Abstract

The relevance of phenotype fluctuations among clones (i.e., organisms with identical genes) to evolution has recently been recognized both theoretically and experimentally. By considering the stability of the distributions of genetic variations and phenotype fluctuations, we derive a general inequality between the phenotype variance due to genetic differences and the intrinsic phenotype variance of clones. For a given mutation rate, an approximately linear relationship between the two is obtained which elucidates the consistency between the fundamental theorem of natural selection by Fisher and the evolutionary fluctuation–response relationship (fluctuation dissipation theorem) proposed recently. A general condition for the error catastrophe is also derived as the violation of the inequality, which sets up the limit to the speed of stable evolution. All of these theoretical results are confirmed by a numerical evolution experiment of a cell that consists of a catalytic reaction network. Based on the relationships proposed here, relevance of the phenotypic plasticity to evolution as well as the genetic assimilation is discussed.

Keywords: Evolution; Phenotypic fluctuations; Error catastrophe; Fluctuation-dissipation theorem; Stability; Phenotype-genotype correspondence

1. Introduction

The importance of genetic variation to evolution has been discussed for over a century and is outlined in classic books by Fisher (Fisher, 1930, 1958; Edwards, 2000), Kimura (Kimura, 1983), and so forth. Among the prominent results is the so-called ‘fundamental theorem of natural selection’ by Fisher which states that the evolution speed is proportional to the phenotypic variance brought about by the genetic variance of the population. Here it should be noted that in the established field of population genetics, the existence of a single phenotype from a single genotype under a given environmental condition is implicitly assumed in the formulation of the theory.

On the other hand, the phenotypes of clones can fluctuate from individual to individual (Spudich and Koshland, 1976), even though they have identical genes, and are put in the same environment, as has been recently confirmed quantitatively for bacteria in an investigation involving the fluctuations of abundances of fluorescent proteins (Elowitz et al., 2002; Ueda et al., 2001; Hasty et al., 2000; Sato et al., 2003; Furusawa et al., 2005).

Furthermore, the relevance of phenotypic fluctuations of clones to evolution has recently been discussed by borrowing the idea of the fluctuation–dissipation theorem in physics (Kubo et al. 1985). The theorem, pioneered by Einstein’s theory of Brownian motion (Einstein, 1905, 1906), states the proportionality between the fluctuation of a thermodynamic variable and the response rate of the variable against external force, i.e., the shift of its average

*Corresponding author. Department of Pure and Applied Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan. Tel./fax: +81 3 5454 6746.
E-mail address: kaneko@complex.c.u-tokyo.ac.jp (K. Kaneko).

0022-5193/$ - see front matter © 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jtbi.2005.08.029
value divided by the magnitude of the applied force. In the recent paper of Sato et al. (2003), genetic change is regarded as that of a parameter which controls the phenotype. Thus the change through evolution (artificial selection to a given direction) is represented as an external force to shift the phenotype value in concern. Then, the original fluctuation–dissipation theorem is extended to study a relationship between the phenotypic change through evolution (as a response) and the phenotypic fluctuation. Following this general argument, linear relationship, or at least a positive correlation, between the evolution speed (of phenotype change) and phenotypic fluctuations was proposed. This theoretical prediction has been confirmed in an artificial selection experiment involving fluorescence in proteins in *Escherichia coli* (Sato et al., 2003).

Recall that Fisher’s theorem states the proportionality between evolution speed and phenotypic variance due to genetic variation, whereas the above recent study concerns evolution speed and intrinsic phenotypic fluctuations of clones. As both state the proportionality with the evolution speed, the question arises whether there should be some relationship between phenotypic variance by the distribution of genes (genetic variation) and phenotypic fluctuations of clones.

In general, however, a straightforward relationship between the two is not so easily expected since the genetic fluctuations generally depend on the mutation rate and the population distribution of organisms with different genes, while the phenotypic fluctuations of clones do not. The existence of a relationship, if there is any at all, must originate in some evolutionary constraints concerning stability. In the present paper, we propose a possible relationship between the two through a stability analysis of the two-variable probability distribution function both in phenotypes and genotypes, where the existence of such distribution itself is our most important assumption. First, we give a possible inequality between the two fluctuations, and then, we show that for the mutation rate that achieves the highest evolution speed, this inequality is replaced by an equality. From this we derive the proportionality between the phenotypic variance due to the distribution of genes and the phenotypic variance of the clones of the most dominant genotype. Through these considerations, the recent fluctuation–response relationship in evolution and the Fisher’s theorem are shown to be consistently related with each other. To confirm the validity of our theory we have carried out several simulations where a simple cell model consisting of a catalytic reaction network evolves. The relationship between phenotypic fluctuations of clones and those by genetic variations proposed theoretically is confirmed, as well as the evolutionary fluctuation–response relationship.

Remark: Note that the relationship between phenotypic plasticity and evolution has often been discussed. The term “phenotypic plasticity” usually refers to the changeability of the phenotype under a change of the environment. Here, however, we are concerned with the fluctuations of the phenotypes of clones, in a *given fixed* environment. Only recently there are some studies on it in relationship with the Baldwin effect (Ancel, 1999, 2000; Ancel and Fontana, 2002) or epigenetic inheritance (Pal and Miklos, 1999).

2. Theoretical formulation

2.1. Evolutionary stability in the distribution function

Let us consider a phenotype x that is controlled by a gene, while the genetic change is assumed to be represented by a (scalar) parameter (variable) a, as is often adopted in the population genetics. For example, take the concentration of some protein x whose expression is coded by some gene, represented by a variable a, that is a Hamming distance in the genetic sequence from a given sequence. In the earlier paper (Sato et al., 2003) we have studied the fluctuations of the phenotypic variable x, in relationship with a genetic change given by a parameter a, where we have discussed the probability distribution $P(x; a)$. The most dominant value of the phenotype x for a given genotype a is written by a function $x = x_0(a)$, which is the peak position of the distribution. The phenotype is distributed around $x = x_0$.

In considering the evolution, we need to consider also the distribution of genotype a, instead of regarding it as a given parameter. Through the evolutionary process, the dominant genotype a changes, and the dominant phenotype $x_0(a)$ also changes accordingly. Now, to consider the evolution both with regards to the distribution of phenotype and genotype, we introduce a two-variable distribution $P(x, a; h)$ with h a given environmental condition. Then by changing the environment h (or selection pressure in artificial evolution experiment), the most dominant genotype a and the phenotype change in accordance with the peak in this two-variable distribution $P(x, a; h)$. Existence of such distribution function is the first assumption here. The second assumption we make here is that at each stage of evolution, the distribution has a single (sharp) peak in this (x, a) space (see Fig. 1). Through the evolutionary course, the dominant genotype a changes, which is given by the peak position of $P(x, a : h)$, that changes depending on the environmental condition h. This second assumption means a kind of evolutionary stability, i.e., at each stage of evolution, neither the phenotype nor the genotype distribution is spread out, and the distribution has a clear, single peak around a dominant gene and phenotype. This stability condition might be a bit strong to postulate for every evolutionary process, but as a gradual evolution (without speciation), it would be a reasonable assumption. In the artificial selection experiment, gradual change of phenotype could be reinterpreted as a gradual increase of selection pressure, to increase the parameter h (e.g., as increasing the threshold value beyond which a cell (or an organism) is selected so that it has a higher concentration of some protein or function).
borrowing the term in thermodynamics it may be formulated as ‘quasi-static process’, where a transition process is represented as a successive change over equilibrium states.

Following the above discussion on the assumption of a single peak in the distribution, let us denote $P(x, a; h) = \exp(-V(x, a; h))$. For a given h (environmental condition), let us denote the peak of the distribution by $a = a_0(h)$ and $x = x_0(a_0)$. As discussed, we assume evolutionary stability in the sense that a single dominant type of species exists in phenotype and genotype through the course of evolution. In other words, the distribution $P(x, a)$ has a single peak at $(x_0(a_0), a_0)$. For it, the potential $V(x, a)$ must have a minimum at (x_0, a_0). Let us then expand $V(x, a)$ around this peak position (x_0, a_0) as

$$V(x, a) = V(x_0, a_0) + \frac{1}{2} \frac{\partial^2 V}{\partial a^2} \bigg|_{x=x_0, a=a_0} (a - a_0)^2$$

$$+ \frac{\partial^2 V}{\partial a \partial x} \bigg|_{x=x_0, a=a_0} (x - x_0)(a - a_0)$$

$$+ \frac{1}{2} \frac{\partial^2 V}{\partial x^2} \bigg|_{x=x_0, a=a_0} (x - x_0)^2 + \cdots$$

by noting that the first derivative vanishes at this peak position. To have a minimum at (x_0, a_0), the above quadratic form must be positive definite, which gives a stability condition for the potential. Accordingly the following condition has to be satisfied;

$$\left(\frac{\partial^2 V}{\partial a^2}\right)^{-1} \geq 0; \quad \left(\frac{\partial^2 V}{\partial x^2}\right)^{-1} \geq 0.$$

For the minimum condition of a two-variable function however, another condition for the positive definite quadratic form is necessary. It is given by the Hessian, i.e.

$$\left(\frac{\partial^2 V}{\partial x^2}\right)(\frac{\partial^2 V}{\partial a^2}) - \left(\frac{\partial^2 V}{\partial a \partial x}\right)^2 \geq 0.$$

The conditions (1) and (2) are necessary for $P(x, a)$ to have a peak at (x_0, a_0). Now let us recall that $x_0(a_0)$ is the peak of the distribution of phenotype x for a clone of the genotype a_0. Then, the following condition has to be satisfied:

$$\frac{\partial V}{\partial x} \big|_{x=x_0} = 0.$$

Writing $\frac{\partial V}{\partial x} (x_0(a_0) + \delta a) / \delta a = 0$, and expanding up to δa and δx, as $\frac{\partial^2 V}{\partial x^2} \big|_{x=x_0} \delta a = 0$, and $\delta x = (\partial x_0 / \partial a) \delta a$, we then get

$$\frac{\partial^2 V}{\partial x^2} \big|_{x=x_0} (\partial x_0 / \partial a) \delta a + (\partial^2 V / \partial a \partial x) \big|_{x=x_0} \delta x = 0.$$

Using this expression, the Hessian condition (Eq. (2)) is rewritten as $\frac{\partial^2 V}{\partial x^2} \big|_{x=x_0} (\partial x_0 / \partial a)^2 (\partial^2 V / \partial a^2) \geq 0$, i.e.

$$\frac{\partial^2 V}{\partial a^2} - (\partial x_0 / \partial a)^2 (\partial^2 V / \partial a^2) \geq 0.$$

If the distribution is Gaussian-type, the variance of x around this dominant type are represented by $\langle (\delta a)^2 \rangle = \langle (\delta x)^2 \rangle = \langle (\partial x_0 / \partial a)^2 (\partial^2 V / \partial a^2) \rangle \geq 0$. Using these expressions, we then obtain

$$V_g = \langle (\partial x_0 / \partial a)^2 (\partial^2 V / \partial a^2) \rangle \leq \langle (\partial x_0 / \partial a)^2 (\partial^2 V / \partial a^2) \rangle = V_{ip}.$$

Here all the quantities are computed around the peak of the distribution located at a_0 and $x_0(a_0)$ that depends on the environmental condition h. This inequality is expected to be satisfied for any stationary probability distribution given an environment h. By assuming that evolution passes through stationary states successively by generations, the conditions should be satisfied for each generation belonging to the evolution path.

Now we discuss the meaning of Eq. (6). The right-hand side V_{ip} is nothing but the phenotypic variance of the clones (of the dominant genotype a_0), that is intrinsic phenotypic fluctuation, while the left-hand side is (if we borrow the term in physics) the genetic variance multiplied by the square of the phenotypic ‘susceptibility’ by genetic change. This left-hand side can be interpreted as the variance of the average phenotype distributed over genes (a around a_0), i.e., the phenotypic variance by the genetic variance, which is nothing but the quantity adopted in Fisher’s theorem. This correspondence can be understood as follows: Assume that the variance of a is not so large and that the deviation of a from a_0 is small. Then the average phenotype of a clone with gene a is given by

$$\bar{x}_a \equiv \int x \exp(-(V(x, a))) \ dx \approx \bar{x}_{a_0} + (a - a_0) \frac{\partial \bar{x}}{\partial a},$$

where \bar{x}_a is the average over x for the genotype a. Now, the variance of this average phenotype due to the gene distribution, given by $\langle (\bar{x}_a - \bar{x})^2 \rangle$, is written as

$$\langle (\bar{x}_a - \bar{x})^2 \rangle = \langle (\partial a)^2 \rangle \left(\frac{\partial \bar{x}_{a_0}}{\partial a_0}\right)^2 = V_g,$$

which confirms the above interpretation. Summing up, the variance of the average phenotype over genes (denoted by V_g) should be smaller than or equal to the phenotypic.
variance of the clones of the dominant genotype (denoted as intrinsic phenotypic variance V_{ip}).

2.2. Derivation of the evolutionary fluctuation–response relationship

Generally speaking, even though the genetic variance in the population $\langle \delta a^2 \rangle$ is not simply proportional to the mutation rate, it is nevertheless natural to expect that it increases with the mutation rate. In other words, the above condition Eq. (6) gives a limit to the mutation rate, so that the population can maintain the peak around the fittest species.

Indeed, such a limit to the mutation rate for a single-peaked distribution has already been discussed for a fitness landscape where one type is the fittest among other neutral types by Eigen and Schuster and was called error catastrophe (Eigen and Schuster, 1979). They have shown that there is a critical mutation rate beyond which the fittest organisms cannot maintain their dominance in the population, i.e., the distributions lose the single peak and become flat. Since our formulation assumes a continuous change of genes by mutation, and explicitly takes into account phenotypic fluctuations, it differs from the Eigen’s argument, but the two are similar with regards to the limit on the mutation rate required to maintain the stability of the single-peaked distribution.

Now, consider a selection experiment to increase some phenotypic characteristic (e.g., to increase x by changing the condition h). If the mutation rate is increased, the evolution speed is expected to increase accordingly until it becomes too high, when the progressive evolution leading to successively better types no longer works since the above error catastrophe occurs giving a break-down of the single-peak distribution. Hence the highest evolution speed is achieved just before this catastrophe occurs. This condition is given by simply replacing the inequality of Eq. (6) by an equality, i.e.

$$\langle \delta x_0 / \delta a \rangle^2 \langle \delta a^2 \rangle = \langle \delta x^2 \rangle,$$

or $V_g = V_{ip}$. With this mutation rate, the evolutionary path passes through marginally stable states so that the phenotypic fluctuations due to the distribution of genes equals the phenotypic variance of the clones. (As for the marginal stability hypothesis for growth to a new state, the argument could also be related to that proposed for crystal growth by Langer (1980)).

Recall that Fisher’s fundamental theorem of natural selection states that the evolution speed is proportional to V_g, the phenotypic variance by genetic variance. Then, at the state with optimal evolution speed, the above relationship means that the phenotypic variance of the clones is proportional to the evolution speed. When the mutation rate is smaller than this optimal value, the original inequality is satisfied. In this case, $\langle \delta a^2 \rangle$ and accordingly V_g generally increase with the mutation rate μ. Now V_g is written as a function of mutation rate $f(\mu)$, which is an increasing function and $f(\mu_{max}) = V_{ip}$. Hence for given mutation rate μ, $V_g = (f(\mu)/f(\mu_{max}))V_{ip}$. Since V_g is proportional to the evolution speed, it is also proportional to V_{ip} for a given mutation rate. Thus the fluctuation–response relationship in (Sato et al., 2003) is derived.

2.3. Remark on the distribution

It should be stressed that the derivation of our expression uses only the stability condition, and it does not depend on specific mechanisms of evolution or selection pressure, which influences only the proportion coefficient to the evolution speed. The assumption we made is the existence of $P(x,a) = \exp(-V(x,a))$, (or in other words, the existence of the ‘potential function’ $V(x,a)$) and the evolutionary stability, where we assume that at each generation in the evolutionary course, the distribution has a single peak, i.e. stability both in genetic and phenotypic space.

Since “fitness” (or “selection”) is not explicitly referred to in the above formulation, one might wonder if it is included here. Indeed, the selection process is included in the potential $V(x,a)$. The evolution of the distribution function in the above formulation can be rephrased as follows: By changing an environmental condition h, the selection pressure is changed, and thus $P(x,a) = \exp(-V(x,a))$ changes accordingly. Hence, if we explicitly include the process of evolution under the change of environmental condition, it is written as $P(x,a,h) = \exp(-V(x,a,h))$. With the change of h, each generation passes through such stable states ‘quasi-statically’, and the fittest (x,a), i.e., the peak of the distribution $P(x,a,h)$ changes accordingly. In the present derivation Eqs. (1)–(8), we have not explicitly written the environment h, but it is included implicitly therein. Of course, it is also possible to explicitly introduce the environmental change as another “external field” h, e.g. by introducing $V(x,a,h) = V_0(x,a) + xh$ to obtain a change of the peak (a_0,x_0) with a change of h. With this form, the inequality (6) is also straightforwardly obtained.

2.4. A simple example

To elucidate the above argument explicitly, it may be useful to give a simple example by taking a superposition of Gaussian distributions. We set

$$V(x,a) = \frac{1}{2} [x(a - a_0)^2 + \xi(a)(x - x_0(a))^2 - \log \xi(a)],$$

where the last term $-\log \xi(a)$ is required to assure the normalization of $P(x,a)$ when integrated over x. Noting that the peak in a is given by $a^* = a_0 + c'(a^*)/x$, $x^* = x_0(a^*)$, with $c(a) = (\frac{1}{2})\log \xi(a)$, and with the derivative by a, it is straightforward to obtain $\frac{\partial^2 V}{\partial x^2} = \xi(a)$, $\frac{\partial^2 V}{\partial a^2} = x - c''(a) + \xi(dx_0/da)^2$, and $\frac{\partial^2 V}{\partial a\partial x} = \xi'(a)$. The expression is useful for analyzing the relationship between the fluctuations and the response to environmental change.
Then it is straightforward to confirm the rewriting of the Hessian stability condition by Eq. (5) which leads to
\[\alpha - c'(a^*) > 0. \] (11)

In these expressions, one should note that \(\{(\delta a)^2\}^{-1} = \delta^2 V/\delta a^2 \) is not equal to \(\alpha \). The variance of the genotype is shifted due to the \(\alpha \)-dependence of the variance of \(\alpha \). Here, when considering the adopted Gaussian form \(\exp(-V(x,\alpha)) \), it may be natural to assume that \(\alpha^{-1} \) is proportional to the mutation rate, and accordingly that the variance of \(\alpha \) deviates from it. Note that if \(c'(a^*) > 0 \), then for small \(\alpha \) (corresponding to a large mutation rate \(\mu \)), this Hessian condition is violated, and the critical value gives the maximal mutation rate \(\mu_{\text{max}} \) discussed above. Recalling that \(\bar{\alpha}(a) \) is the inverse of the variance of \(\alpha \), this loss of stability generally occurs when \(\log(\text{phenotypic variance}) \) is convex at \(a = a^* \).

3. Model simulation

As an illustration of the above theory we consider a simple cell model with intra-cellular catalytic reactions allowing for cell growth and division. We employ a simple reaction network model studied earlier (Furusawa and Kaneko, 2003; Furusawa et al., 2005). In the model, the cellular state can be represented by a set of numbers \((n_1, n_2, \ldots, n_K) \), where \(n_i \) is the number of molecules of the chemical species \(i \) with \(i \) ranging from \(i = 1 \) to \(K \). For the internal chemical reaction dynamics, we chose a catalytic network among these \(K \) chemical species, where each reaction from some chemical \(i \) to some other chemical \(j \) is assumed to be catalysed by a third chemical \(\ell \), i.e., \((i + \ell \rightarrow j + \ell) \). Some resources (nutrients) are supplied from the environment by transportation through the membrane with the aid of some other chemicals, that are ‘transporters’. The concentrations of nutrient chemicals in the environment are kept constant, and they have no catalytic activity in order to prevent the occurrence of catalytic reactions in the environment. Through the catalytic reactions, these nutrients are transformed into other chemicals, including the transporters. With the intake of nutrient chemicals from the environment, the total number of chemicals \(N = \sum n_i \) in a cell can increase, and accordingly the cell volume will increase. For simplicity the division is assumed to occur when the total number of molecules \(N = \sum n_i \) in a cell exceeds a given threshold \(N_{\text{max}} \). Chosen randomly, the mother cell’s molecules are evenly split among the two daughter cells. In our numerical simulations, we randomly pick up a pair of molecules in a cell, and transform them according to the reaction network. In the same way, transportation through the membrane is also computed by randomly choosing molecules within the cell and nutrients in the environment. The model, in spite of its simplicity, is found to capture universal statistical behaviors of a cell as has also been confirmed in experiments (see for details (Furusawa and Kaneko, 2003; Furusawa et al., 2005; Furusawa and Kaneko, 2005)).

Of course, how these reactions progress depends on the reaction network. Here, we carry out evolution experiments where those reproducing cells are selected that have a higher abundance \(n_i \) of a given specific chemical \(i \). To be specific, we take \(n \) parent cells which evolve such that they grow recursively, starting from a catalytic network chosen randomly such that the probability of any two chemicals \(i \) and \(j \) to be connected is given by the connection rate \(\rho \). From each parent cell, \(L \) mutant cells are generated by randomly replacing \(m \) reaction paths to the reaction network of the parent cell. Thus the mutation rate \(\mu \) is given by \(m/M \), with \(M = \rho K^2 \) the total number of paths. For each of the networks, the reaction dynamics are simulated to identify cells that continue reproduction. Among such networks the top \(n \) cells with regards to the abundances of the chemical species \(i \) are selected for the next generation.

As the number of molecules is finite and the simulation of the reaction process is carried out by picking up molecules stochastically, there are fluctuations in the abundances of each chemical. Here, corresponding to the variable \(x \) in the theory, we choose the abundance \(n_i \), when the total number of molecules in a cell reaches the threshold \(N_{\text{max}} \). To be precise, we choose \(x = \log(n_i) \), as the distribution of \(n_i \) is close to the log-normal distribution (as is also true experimentally (Sato et al., 2003; Furusawa et al., 2005)), since our theory is better applied for a variable \(x \) whose distribution is close to a Gaussian distribution. As \(V_{\text{gr}} \), we compute the variance of \(x \) for over 200 clonal cells having a network that gives the peak abundances at each generation. On the other hand, the network itself is regarded as the ‘genotype’. As for the variance \(V_{\text{gr}} \), first we calculate the peaks of abundance \(x \) for all \(L \) mutant networks. (In the simulation, \(L \) is set at 10,000.) For each of mutant networks, we compute the phenotype of \(x \) for over 200 clonal cells, to get the peak position of the phenotype distribution. This peak position of phenotype \(x \) differs by mutants, and over \(L \) mutants we can obtain the distribution \(Q(x) \), which is the distribution of phenotype \(x \) over mutants. \(V_{\text{gr}} \), the variance of the peak positions over all mutant networks, is nothing but the variance of \(Q(x) \).

The evolutionary changes in the phenotype distribution of the clones \(P(x) \) and that of the genetic variation \(Q(x) \) are plotted in Fig. 2. As shown, the distributions evolve jointly, satisfying \(V_{\text{ip}} > V_{\text{gr}} \) as expected from the theory. Quantitatively, we first check the validity of the fluctuation–response relationship (Sato et al., 2003) that is between the evolution speed and \(V_{\text{gr}} \). We have plotted the increment of the phenotype \(x \) (i.e. logarithm of the abundance of the selected species \(i \)) at each generation for the selected species successively. As shown in Fig. 3, the data plotted against \(V_{\text{ip}} \) are fitted well by a linear relationship.
Next, we have plotted V_g versus V_{ip} in Fig. 4. We found that the expected inequality is satisfied, and also that for each evolutionary process with a fixed mutation rate, $V_{ip} \propto V_g$ holds. As the mutation rate μ increases, the slope of V_g/V_{ip} increases, and it approaches the diagonal line $V_g = V_{ip}$. On the other hand, with the increase of μ, mutant populations exhibiting very low values of x (the abundances of selected species i_s) increase, which corresponds to the collapse of catalytic reaction process for cell growth. As shown in Fig. 5, beyond some mutation rate μ_{thr}, the distribution becomes flat, and the peak in the distribution starts to shift downwards. By comparing the $V_g - V_{ip}$ relationship, we confirmed that around $\mu \approx \mu_{thr}$, the relationship approaches the diagonal line $V_g \approx V_{ip}$. Indeed, for a higher mutation rate allowing for $V_g > V_{ip}$, the evolution does not progress, as the distribution is almost flat, and the value of x after selection cannot increase by generations. Thus the evolution speed is optimal at around $\mu \approx \mu_{thr}$. Summing up, there is a threshold mutation rate μ beyond which the evolution does not progress (i.e. an error catastrophe occurs), where V_g approaches V_{ip}. All of these numerical results support the theoretical prediction described earlier. It should also be stressed that the result here does not depend on the specific algorithm for evolution, such as the ratio of

Fig. 2. Histogram of the phenotype x, that is the logarithm of the number of molecules n_i in the reaction-net cell model. Distributions at 5 generations in the course of evolution with mutation rate $\mu = 0.01$ are plotted with changing colors. (a) Distribution $P(x)$ of the phenotype $x = \log(n_i)$ of the selected clones at each generation. The distribution plotted here is obtained from 10 000 cells of the clone. (b) Distribution $Q(x)$ of the phenotype $x = \log(n_i)$ over 10 000 mutants from the selected clones at each generation. Throughout the simulations presented in this paper, the parameters were set as $k = 1 \times 10^3$, $N_{max} = 1 \times 10^4$, and $\rho = 0.01$. The number of mutant networks L is 1×10^4, and the top $n = 500$ cells with regards to the abundances of the chemical species i_s are selected for the next generation.

Fig. 3. Evolution speed versus the phenotype fluctuation of a clone. The abscissa gives the evolution speed that is measured by the difference between the average phenotypes x of the two successive generations, where the average is computed from the selected 500 cells. The ordinate gives the fluctuation, that is measured by the variance of x of the clone of the selected cells, at each generation, computed by the distribution over 200 cells of the clone.

Fig. 4. The relationship between V_{ip}, the variance of the phenotype x of the clone as measured in Fig. 2, and V_g, the variance of the phenotype x over 10 000 mutants from the selected cell. Plotted over generations in each course of evolution, given by a fixed mutation rate displayed in the figure.
selected networks for the next generation. The selection pressure, given by the fraction of selected networks, influences only the proportionality coefficient between the evolution speed and \(V_g \) as predicted by Fisher’s theorem, but it does not influence the inequality and proportionality between \(V_g \) and \(V_{ip} \).

4. Discussion

In summary, we have proposed an inequality between phenotype variation over genetically different individuals, \(V_g \) and the (intrinsic) phenotypic variance of clones \(V_{ip} \), as a result of the stability of their distributions. It is found that there is an optimal mutation rate beyond which this inequality is violated, leading to the collapse of the single-peak distribution around the fittest type. The evolution speed is bounded by this optimal mutation rate, at which the genetic variance measured by phenotypes approaches the phenotypic variance of clone. Following this argument, a linear relationship (or correlation) between the two variances is implied, leading to the evolutionary fluctuation–response relationship in Sato et al. (2003). Now, the consistency between Fisher’s theorem and the evolutionary fluctuation–response relationship is demonstrated. By taking a simple cell model with a catalytic reaction network, this proposition is numerically confirmed. Since in this model, \(V_g \) is the fluctuation over different mutated networks, and \(V_{ip} \) is the fluctuation through the dynamics for a given single network, there is no a priori reason that the two should be correlated. Still, we have found the linear relationship between the two as a result of the course of evolution.

Our theory is based on the existence of the probability distribution \(P(x, a) \). This is not obvious at all. Since the phenotype is a function of gene, existence of two-variable distribution is a tricky assumption, because genetic and phenotypic fluctuations there are treated in the same way. Hence, the confirmation of the theory by numerical experiment is not trivial at all. Although we have not yet completely clarified why the theory is valid here, one possible reason for it is that some genetic change can give rise to the same effect on the reaction dynamics as can a phenotypic fluctuation. For example, consider reaction process \(i \) to \(j \) catalysed by \(l \). If the concentration \(c_l \) changes by fluctuation, the rate of the reaction changes, while such change in the rate could as well be induced by changing the path in the network or the catalytic activity of the reaction, which are coded by gene. In this sense there exists some genetic change that corresponds with the phenotypic change by fluctuation.

Indeed, Waddington, in his pioneering study, proposed the concept ‘genetic assimilation’ (Waddington, 1957), in which the phenotypic change by the environmental change is later ‘assimilated’ by genetic changes. Here we should note that the degree of such phenotypic change as a response to the environmental change is also correlated with the fluctuations of the phenotype as a result of fluctuation–response relationship (Sato et al., 2003). Then by using the linear relationship between the evolution speed and phenotypic fluctuations, it is naturally expected that the evolution speed is correlated with the so-called phenotypic plasticity (Callahan et al., 1997; West-Eberhard, 2003), the response rate of the phenotype against environmental change. Based on our present study, it will be possible to reformulate Waddington’s genetic assimilation or the Baldwin effect (Baldwin, 1896; Bonner, 1980; Ancel and Fontana, 2002) quantitatively, and study the evolutionary process in terms of the plasticity (de Visser et al., 2003) measured through phenotypic fluctuations.

Another assumption in our theory is the use of (scalar) variable for the genetic change. In general, genetic change occurs in a very high-dimensional space. The choice of a (or a few) suitable parameter(s) \(a \) is not trivial at all, whose validity should be examined in the future. In this sense also, the confirmation of the theory by the numerical model, presented here, is not obvious, since the number of degrees of freedom in the model is huge, as the change in the network paths has a huge variety of directions. In spite of this, this assumption on the existence of \(a \) and \(P(x, a) \) seems to be valid in the numerical model we discussed. In the artificial selection experiment where fitter types are chosen successively, evolution can occur by accumulating mutations successively, so that a one-dimensional path along the evolutionary course acts as a parameter describing the process of the evolution. Indeed, the fitness landscape over one or a few parameters is also adopted generally in such theoretical or experimental studies of evolution (Kauffman and Levin, 1987; Eigen et al., 1989; Aita and Husimi, 1996).

In the numerical example in Section 3, we discussed an evolutionary process with incremental process without...
complex fitness landscape with many local optima. Our theoretical discussion, on the other hand, can be applied to a general case with any complex fitness landscape. As the phenotypic fluctuation changes depending on the landscape and the location in the landscape, study of the evolutionary process based on our theory will be important in future. Furthermore, extension of our theory to a higher dimensional case will be important, whereas, in the present paper, the influence of high-dimensional effect is discussed only through the error catastrophe leading to the flattening of the landscape.

According to our theory, evolution speed is highly correlated with the phenotypic fluctuation, which depends on intra-cellular reaction process, developmental process, and so forth. Even if the mutation rate is identical, the evolution speed can differ depending on such phenotypic fluctuations. This viewpoint will be important to understand the tempo in evolution, e.g., why in some organisms called living fossil the phenotype has changed only little over generations. Furthermore, by considering that the phenotype fluctuation can also depend on the environmental condition, it is expected that the evolution speed can be enhanced in some environmental condition which amplifies the phenotypic fluctuation. Such dependence of evolution speed on environmental may shed a new light on the controversy on the so-called adaptive mutation (Cairns et al., 1988; Shapiro, 1995).

The inequality \(V_{ip} > V_g \) concerns with the phenotypic variances due to genetic and non-genetic origin. If these variances are independent and added naively, the total phenotypic variance we observe from the wild-type population could be represented as \(V_{tot} = V_{ip} + V_g \), (or \(V_{ip} + V_g + V_e \), when the phenotypic variance due to environmental fluctuation \(V_e \) is also added independently). In this simple representation, the inequality we propose implies that phenotypic fluctuation by genetic variation is smaller than that of the non-genetic origin, i.e., \(V_g/V_{tot} \) is less than half. In the standard population genetics, the phenotypic variance of non-genetic origin is attributed to environmental factors, \(V_e \), while the ratio to \(V_g \) to \(V_{tot} = V_g + V_e \) is defined as the heritability \(h^2 \) (Futuyma, 1986; Maynard-Smith, 1989). However, “intrinsic” phenotypic fluctuation through developmental ‘noise’ (Spudich and Koshland, 1976; West-Eberhard, 2003; de Visser et al., 2003), as discussed here, contributes to the total phenotypic fluctuation as well. Although we need careful re-consideration on correlation among the variances and also on the quantitative estimate of \(V_g \), it will be important to discuss the heritability in the light of our inequality with regards to the intrinsic phenotype fluctuation. Furthermore, studies on the environmental fluctuations and extension to multiple traits are necessary in future. It should also be noted that most of theoretical argument presented here is still valid under sexual recombination, while only the argument on the relationship between \(V_g \) and the mutation rate needs reconsideration.

Of course it is very important to verify our proposition experimentally. One good candidate is an artificial selection experiment by using bacteria, adopted in (Sato et al., 2003; Ito et al., 2004). Indeed, preliminary data from the experiments seem to suggest the validity of our proposition.

Acknowledgements

We would like to thank T. Yomo, K. Sato, Y. Oono, M. Kikuchi, T. Sato, T. Ikegami, Y. Takagi, I. Tsuda, E. Szathmary, Y. Iwasa, and F. Willeboordse for criticisms and discussions.

References
