decrease in
tumbling frequency at a higher concentration region of at-
tractants makes the cells assemble to the region. Indeed, this
experimental observation seems peculiar if one only consid-
ers normal Brownian movement, because a high �low� tum-
bling frequency should yield a small �large� bacterial diffu-
sion constant in the continuum limit, respectively, making
the attraction to a high-concentration region impossible.

By incorporating an internal state with adaptation dynam-
ics of a certain time scale into an element exhibiting Brown-
ian motion, however, chemotactic behavior is possible, as
was discussed by Oosawa and Nakaoka more than 25 years

ago �1�. In other words, the existence of memory in the in-
ternal state makes chemotaxis possible. In contrast, de
Gennes �19� noted recently that the elements can move in a
favorable direction albeit not having an internal state to re-
tain some memory. However, this is true only for short-term
behavior of chemotaxis. As Clark and Grant reported �20�,
the steady state distribution of long-term behavior is not bi-
ased toward a favorable region. In fact, a temporal change in
tumbling frequency with some memory is required to obtain
a biased steady state distribution. By assuming a class of
autocorrelation function for the change in tumbling fre-
quency, Clark and Grant showed that the steady state distri-
bution of bacteria can be biased toward a favorable region. In
addition, by introducing some constraints and optimizing
both the short-term and long-term chemotactic behavior, they
obtained a solution to the optimal correlation function.

From a biological viewpoint, the temporal change in the
tumbling frequency is a result of intracellular dynamics, as
mentioned by Koshland �21�. For any given intracellular dy-
namics, arbitrary autocorrelation function is not possible.
Now it is interesting to elucidate the means by which specific
intracellular dynamics allow chemotactic behavior. Indeed, a
condition on intracellular dynamics for chemotaxis was pro-
posed earlier by Oosawa and Nakaoka �1�, who studied the
steady state distribution of cells with internal adaptive dy-
namics and the required conditions for chemotactic behavior.
Indeed, to exhibit chemotaxis, microorganisms must imme-
diately sense the change and gradually adapt to the new en-
vironment by exploiting the dynamics of the internal state,
when the environment changes. Oosawa and Nakaoka com-
pared the tumbling time scale � with the sensing time scale �s
required to detect the environmental change and the time
scale �a for adaptation. They showed that bacteria cannot
move toward a region with a higher chemical concentration
when � is smaller than �s, nor when � is larger than �a. When
tumbling is fast, bacteria tumble randomly without any di-
rectional motion, whereas at a slower tumbling rate informa-
tion about attractant field disappears before they change di-
rections. The proposed condition, which we call the Oosawa
condition, states that the tumbling time scale � is greater than
the sensing time scale ��s� and smaller than the adaptation
time scale ��a�.
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By using a simple model of an explicit intracellular dy-
namics, and considering the change in the tumbling rate ac-
cording to the intracellular state, one can now examine the
validity of the Oosawa condition for chemotaxis. Indeed, ex-
amples of such simple models have already been proposed
�22–24�. Here we study a simple dynamical system with two
degrees of freedom that responds and adapts to the external
environment. These internal dynamics correspond to intra-
cellular reaction processes, and are obtained by extracting
the essence of adaptation process. They exhibit both quick-
sensing and slow-adaptive processes characterized by param-
eters �s and �a, respectively. Using this model, we have ex-
amined the validity of the Oosawa condition for chemotactic
behavior. We first demonstrate this condition for a chemical
concentration field with a step function in space. Next, using
a field with a continuous slope, we describe our observations
of chemotactic behavior in a broader regime than originally
proposed. We explain this apparent discrepancy from the
Oosawa condition by renormalizing bare time scales through
the bacterial motion within the attractant gradient. Using
these renormalized time scales, we reconfirm the relevance
of the Oosawa condition. Consistency of our result with
experimental observations on bacteria chemotaxis is briefly
discussed.

II. MODEL

To date, several models describing the detailed process of
intracellular process have been proposed, which explain the
adaptation process observed experimentally �13–18�. Our
aim in the present paper, however, is not to describe a de-
tailed process for a particular organism. Rather, we intend to
study a general condition between intracellular dynamics and
macroscopic behavior of cells to gather a region with higher
attractant concentration. Hence, instead of adopting a de-
tailed intracellular reaction dynamics, we consider a minimal
system to show adaptation. By taking this simple but general
model, one can study a general condition for chemotaxis, not
restricted to E. coli or bacteria.

As was first pointed out by Koshland �25�, perfect adap-
tation is possible by considering a system with two variables,
which are denoted by u and v, here. When external environ-
ment is changed following the motion of a cell, the values of
these variables first change, but then they are absorbed only
into one of the variables, and the other variable �which is u
here� returns to the original value. Indeed, these adaptation
dynamics are extracted from intracellular reaction dynamics
with complex signaling pathway, as long as they show adap-
tation. An example of such simple models was studied by
Erban and Othmer for macroscopic behavior of chemotaxis
�22�.

Following this general discussion on modeling, we intro-
duce a simple model to examine a condition for chemotaxis.
We first introduce an internal state of a cell that responds and
adapts to the external concentration of an attractant, and
thereby controls the tumbling frequency. This internal vari-
able is denoted by u, which may be considered as, for ex-
ample, the intracellular concentration of some key protein
species �in the case of E. coli, CheY� that responds to the

external chemical and controls the tumbling frequency. This
internal chemical responds to the concentration of the attrac-
tant �termed S here� in the field. As the cell moves and the
concentration of the external chemical increases, the concen-
tration of u increases and returns to the original value, a
process known as adaptation �25�. The simplest way to have
such adaptation dynamics is by introducing another internal
chemical, whose concentration is given by v, so that the
kinetics is governed by

du

dt
= f�u,v;S� ,

dv
dt

= g�u,v� , �1�

where the fixed point solution u* ,v* given by f�u* ,v* ;S�
=0, g�u* ,v*�=0 is stable. If f increases with S and u* is
independent of S, the response to S and adaptation are satis-
fied because u increases with S first and then returns back to
u*. Here, when the solution g�u ,v�=0 involves u but not v,
the latter constraint is satisfied. For example, g�u ,v�=�uv
−�v, where � ,� are positive constants satisfies the
condition. In this paper, we focus our study on such a case,

du

dt
= f�u,v;S� = S − �uv − �u ,

dv
dt

= g�u,v� = �uv − �v . �2�

This model corresponds to synthetic reactions S→u,
u+v→2v and linear degradation of u and v. Another simple
example, originally introduced by Othmer �22� is given by
the linear dynamics

du

dt
=

S − �u + v�
�

,

dv
dt

=
S − v

�
, �3�

with � and � as positive constants. We also briefly discuss
the result of this model later. In both models, after S in-
creases, u first increases but later returns to the
S-independent concentration given by fixed-point u*=� /� in
the model equation �2�.

We set the parameter values so that the fixed-point solu-
tion u* ,v* is stable. In the model equation �2�, this condition
is given by ����S. In this case, provided S	0 following
the increase of S, u first increases from u* and then returns to
the original value exponentially with time and shows a peak
in time.

From the dynamics of u, we can estimate the sensing time
�s and adaptation time �a. The sensing time �s is the time
required for the response of u against the increase of S.
Hence it is estimated as the time to reach this peak value of
u in time after the increase of S. In the model equation �2�, it
is given by �1/2S. In contrast, the adaptation time �a is
estimated by the relaxation time towards the fixed point
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�u* ,v*�. Considering the exponential relaxation to the fixed
point, it is given by the inverse of the smaller eigenvalue of
the linearized equation of �2� around the fixed point, and is
�1/�. In this way, the internal time scales are represented by
the reaction parameters.

Here we assume that the tumbling frequency is given by a
�continuous� function of the concentration of u. The tum-
bling occurs randomly, however its frequency changes in re-
sponse to the external signal S. We assume that the cell
moves with a constant speed, until it changes direction,
whose probability �i.e., the rate of tumbling� 1/��u� is given
by a function of u. For u=u*, we set the rate as 1 /�* and
assume that ��u� is an increasing function of u. As an ex-

ample, we choose the form 1
��u� =


1−
2 tanh���u−u0��

�* and set the

parameters so that ��u� approaches 2�* for u	u*, and �* /2
for u�u*, while � is kept sufficiently large for response to a
change in u by Eq. �2�. This specific choice is not essential
and the results we discuss remain valid as long as the rate
�1/��u�� approaches a value sufficiently smaller than
1/�* for large u, and sufficiently larger than 1/�* for small u.
This change in the tumbling frequency is consistent with
experimental data �26�.

Note that the basal tumbling rate 1 /�* is given indepen-
dently of the intracellular dynamics, so that it is independent
of �s and �a. This allows us to examine the validity of the
Oosawa condition. Hereafter, we take Brownian particles sat-
isfying Eq. �2� and follow their behavior in a one-
dimensional space.

The concentration of attractants is set as a fixed function
of space, given by S�x�. As the particles �cells� move around
the space, their position x changes, and the concentration of
the attractant they receive changes according to S�x�. Hence
the cell state is given by a set of ordinary differential equa-
tions �2�, where the variable S is given by S�x�, with the
position of the cell as x, while the motion of the cell is given
by random walk with the tumbling frequency ��u�.

III. RESULTS ON THE CONDITION FOR CHEMOTAXIS

A. Case 1: Step change in the chemical field

As a first example, we consider a case where the external
field is given by a step function �i.e., S�x�=S+ for x�0 and
S�x�=S− for x�0� and examine whether the cells assemble
in the region x�0. The fraction of cells at x�0, numerically
obtained for the steady state is plotted against the parameter
�* in Fig. 1. In the simulations, all cells are initially located
at x�0. The figure shows examples from three different in-
ternal time scales �s and �a, and the data without internal
dynamics are plotted as a reference. Table I shows the time

scales ��s, �a, �s̃ �to be defined later�� for the three cases we
used in the plot.

As shown, the fraction of cells in a region x�0 peaks at
certain �*. For all cases, the most effective tumbling time
�peak lies at �s
�peak
�a. All simulations for other param-
eters show that the elements assemble in the region x�0,
that is, chemotaxis works well when �s
�*
�a. These re-
sults confirm the Oosawa condition. In contrast, as �* in-

creases for �*	�a or decreases for �*��s, the fraction
approaches 0.5, implying that chemotaxis is not possible.

B. Case 2: Chemical gradient with a constant slope

Next, we consider a case where external chemical concen-
tration forms a constant gradient �i.e., S�x�=S0+sx�. Again,
by initially positioning all cells in the region with small x
with low attractant concentration, we can quantify whether
cells move toward larger x. In this case, the cells with inter-
nal adaptive dynamics move toward larger x and stay there,
regardless of their tumbling time �*.

The speed for climbing up the gradient depends on �* and
the relation between �* and the internal time scales �s and �a.
To check the speed, we examined the time T necessary to
reach a specific large x value, as shown in Fig. 2. As �*

becomes smaller, the time T increases with 1/�* for �*��c
*

with some critical value �c
* that depends on �s and �a. In other

words, efficient adaptive motion requires �*	�c
*. The next

step was to examine whether this range of �* satisfies the
Oosawa condition given by �s and �a.

We note that even if �*��a, the cells can move to a larger
x efficiently, whereas the critical �c

* needed to increase
T�1/�* is much larger than �s. The former may suggest the
chemotaxis for �*��a, and the latter may imply a stronger
condition �*��c

*	�s for chemotaxis. This seemed to violate
the original form of the Oosawa condition ��s
�*
�a�.

FIG. 1. �Color online� The fraction of the cells located at x�0
�i.e., in the S-rich field� are plotted as a function of �*. The fraction
is obtained from the temporal average for the time spans of 50 000
�1��*�, 200 000 �0.1��*�1�, and 300 000 ��*�0.1�, after the
steady state distribution is reached over 100 cells. See Table I for
the parameters of the model equation �2� with A, B, and C; the data
without internal dynamics are also plotted ��� for reference.

TABLE I. The parameters and the time scales.

Case � ��=� /2� �s �a �s̃

A 0.35 0.25 0.035 4 10�30

B 3.5 2.5 0.015 0.4 1�4

C 35.0 25.0 0.0035 0.04 0.2�0.5
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To resolve this discrepancy, we note that the actual re-
sponse and adaptation times for cells moving in the de-
scribed concentration field are modified from those estimated
from the original intracellular dynamics. As the cell continu-
ously moves and senses the change in the external concen-
tration, these time scales renormalized. To examine this ef-
fect, we have studied the intracellular dynamics more
closely, keeping in mind that values of �s and �a may depend
on the dynamics of the internal system �u ,v� and that S is
changing continuously with time according to the cell’s mo-
tion. In our model, as S�x� continues to change, the equilib-
rium point for �u ,v� also changes, which invalidates the
baseline u* ,v* to give �s and �a obtained by the linear
approximation method �Fig. 3�.

Instead, by tracking the time series of u and measuring the
time for it to reach the peak and then to u*, we have esti-

mated the renormalized values �s̃ and �ã. First, as a cell
moves to a region with a higher signal concentration S, the
relaxation to the original u* value hardly occurs because, as S
increases, the increase in u occurs before relaxing to u*.

Hence, the renormalized �ã is infinite or at least ��a. Ac-
cordingly, one part of the Oosawa condition �*
�a is always
satisfied.

The sensing time also changes from �s when cells are
placed in a continuously changing field. Although u does not
relax to the original u*, it increases with S and decreases

slowly, as shown in Fig. 4. The renormalized sensing time �s̃
can be estimated by the time needed to reach the maximal

value. The renormalized �s̃ increases from �s as cells move
before u reaches the original peak for a given concentration
of S, because the fixed point of �u* ,v*� continuously changes
as depicted in Fig. 3.

Now, �s̃, the threshold beyond which the �renormalized�
Oosawa condition �s̃
�* is satisfied, is expected to give a

criterion for chemotaxis. We have compared �s̃ with �c
*, the

critical �* value, to show the increase of T�1/�* �see Fig. 2�
and found that the two values agree with each other. We note

that �*��c
*���s̃� is the only condition for chemotaxis, be-

cause T remains constant over a wide range of �*��c
*. Thus,

the �renormalized� Oosawa condition �s̃
�*
�ã correctly
estimates the condition for chemotaxis. Finally, we note that

the renormalized values �s̃ and �ã are independent of the
specific value of slope of S, and that this condition gives a
criterion for chemotaxis for any given attractant gradient.

FIG. 2. �Color online� The time T to reach a sufficiently large x
value, plotted as a function of �*. The parameter values of intracel-
lular dynamics are shown in Table I. The time T was estimated
when the center of 100 cells reached x	1000, after positioning 100
cells initially at x�10.

FIG. 3. �Color online� The orbit of �u ,v� as S changes continu-
ously. The large points are the equilibrium points �u* ,v*� for given
S values, whereas the dashed lines are stable manifolds at each
time. The curved lines with the arrow show the locus of �u ,v�.
Before �u ,v� reaches the equilibrium point �u1

* ,v1
*� for S value of

the time 1, the equilibrium point shifts to �u2
* ,v2

*�. Accordingly,
�u ,v� hardly reaches an equilibrium point.

FIG. 4. �Color online� The time series of u for the step chemical
field S�x� �solid line� and the gradient with a constant slope �dashed
line�. The series uses parameter values for the case B in Table I,
where the fixed-point value u* is 0.5. The response to the change of
S at t=0.15 is plotted.
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The time T, estimated above as the value necessary to
reach the region with higher attractant concentration, charac-
terizes the ability of chemotaxis over a long term, as men-
tioned by Clark and Grant �20�. In contrast, the condition for
efficient chemotaxis in a shorter term is different in general.
In our case, however, the chemotactic behaviors in the short
and long term are not independent, but are related through
intracellular dynamics. We also examined the short-term
chemotactic behavior by measuring the fraction of cells that
moved toward the higher attractant concentration at T=100,
starting from a random distribution of cells. The fraction is
plotted as a function of �* in Fig. 5, for three examples with

different internal time scales. Here again, if �*��s̃, the frac-

tion is much larger than 0.5, whereas for �*��s̃, the fraction
is about 0.5, indicating that the cells move randomly. Hence,
the Oosawa condition for chemotaxis is also valid for short-
term behavior. Because the internal adaptive dynamics sat-
isfy the renormalized Oosawa condition, we conclude that
chemotaxis works well over both the short and long term.

IV. DISCUSSION

We have presented a model of chemotaxis that includes
internal adaptive dynamics and have shown that the chemo-
tactic behavior appears when the Oosawa condition is satis-
fied, that is, when the time scale of tumbling is greater than
the signal-response time and smaller than the time for the
adaptation.

Our conclusion about the condition for chemotaxis ap-
plies generally for a system with intracellular adaptive dy-
namics. For example, we have also studied the linear model
given by Eq. �3� �22�. By changing the internal time scales �s
and �a, we have examined the validity of the Oosawa condi-
tion for chemotaxis. Whether chemotaxis works efficiently is
determined by the Oosawa condition for both the chemical
concentration field of a step function and a linear gradient,
and both for short- and long-term behavior.

Besides the one-dimensional case, we have also carried
out some simulations for a two-dimensional case, where cells
move around the two-dimensional space �x ,y�, with a gradi-
ent of attractant concentration along the x direction. In this
case, if the change of direction by single tumbling is smaller,
it requires a longer time than �* for a cell to lose the memory
on the direction of motion �for example, if the direction
change is � /3 or so, the loss of memory requires 5–10 times
of �*�. Hence we need to renormalize �* so that it represents
the time for loss of memory. By thus renormalizing �*, as
well as �a and �s, we have again confirmed the validity of the
Oosawa condition, while the chemotaxis works most effi-
ciently when renormalized �* is slightly larger than �s̃, as in
Fig. 2.

To perform chemotaxis, the cell’s internal dynamics must
sense and respond to changes in the external chemical con-
centration. The time scale of sensing should be smaller than
that of the tumbling interval to induce an effective response.
Otherwise, random walks are repeated before the response
occurs. Thus, the condition �s
�* is essential for the short-
term response. In contrast, response in the tumbling fre-
quency without adaptation causes the long-term behavior of
cells to be represented by a random walk, so that chemotaxis
is not possible. This implies the need for intracellular adap-
tive dynamics �i.e., relaxation to the original value�. How-
ever, to induce an effective response to external changes, the
tumbling should occur before the relaxation is completed.
Hence, the condition �*
�a is required. Our numerical re-
sults suggest that the Oosawa condition �s
�*
�a is both
necessary and sufficient for the chemotactic behavior.

Clark and Grant �20� recently reported the conditions for
the internal response function R�t� to show chemotaxis. In
general, the conditions for short- and long-term chemotaxis
differ, but by imposing some type of optimization to balance
the two behaviors, they were able to obtain a certain condi-
tion for the response function, which implies the existence of
a form of memory in the autocorrelation function. We can
estimate the response function R�t� from our model, which
shows that the proper response function in their sense is ob-
tained when the Oosawa condition is satisfied. Similarly, we
can define the Oosawa condition in the response function
R�t� of Clark and Grant. The sensing time �s is estimated
from the response function as R��s�=0, and their solution
satisfies �s��*, whereas �a is much larger than �*.

Note, however, that some ambiguity remains concerning
the optimization condition that compromises short- and long-
term behavior adopted in Ref. �20�. In contrast, we have
assumed the existence of intracellular dynamics that apply to
adaptation after considering the natural properties of intra-
cellular dynamics �25�. By assuming a class of intracellular
dynamics, we have shown that chemotaxis occurs in both
short- and long-term behavior without requiring an optimi-
zation condition, provided that the Oosawa condition is sat-
isfied. Because short- and long-term chemotactic behaviors
are satisfied simultaneously, one expects that cells can
choose such internal adaptation dynamics that enable effi-
cient chemotaxis for a variety of external conditions. In this
sense the optimal condition in Ref. �20� is not necessary.

Here we have demonstrated chemotaxis in the two cases:
with a constant slope and with a stepwise change. Because

FIG. 5. �Color online� The fraction of cells moving toward the
larger x, �i.e., for large S�x�� at T=100. The parameters for intra-
cellular dynamics are shown in Table I, in which all conditions are
the same as those in Fig. 2. The fraction 0.5 indicates the absence of
chemotaxis in short-term behavior.
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most environmental conditions can be represented by the
combination of these two cases, the Oosawa condition gives
a criterion for chemotaxis in general. Furthermore, we have
also confirmed that chemotaxis works when spatial-temporal
noise is added in the external environment.

Because the optimal condition in the internal adaptive dy-
namics depends on the external motility �tumbling time�, the
validity of the Oosawa condition can be checked experimen-
tally. We estimated the internal time scales for the wild-type
and nonchemotactic mutant cells of E. coli from �26,27�.
For the wild type, which of course performs chemotaxis,
�*�1.5, �s�0.4, and �a�4 �seconds�. Accordingly the
Oosawa condition �s��*��a is satisfied. For nonchemotac-
tic mutant cheZ, �*�1.5, �s�3 and �a	15 �seconds�.
Hence, �s	�*, and the first inequality in the Oosawa condi-
tion is not satisfied, and indeed the mutant does not perform
chemotaxis. In addition, the data in Ref. �28� suggest that
both �* and �a change in mutants, whereas the relationship
�*
�a is maintained for the mutants with chemotactic
ability.

In general, different organisms have different time scales
for tumbling and internal time scales ��s and �a�. It will be
important to check the validity of the condition in different
organisms.

Living organisms have many reactions with various time
scales, which, when combined, cause adaptive functions to
emerge. The proper use of different time scales is important
when generating adaptive output behavior in response to
changes in external conditions. The process of chemotaxis
that we have discussed is one of the simplest mechanisms
that takes advantage of the time scale differences, whereas
the condition for different time scales can be generalized in a
more complex reaction-network system, and in intercellular
interactions �29–35�.
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