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Characterization of stem cells and
cancer cells on the basis of gene
expression profile stability, plasticity,
and robustness

Dynamical systems theory of gene expressions under cell-cell interaction explains

mutational robustness of differentiated cells and suggests how cancer cells emerge

Kunihiko Kaneko�

Here I present and discuss a model that, among other things, appears able

to describe the dynamics of cancer cell origin from the perspective of stable

and unstable gene expression profiles. In identifying such aberrant gene

expression profiles as lying outside the normal stable states attracted

through development and normal cell differentiation, the hypothesis explains

why cancer cells accumulate mutations, to which they are not robust, and

why these mutations create a new stable state far from the normal gene

expression profile space. Such cells are in strong contrast with normal cell

types that appeared as an attractor state in the gene expression dynamical

system under cell-cell interaction and achieved robustness to noise

through evolution, which in turn also conferred robustness to mutation. In

complex gene regulation networks, other aberrant cellular states lacking

such high robustness are expected to remain, which would correspond to

cancer cells.
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Introduction

Robustness and plasticity are essential
features of all biological systems [1–8].
Robustness describes the insensitivity of
a system to external perturbations, and
plasticity describes the changeability of
a system in response to changes in exter-
nal conditions. In this sense, robustness
and plasticity tend to compete with each
other if they work at the same dimension.
Biological systems, however, somehow
strike a balance between the two, or
adopt each of the two separately depend-
ing on the situation.

Sources of external perturbations
have distinct time scales. On a faster
time scale, external perturbations of
noise occur in developmental processes.
On a much slower time scale, changes in
genetic sequence may perturb develop-
mental dynamics. Biological organisms
somehow achieve robustness at these
two different scales, developmental
and evolutionary [9–12].

In multicellular organisms, the
developmental process typically has an
intermediate timescale – intracellular
gene expression dynamics and a multi-
cellular process involving the increase in
cell number [12–14]. Cells differentiate
into several types, while an organism
or tissue is shaped over a time scale
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based on the increase in the cell num-
ber, which is much slower. Multicellular
organisms achieve robustness to exter-
nal perturbations for both the scales,
that is, cell-type-specific stability in
gene expression and stability against a
change in the number distribution of
cells. Also, the path taken to reach the
final cellular state is fairly stable.

Furthermore, in multicellular organ-
isms, a multipotent cell generally exists
that has the potentiality to differentiate
into many cell types, depending on
conditions. In this sense, such cells
have plasticity, while robustness of
an organism at a global scale is
achieved. Understanding multipotency
and robustness in developmental proc-
esses remains one of the basic problems
in developmental biology.

In this essay, I discuss the issue of
robustness and plasticity in terms of
dynamical systems theory [15, 16].
Concepts in dynamical systems are cen-
tral to understanding this mathematical
formalization of cell behavior, so that I
give a brief intuitive account on these:

The concept of an attractor:
Waddington put forward an image of
development as a ball rolling down
along a landscape with peaks and val-
leys [1]. The ball will finally come to rest
at the bottom of a valley, a local mini-
mum of the particular landscape. If
there are many valleys and peaks, the
final position may depend on the start-
ing point of the ball. In the theory of
dynamical systems, the final destination
of the ball is the ‘attractor’, and each of
the domains of the valley separated by
peaks is known as the ‘‘basin’’ of the
respective attractor.

Now imagine some perturbations
kick the ball. If the valley is deep, the
final position of the ball is still at the
same bottom of the valley. Hence the
attractor concept is important to under-
stand the robustness of a system.

Essentially this attractor concept
can be applied to gene expression levels
resulting from a network of interacting
proteins – in this case, gene/protein
expression levels being the ball. With
time, the expression levels result in an
equilibrium between the components,
which corresponds to the bottom of
the valley in the afore-mentioned land-
scape. Perturbation on the ‘‘ball’’ – i.e.
changes in one or more protein levels,
caused by environmental change or

noise – may shift the equilibrium to a
new one, corresponding to the ball
being jostled out of one valley, and find-
ing its way to a nearby depression in the
landscape.

Sometimes, the nature of interactions
between proteins can generate a bistable
system where two very different equili-
bria – or attractors – exist, for example in
the case of a two-protein network where
protein A inhibits the synthesis of protein
B and protein B likewise inhibits the syn-
thesis of protein A.

So far, I have talked about simple,
static, attractors. There are also attrac-
tors in which the ball (i.e. the expression
level) keeps changing position with
time. These correspond, for example,
to an oscillating state of protein levels,
such as that manifested by the following
simple network: protein A activates
transcription of protein B and itself,
and protein B inhibits transcription of
protein A. Under appropriate setting
and parameter values, the very oscil-
latory behavior of the system is a stable
state, and hence can be considered as an
attractor. If more proteins are involved,
the oscillation may be complex, without
periodic repetition.

Flow in state space: Mathematically,
the above picture is represented by a
flow in the state space. For simple illus-
tration, consider a system consisting of
two proteins X and Y. Then the ‘state’ of
this two-protein system is plotted as a
point in a two-dimensional space, with
x and y axes as the expression levels
(concentration) of X and Y, respectively.
In general, each protein influences the
synthesis or degradation of the other
protein. Hence, depending on concen-
trations of the two proteins, their
increase or decrease in time is deter-
mined (by the gene network, i.e. by
the rule of chemical reactions). In other
words, ‘flow’ arises in the two-dimen-
sional x–y plane, represented by arrows
in the plane. The expression levels (con-
centrations) change in time along this
flow, and this trail of points in the plane
is a trajectory. Now, with time they may
settle on a point where flow vanishes,
i.e. the reactions are still occurring, but
they balance each other out, and there is
no net directionality.

This point corresponds to the bot-
tom of the valley, where the flow to roll
down the ball vanishes. To compare the
landscape picture, ‘height’ is assigned

at each point in this state space, and the
flow is assigned to the direction of
decreasing height. However, the ‘flow’
picture in the ‘state space’ is more gen-
eral than the landscape, and it can cover
the case that the concentrations do not
settle to fixed values, but keep on oscil-
lating. For example, if x and y settle to
simple sinusoidal oscillation, given by
xðtÞ ¼ rcosðtÞ þ x0; yðtÞ ¼ rsinðtÞ þ y0,
the trajectory forms a circle, with a
radius r, centered at (x0; y0). In this case
the attractor is a circle, whereas in gen-
eral the attractor corresponding to oscil-
latory state is a closed curve in the state
space (Fig. 1).

This picture is straightforwardly
extended to the case in which more genes
(proteins) are involved. If three are
involved, the state space is three dimen-
sional, and if k proteins are involved, the
state space is k-dimensional (see Fig. 1,
and Box 1).

In general, there is deviation in the
concentration change from the original
flow by gene regulation dynamics, since
all the chemical reactions are due to
random collisions of molecules. This
random perturbation is called ‘‘noise’’
(see Box 1).

Now, consider the effect of pertur-
bation by noise on the state variables
(concentrations) at an attractor. Once
the cell state is on an attractor, its state
variables return to the original values by
the dynamics even if perturbed by noise,
as long as the state stays within the
basin of attraction. This means that
the protein concentrations stay at a cer-
tain range of values, determined by an
attractor, even under the noise. Hence,
the attractor concept is essential to
understanding robustness against noise
[12, 16–18, 23].

Still, the notion of attractors does
not solve all the questions related to
robustness. First, whether the cell state
reaches an attractor globally from vari-
ous initial values depends on the size of
basin. During the dynamics to reach an
attractor, the trajectory may be per-
turbed by noise and the state may not
reach the given attractor. Hence, the
robustness depends on gene expression
dynamics. How are gene-expression
dynamical systems evolved to increase
robustness?

Second, stem cells in multicellular
organisms can both proliferate and differ-
entiate. For proliferation, the cell state
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should be stable, while for differentiation
it should be plastic. How are robustness
and plasticity compatible in stem cells?

Here I discuss these issues from a
dynamical-systems perspective, based
on my group’s earlier numerical simu-
lations of cell differentiation and evol-
ution of cells over a decade. Following
the discussion, we propose a hypothesis
on cancer state as an attractor that is not
visited in the normal course of develop-
ment and lacks mutational robustness.

Robustness to noise arises
naturally when evolution of
gene networks is modeled
on a background of
moderate noise

Let us begin the discussion on robust-
ness at the single-cell level. As surveyed
in the introduction, I represent the phe-
notype of a cell by state variables that
are a set of protein concentrations. The

temporal change in cell state is deter-
mined by complex gene expression
dynamics governed by a GRN. These
dynamics are subjected to noise due
to molecular fluctuations in chemical
reactions [24–28]. Under noise, as
shown in Fig. 2A, the orbit in the state
space, i.e. the time course of protein
concentrations, required to reach the
relevant phenotype might be easily
diverted to phenotypes that lose the
desired function.

Box 1

Terminology in dynamical systems with
applications to biological systems

Terminology in Dynamical Systems applied to
cell behavior (see Fig. 1)

Consider a cell state that is specified in terms of the
concentrations of its components. For example, if there
are k proteins, the cell state is described by the concen-
trations of those proteins, i.e. (p1ðtÞ; p2ðtÞ; p3ðtÞ; . . . ; pkðtÞ)
which may change through time, t. These are state
variables, whose number, k, is the degree of freedom of
the system. These state variables influence each other,
and change across time. This gives rise to a flow in the
state space. Accordingly, the time course of the change
in state variables is represented as a trajectory in the
state space. For example, expression of a particular gene
is either activated or repressed by expression of other
genes, and the concentrations of the resulting proteins
change in time in accordance with the gene regulatory
network.

With time, the state variables reach, and stay at, a certain
range of values. This region of state space in which the state
variables can occupy after sufficient time is called an
attractor. The attractors can be stationary states (fixed
points), periodic oscillation (closed curve in the state
space), aperiodic irregular oscillation (chaotic behavior).

There can be several attractors that are reached depend-
ing on the initial values of the variables. The region of such
initial values that from which the system will ‘‘gravitate’’
towards each attractor is called its basin of attraction. The
boundary of the basin divides the state space, with regards to
which attractor the flow of state variables reaches.

Consider N cells, each of which has k state variables that
interact with each other. Then the flow (temporal change) of
k variables of each cell is modified following the states of
other cells. With this cell-cell interaction, the state variables
may be kicked away from the original attractor, while novel
attracting states that did not exist in the single-cell dynam-
ics may be generated (stability induced by interaction).

Terminology in Developmental Biology used
in the present text

Noise (in gene expression dynamics)

On average, change in concentration of proteins is given by
concentrations of chemicals that constitute the reaction.
However, the reaction is due to molecular collisions, and
there are deviations from the average. This fluctuation is
regarded as a noise term added to the dynamical system.
Note that this particular use of the term ‘noise’ is adopted in
physics and also in recent literature in systems biology, but
in evolutionary biology it is used in a different context.

Robustness to noise

Insensitivity of the phenotype (state variables of the attrac-
tor) to perturbation by noise during the (developmental)
dynamics.

Robustness to mutation (mutational robustness)

Insensitivity of the phenotype (state variables of the attrac-
tor) to the change of the rule of (developmental) dynamics
introduced by genetic change.

Figure 1. Schematic description of dynamical systems corre-
sponding to the terms in Box 1.
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The author studied gene expression
dynamics with randomly chosen regu-
lation networks that control activation
and repression among proteins, and
found that most dynamics have such
weakness against perturbations [11,
12]. Even if a network happened to result
in the phenotype concerned, only a very
narrow path existed to reach the func-
tional phenotype (‘‘x’’ in Fig. 2A and B).
GRNs were then evolved numerically by
using a genetic algorithm to increase a
fitness function [11, 29–31] that was
defined to achieve functional pheno-
types, i.e. to generate a given gene
expression pattern. When gene expres-
sion dynamics were subjected to a suf-
ficient level of noise, it could not
generate the functional phenotype sta-
bly if the dynamics were of the type
given in Fig. 2A and B. Rather, the orbit
of the dynamics would be kicked away
from the original trajectory, and the
generated phenotype would be different
from it, as shown as a, b, c,... in Fig. 2A
and B. However, when the network
evolved, they were found to attain

robustness to noise, as shown in
Fig. 2D and E. The orbit required to
generate the requested phenotype was
not easily perturbed by noise, and even
from perturbed gene expression states,
the orbits as well as the final expression
pattern converged to the original phe-
notype. Hence, robustness to noise was
evolved naturally (see also [32, 33]).

Robustness to noise
results in robustness to
mutation in gene
expression patterns

Let us represent the attraction to the
final gene expression pattern as the
motion of a ball in a landscape. From
numerical simulations, it was found
that gene expression dynamics from
most GRNs chosen randomly was
represented by a rugged landscape as
in Fig. 2B, whereas, after evolution
under a sufficiently high noise level, it
exhibited a rather smooth landscape

with global attraction to the phenotype,
as in Fig. 2E. In contrast, when the gene
expression dynamics evolved under a
lower noise level (or without noise),
the GRN remained in the form of
Fig. 2A and B.

Now, consider mutation to the GRN.
(Here I use the term mutation rather
naively, to include any genetic change
to modify the GRN.) Now there are two
distinct concepts on robustness, that to
noise and to mutation (genetic change).
The former concerns the stability of a
cellular state against noise in gene
expression dynamics, for cells sharing
the same genes, while the latter concerns
the stability against genetic change that
slightly alters dynamical systems itself,
by modification of GRN (see Box 1).

From extensive simulations, it was
found that robustness of cellular state to
mutation differs distinctly between the
above two types of dynamics given in
Fig. 2A and D [29–31]: the GRN without
robustness to noise (Fig. 2A and B) also
lacked robustness to mutation (Fig. 2C).
Genetic changes perturbed GRNs and
the flow in the state space would be
perturbed. Then, the generated gene
expression pattern no longer gave rise
to the requested phenotype. In dynam-
ics with a rugged landscape as in Fig. 2A
and B, we can naturally expect that a

Figure 2. Schematic representation of dynamics of a cellular state. A–C: Non-robust case.
D–F: Robust case evolved under a sufficient noise level in gene expression dynamics. A,D:
Flow structure of the cellular state. B,E: Illustration of gene expression dynamics as the falling
motion of a ball in a landscape. C,F: Robustness against mutational change.
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slight change easily destroys the attrac-
tion to the original valley. Hence, dele-
terious mutations would often appear.

In contrast, it was found that the
GRN evolved under a sufficiently high
noise level (Fig. 2D and E) had robust-
ness to mutation (Fig. 2F). The attraction
to the original path in Fig. 2D was so
strong that most perturbations in flow
caused by mutations in GRNs still gave
rise to the original phenotype. Hence,
most mutations were neutral. In a
smooth landscape with a global basin
of attraction, changes in dynamics
caused by mutations are expected not
to damage the attraction to the original
gene expression pattern, which explains
the robustness to mutation.

Different robustness to mutation
between the above two cases were
numerically confirmed [29–31]. In the
GRN evolved under noise, orbits from
different initial values took a similar
path, as postulated by Waddington as
homeorhesis [1]. Evolution of robustness
to noise and mutation was also con-
firmed in catalytic reaction networks
[34] and a toy protein-folding model
[35]. Such converging orbits were also
observed in the gene expression dynam-
ics of yeast [33].

To summarize, evolution to achieve
robustness to noise was found to intro-
duce robustness to mutation. Hence,
cells under selection pressure for some
function are expected to achieve these
two types of robustness.

Multipotency and
differentiation can be
explained by modeling gene
expression dynamics and
cell-cell contacts together

Cell-cell interactions channel
differentiation towardsstable types

In a multicellular system, developmen-
tal dynamics are more complex; they
involve both intracellular gene expres-
sion dynamics and cell-cell interaction.
The latter influences the internal
expression dynamics and depends on
the surrounding cells, whose number
increases over development. The
importance of cell-cell interaction was
experimentally demonstrated as the
community effect [36], and discussed

for differentiation from stem cells
[37, 38]. During the developmental proc-
ess, differentiation occurs from stem
cells to several cell types. All the cells
converge to one of these types, while
stem cells can remain, and have poten-
tiality both for proliferation and differ-
entiation [39, 40].

Waddington’s epigenetic
landscape accounts for
this channeling

To understand robustness in these cell
types as well as over the temporal
course of development, Waddington
adopted the landscape picture as a
metaphorical picture for developmental
processes [1]. We could interpret this
picture as follows (Fig. 3). At each time
point there are several valleys, which
correspond to each cell type; in terms
of dynamical systems as applied to gene
expression, each is regarded as an
attractor, as discussed in the last section
(Fig. 2). In fact, several attempts have
been made to represent such a land-
scape from the gene expression dynam-
ics [41] and experimental data [42].
Note, to support several cell types, gene
expression dynamics must have several

attractors that correspond to several val-
leys, as also demonstrated in several
GRN models [18, 23].

However, the landscape must
change over time to explain
fundamental features of tissues

If the landscape is temporally fixed,
however, we cannot answer the follow-
ing three basic questions. First, why are
some cells located in a basin of one
valley, and others in a different valley?
How are such initial conditions for each
cell type determined? Second, the num-
ber distribution of cells at each valley
should not be arbitrary, but rather kept
within some range, for a tissue or a
multicellular organism to function nor-
mally. Indeed, the organism or tissue
consists of several cell types whose
number ratios are determined to some
degree. How is such proportional regu-
lation achieved? Third, how is the
temporal course of differentiation, i.e.
at what stage each cell type appears,
determined in a robust manner?

Indeed, in the landscape drawn by
Waddington, the hills and valleys are
not fixed, but also develop over time.
Hence, two courses of events exist. Over

Figure 3. Epigenetic landscape shaped with the increase in cell number and cell-cell inter-
action. Schematic drawing. The springs between cells at different valleys are schematic
representations of cell-cell interaction. (In the present biology, epigenetics often refer to
histone modification and DNA methylation. The term epigenetics, however, was originally
coined by Waddington, as a developmental process by which interaction among genes as
well as with the environment produce a phenotype.)
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a faster scale, cells are attracted into
each valley, while the landscape itself
grows over a slower time scale of devel-
opment. This change in the landscape
occurs through the increase in cell num-
ber. With this increase, the gene expres-
sion dynamics of each cell can be
modified by the changes in cell-cell
interactions. This change will introduce
the change of the landscape (Fig. 3).

Modeling gene expression
dynamics in concert with cell-
cell interactions recapitulates
stem cell and differentiated cell
identities

Based on the above picture, Furusawa
and the author studied a class of models
[14, 43–46], in which a cell state was
represented by a set of concentrations of

proteins (gene expression levels). The
model consisted of (i) intracellular reac-
tion (gene expression) dynamics; (ii)
cell-cell interactions mediated by the
diffusion (or transport) of some chemi-
cals; and (iii) increase in cell number
over time as a result of cell division.
Protein concentrations changed due to
intracellular reactions and were also
influenced by the cell-cell interaction,

Box 2

A bit more on intra-inter-cellular
dynamics theory for cell differentiations

(a) Differentiation of phases of oscillations

Furusawa and the author chose a gene regulation network
(GRN) that showed temporal oscillation in concentrations
of some proteins at the single-cell level (Fig. 4A). With the
increase in cell number by divisions, the degree of cell-cell
interaction increases, which causes these oscillations to
desynchronize among cells. This is because only some
chemical species diffuse, and homogenization of concen-
trations works only for some chemicals. With intracellular
feedback reactions [13, 16–19], cell-to-cell difference in the
concentration for other non-diffusible chemicals is not
reduced but is amplified. Thus, the phase of oscillations
differs across cells. This difference in phases, under the
influence of the cell-cell interactions, leads to irregularity
in oscillation, which causes differences in protein concen-
trations between cells to be amplified.

(b) Differentiation in composition of proteins

This amplification reaches a stage at which the compo-
sition of proteins is distinct between cells, leading to differ-
entiation to a new cell type (Fig. 4B). Some proteins in
differentiated cells have much lower or higher concen-
trations than in the original cell type. The cell state leaves
the basin of attraction of the original cell type: a gate opens,
allowing a cell to exit from the original valley. Here, the
instability for differentiation is not directly coupled with
the cell division event, but occurs through the increase in
cell number.

(c) Stabilization of a differentiated state by
cell-cell interaction

The new stationary cell state is stabilized by the interaction
with the original cell type. In other words, a new valley is
generated. In this differentiated cell type, the concentration
oscillation that exists in the original cell type is lost or
weakened (Fig. 4B).

These dynamics of differentiation can be understood as
follows. The trajectory of the original cell state is modulated

from the single-cell attractor by the cell-cell interaction, so
that it goes across the basin boundary of the original attrac-
tor. Then, the state of such cells moves to a new state,
implying cell differentiation into another type. The stability
of the differentiated type depends on the cell-cell interaction,
and accordingly, on the number ratio of the two cell types.

(d) Regulation between proliferation and
differentiation leading to macroscopic
robustness

In the above it is found that stem cells in the model lose
their stability to sustain their original state, due to the cell-
cell interaction. However, the increase in the number of
differentiated cells changes the interaction, and the
original cell state restores stability; thus, the attractor
and its basin boundary no longer touch (Fig. 4C). With
the proliferation of the original cell type, its attractor and
its basin boundary touch again, and the differentiation
occurs. In this way, stem cells in the model keep on either
proliferating or differentiating, depending on the number
ratio of the cell types. If the ratio of stem cell is too large
(small), the ratio of differentiation (proliferation) increases,
so that the number distribution of two cell types remains
within a certain range, implying (macroscopic) robustness
of the number ratio of cells of different types (see [20] for a
demonstration of such regulation of cell number and [21]
for possible relationship with the present theory. Also see
[22] for a bifurcation analysis on the stabilization of a new
cell type by cell-cell interaction.).

(e) Generality and limitations

Thus, characterization of stem cells, as well as the loss of
potentiality of further differentiation as a result of cell-
differentiation, is represented in terms of dynamical sys-
tems of interacting cells. As long as such gene expression
dynamics allows for oscillation between on and off states of
gene expression, this course of differentiation appears
universally.

Of course, there will be limitations to the theory here.
When isolated and put into the original culture, differ-
entiated cells in the model investigated here often revert
to the original stem cell state. The differentiation does not
reach the stage of rigid fixation, for which molecular proc-
esses such as DNA methylation might be necessary.
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which changed with the increase in cell
number. Furusawa and the author car-
ried out extensive simulations of these
models and confirmed the following pic-
ture (see Box 2 for details):

(1) Let us first assume that concen-
trations of some proteins at the
single-cell level showed temporal
oscillation (Fig. 4A). As the number

of cells increased, the influence of
cell-cell interaction increased, and
accordingly, these oscillations lost
synchrony among cells. With intra-
cellular feedback reactions [13, 16–
19], cell-to-cell difference in the con-
centration was amplified, until some
proteins were highly expressed in
some cells, whose state deviated
from the original attractor (Fig. 4B).

(2) With the interaction with the
original cell type, the trajectory of
such deviated cells went beyond the
basin of attraction to the original
attractor and was attracted to a
new stationary state. Differentia-
tion into a new cell type occurred,
in which the concentration oscil-
lation was lost (Fig. 4B).

(3) Under the presence of (a sufficient
number of) differentiated cells, the
flow of the cell state was shifted
towards the original attractor, due
to the interaction with them. The
original state recovered stability
(Fig. 4C), leading to its proliferation.
In this way, this cell type, the stem
cell in the model, differentiated if its
number ratio was large, and prolif-
erated if it was small. The two cell
states remained stable as attractors
only if the ratios of two cell types fell
within a limited range. This gives a
possible explanation of the macro-
scopic robustness of multicellular
systems.

The model explains decreasing
variation as differentiation
proceeds

For complex GRNs, hierarchical differ-
entiation progressed as in Fig. 5. Here,
the initial cell type had potentiality
to produce any other type including
itself, while each type at a lower hier-
archy produced only itself and the
types downward. Thus, multipotency
decreased. This decrease in multipo-
tency was characterized by:

(i) Oscillations of protein concen-
trations decreasing as cells become
more differentiated: the multipotent
cells in the model presented here
demonstrated temporal oscillation
in the concentration of some
proteins. This oscillation was not
regular, and the cellular state itin-
erated over a few quasi-stable
states. As differentiation pro-
gressed, this temporal variation
decreased, so that the range of
states that the cell could visit
decreased with the developmental
course (Fig. 5).

(ii) Cell-cell variation decreasing from
stem to differentiated cell: this
temporal variation was rather slow,

Figure 4. Schematic representation of the cellular differentiation process from multipotent
stem cells, drawn by gene expression dynamics in the state space of protein concentrations.
A: Oscillatory dynamics of a single stem cell, and illustration of the protein concentration of
such a cell. Arrows represent the flow in the state space. B: With the increase in cell number,
the orbit, the temporal course of protein concentrations, touches the boundary of its basin of
attraction, so that some cells go out of the original attractor. Note that there are many direc-
tions in the state space. The original attractor remains attracted from most directions and the
orbit goes out only through a limited direction at a specific timing. After escape from the
original attractor, such cells are attracted to a different state in which the protein concen-
tration is no longer oscillatory. C: Whether the attractor of the original cell is contacted with
its basin boundary changes depending on the number ratio between the two cell types.
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so that at each snapshot in time,
concentrations of some proteins
differed distinctively across cells. By
comparing cells at a given time, the
cell-cell variation was large for multi-
potent stem cells and decreased as
differentiation progressed.

Point (i) refers to the temporal variation
of a single cell. Indeed, recent single-
cell measurements of Hes1 protein
concentrations using an imaging tech-
nique demonstrated the existence of
oscillatory gene expression in embry-
onic stem cells within a period of a
few hours [47]. This oscillation disap-
peared in differentiated cells [48].
Also, measurement of stem cell marker
Sca-1 revealed the existence of slow
transitory dynamics over metastable
states for hematopoietic progenitor cells
[49]. Point (ii), on the other hand, is
concerned with the cell-to-cell variation.
Heterogeneity in expressions of Stella,
Nanog, and Hes1 expressions was
recently observed in embryonic stem
cells [50, 51]. To further examine this
point, measurement of the variance of
gene expressions over cells is important
(as has been extensively carried out in
bacteria and yeast [52, 53]). Decrease in
cell-cell variations from embryonic stem
cells to committed cells must be quan-
titatively confirmed.

Why differentiated cells can
recovermultipotencybychanging
expression of a few genes

In the simulations, the range of expres-
sion levels that the cellular state varied
was larger for multipotent cells than for
committed cells (see Fig. 3). In the stem
cells in the model presented here,
expressions of many genes mutually
regulated each other. This complex
regulation led to oscillatory dynamics
with transitions over metastable states.
In committed cell types, expressions
were biased to fewer genes, which gave
rise to stationary states. Thus, it is nat-
urally expected that differentiated cells
could recover the multipotency by per-
turbing expressions of a few genes, say
by activating some genes whose expres-
sion is suppressed.

In fact, successful regaining of mul-
tipotency in animal cells was first
achieved by nuclear transplant [54].
Furthermore, induced pluripotent
stem cells recently demonstrated that
pluripotency is restored by activating
a few genes from differentiated skin
cells, in agreement with the above dis-
cussion [55]. (There could be other ways
to perturb gene expressions. Even by
removing some gene, such reprogram-
ming might be possible, as reported
in [56].)

Unfortunately, from the above theoreti-
cal argument, we cannot predict
which genes should be activated to
restore pluripotency. Recalling, how-
ever, that oscillatory gene expression,
generated as a result of feedbacks in
gene regulation, is required for multi-
potency in our theoretical framework, it
is expected that genes responsible for
such oscillation should be activated to
restore plasticity.

Evolutionary robustness of
a multicellular system

So far I have reviewed the studies on
the evolution of robustness and cell
differentiation. Let us now discuss
robustness of the multicellular system
through evolution. As the gene expres-
sion in a cell is noisy, the discussion
concerning robustness can also be
applied here. First, the initial stem
cell type will be stable at the single-cell
level and remain so under a certain
degree of cell-cell interaction intro-
duced by the increase in cell number.
The differentiated cell type must also
be stable against perturbations, to
maintain proliferation. These cell
states must have achieved robustness
against noise in gene expression
dynamics, if they are necessary for sur-
vival of the multicellular organism, and
thus under selection pressure.
Following the discussion in the earlier
section, this robustness is also expected
to imply robustness to mutation.
Thus, each cell type that appears over
normal development will be robust to
mutation.

Here recall that in the simulations
described in the last section, we found
each cellular state, as well as the num-
ber distribution of each cell type, was
fairly stable against noise. Since the
differentiation process here was based
on cell-cell interaction, each cell type
and the distribution would stabilize
each other: robustness to noise at the
single-cell and ensemble levels will con-
solidate each other. Recalling the
relationship between robustness to
noise and to mutation, the number
distribution of cells of each type is also
expected to be robust to genetic
changes.

Figure 5. Differentiation in the normal developmental process and the existence of other
attractors corresponding to cancer state. The normal developmental course starts from the
stem-cell attractor, and progresses with the increase in the cell number and the following
cell-cell interaction. Besides these normal attractors, a cancer attractor(s) exists that is
reached when a large perturbation is applied to deviate from the normal developmental
course. The stability of a cancer attractor could be increased by the genetic change.
Schematic drawing in the state space.
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Cancer: An attractor that is
not reached from the
normal developmental path
and lacks mutational
robustness

Finally, I propose a hypothesis for can-
cer cells from the study on robust
dynamical systems of development.
Generally, GRNs are complex, involving
a huge number of proteins that mutually
influence the expression of others. Many
attractors generally exist for such high-
dimensional dynamical systems (as con-
firmed by simulations of a random
GRN). The number of attractors might
generally decrease as robustness
increased through evolution [29], but
considering the huge number of
involved protein species, some other
attractors in gene expression dynamics,
besides those visited during normal
development, may remain (Fig. 5).
Indeed, in the earlier simulations by
Furusawa and the author, such an
attractor, which did not appear over
normal development, was also ident-
ified [43].

Such states, as they are attractors,
are stable to small perturbations.
However, they are not generated as a
result of normal cell-cell interaction,
and not stabilized in the presence of
other cell types, nor do they help the
state of others to reach stability. These
additional attractors would be selfish in
that they can grow without forming
stable relationships with others. This
is in strong contrast to normal cells in
our model, which were stabilized by
cell-cell interaction and form mutually
stabilizing relationships.

Far from a stable attractor: Why
cancer cells are particularly
sensitive to mutations

Recall that most attractors in a ran-
domly chosen GRN were not robust to
mutations as long as it was sufficiently
complex, while robustness to noise and
to mutation discussed previously was a
result of evolution to produce the func-
tional phenotype. Since the aberrant
cell types here are not functionally
necessary, and thus not under a selec-
tion pressure to preserve their state,
they need not achieve high robustness
against noise or mutation, through

evolution. Accordingly, through div-
isions of such cells, their state would
be more changeable by somatic
mutation. Since the state is not yet opti-
mized for the growth speed or robust-
ness, they can be increased by such
mutation. Hence, some mutations
would increase the population of such
cells. Accordingly, such cellular states
would easily accumulate mutations.
This is in contrast with the normal cell
types that are expected to have already
achieved robustness to noise and
mutation through evolution, where
somatic mutation can increase neither
robustness nor growth speed.

To summarize, the cell types dis-
cussed here will be characterized as
follows:

(i) They do not appear over the course
of normal development, but
are generated as a single-cell
attractor when somehow perturbed
sufficiently.

(ii) They are selfish and do not form
stabilizing relationships with cells
of other types.

(iii) Their phenotypes are vulnerable to
noise or to changes in cell-cell
interaction.

(iv) They are not robust to mutation.
(v) They can easily accumulate

mutations, with which robustness
can be increased.

(vi) They are in differentiated states
compared with pluripotent cells,
but are not terminally committed
cell types.

Cells with these properties may fit with
observations of cancer cells (or cancer
stem cells). Indeed, the hypothesis of
cancer cells as attractors was proposed
by Kauffman [57] and recently put for-
ward by Huang et al. [58, 59]. Here, my
proposal concerns intra-intercellular
dynamics rather than single-cell gene
expression dynamics, and distinguishes
cancer cells from normal cell types with
regard to robustness. This distinction
leads to the above six characteristic
points of cancer-type cells.

According to point (i), a sufficiently
large external perturbation may trigger
the production of the cancer cell. Point
(ii) might explain how cancer cells are
not useful for other normal cell types. In
addition, because the normal develop-
mental course is a result of cell-cell

interaction in the theory presented here,
the appearance of cancer-type cells is
also expected to depend on cell-cell
interaction [14, 43].

The relatively large variation in can-
cer cell phenotypes observed [60–62]
may reflect points (iii) and (iv). Their
phenotype, even though they might be
differentiated, could be changed more
easily than the normal committed cells.
Furthermore, their phenotype will
change depending on interaction with
other cells and mutations. The most
plastic type will correspond to cancer
stem cells [63].

Genetic instability in cancer:
A result, rather than cause,
of phenotypic instability?

According to point (v), genetic instabil-
ity in cancer cells would not be a cause
but a result of phenotypic instability in
dynamics – a trait of the weak attractor.
In this sense, genetic instability in can-
cer cells may be regarded as a genetic
response to increase reproducibility of
the phenotype under the environment
in concern, a kind of genetic assimila-
tion [1] in Waddington’s sense.
Phenotypic change as a result of gene
expression dynamics would then induce
changes in DNA methylation pattern
[63], and later be fixed to genetic
changes.

The question remains as to how can-
cer cells are quantitatively character-
ized. In the previous section, I
proposed possible measures for multi-
potency. In the examples of earlier
numerical studies [14, 43], chemical
concentrations in such cancer-type cells
did not show oscillatory change in time,
but demonstrated larger variability
across cells, compared with committed
cells. This finding is consistent with the
point (iii), weakness in phenotypic
robustness. It was also found numeri-
cally that the chemical composition was
more biased than that of the original
stem cell. In summary, cancer-type cells
are expected to have smaller temporal
variation than embryonic stem cells,
with cell-cell variation much larger than
that of normally differentiated cell
types. The chemical diversity of a can-
cer-type cell is expected to be smaller
than that of embryonic stem cells and
probably at the level of normally differ-
entiated cell types.
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Consequences of the hypothesis

The hypothesis presented here will lead
to several consequences. According to
the present picture, mutation would not
be a direct cause of cancer cells, and
generation of cancer cells would be
strongly dependent on cell-cell inter-
actions and environmental variation.
In fact, density dependence of the fre-
quency of tumor cells was reported by
Rubin [64, 65]. Also, several experimen-
tal reports have shown that transplan-
tation of cancer cells into some other
tissue, which modifies their interaction
with other cells, makes the cancer cells
normalize [66–69].

From the view here, it is expected
that cancer cells do not accumulate
mutations when they are first generated.
At this stage, they could revert to
original multipotent cells by appropri-
ate operations. In fact, such reprogram-
ming has already been observed, by
nuclear transplantation and nuclear
cloning [70, 71]. If the change in cellular
states can be observed by single-cell
imaging, the present hypothesis could
be confirmed by combining with the
microarray analysis.

Conclusions

Cellular state is generated by gene
expression pattern. Cells functioning
in a given environment are robust to
external perturbations. I proposed that
robustness of the gene expression pat-
tern to noise also leads to robustness to
mutation, through evolution of such
cells. Cells under selection pressure
for some function are expected to
achieve these two types of robustness.

In multicellular organisms, differen-
tiation from stem cells to committed
cells is also robust to perturbations over
development. Here, stem cells have
potentiality both to proliferate and
differentiate. The former requires
stability to keep the cellular state over
cell divisions, and the latter requires
plasticity to allow for change in the cel-
lular state. Numerical simulations so far
demonstrated that oscillatory gene
expression dynamics switching between
on and off make the robustness compat-
ible with the plasticity. Cell-cell inter-
actions, then, caused different cell

types to stabilize each other, achieving
robustness to external perturbations.

Since both the stem and differenti-
ated cell states are necessary for a multi-
cellular organism, robustness of each
cell type to noise has to be achieved,
which, in turn, would confer robustness
to mutation.

In complex gene expression dynam-
ics with many genes, however, there can
be some other cellular states that are
attractors but do not appear over the
normal developmental course. In con-
trast to normal cell types, these cells do
not necessarily form stabilizing relation-
ships with other cell types. Since these
cell types are not under selection pres-
sure through evolution, their phenotype
would not necessarily be robust to
mutation, and the robustness of pheno-
types to perturbations could increase by
mutations. Hence, somatic mutations
will easily be accumulated through cell
divisions. I hypothesize that these cell
types have something in common with
cancer cells. This dynamical systems
viewpoint provides a novel perspective
on cancer cells, which can be verified
experimentally.
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