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The evolutionary origin of general statistics in a biochemical reaction network is studied here to explain the
power-law distribution of reaction links and the power-law distribution of chemical abundance. Using cell
models with catalytic reaction networks, we have confirmed that the power-law distribution for the abundance
of chemicals emerges by the selection of cells with higher growth rates, as suggested in our previous study
�Phys. Rev. Lett. 90, 088102 �2003��. Through further evolution, this inhomogeneity in chemical abundance is
shown to be embedded in the distribution of links, leading to the power-law distribution. We analyze the
mechanism of this embedding and discuss the generality of the results.
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I. INTRODUCTION

Recent advances in biology have provided detailed
knowledge about individual molecular processes and their
functions, leading to great success in explaining life in terms
of molecules. From the accumulated data, it is now important
to unveil universal features. However, it is often difficult to
understand the universal characteristics of the intracellular
dynamics maintaining the living state solely by building up
detailed knowledge of molecules, because there is such a
complex and essential network of reactions among these
molecules, such as proteins, DNA and RNA. Thus, construct-
ing a model to cover all the details therein is impossible,
considering the enormous diversity of cellular processes.
Therefore, one possible strategy for extracting the nature of
intracellular dynamics is to search for universal laws with
regard to the networks of intracellular reactions common to a
class of cell models—albeit simple—and then to unravel the
dynamics of evolution leading to such universal features �1�.
Indeed, recent large-scale studies have revealed two general
features in cellular dynamics. First, the power-law distribu-
tion of links in reaction networks was discovered in meta-
bolic and other biochemical pathways and is termed a scale-
free network, where the connectivity distribution P�k� obeys
the law k−� with ���2�3� �2–6�. Second, the abundance of
chemicals in intracellular reactions was also found to exhibit
a power-law distribution, as confirmed at the levels of gene
expression �1,7,8� and metabolic flux �9�. Here, the chemical
abundances plotted in the order of their magnitude are in-
versely proportional to their rank.

Despite the potential importance of these general statisti-
cal laws, how they are formed through evolution and how the
two laws are mutually related are still unknown. Here, we
attempt to answer these questions through analysis and simu-
lation of the evolution of a simple cell model, to demonstrate
that a power-law distribution in the abundance �i.e., total
amount in a cell� of particular chemicals emerges as a result
of competition for greater growth of a cell. This inhomoge-

neity in abundance is embedded into the distribution of links,
leading to a so-called scale-free network with hierarchical
organization of reaction dynamics. The findings provide
novel insights into the nature of network evolution in living
cells.

To determine the emergence and interrelationships of the
power-laws in chemical abundances and network connectiv-
ity through the process of evolution, we adopted a simple
model of intracellular reaction dynamics that captures the
catalytic reaction processes essential for cell growth and di-
vision, following Refs. �1,10,11�. Although this model was
chosen simply to satisfy the minimal requirements of the
intracellular reaction dynamics of a growing cell, it was
found to capture general statistical behavior patterns as con-
firmed experimentally �1�. By studying a class of simple
models with these features and the evolution of the network
of the reaction, we can study how the power laws in abun-
dances and network connectivity emerges inevitably.

II. MODEL

Consider a cell consisting of a variety of chemicals. The
internal state of the cell can be represented by a set of con-
centrations �x1 ,x2 , . . . ,xK�, where xi is the intracellular con-
centration of the chemical species i with values ranging from
1 to K. Depending on whether there is an enzymatic reaction
from i to j catalyzed by some other chemical �, the reaction
path is connected as �i+�→ j+��. The rate of increase of xj

through this reaction is given by xix�, where, for simplicity,
all of the reaction coefficients have been set at 1.

Next, some nutrients were supplied from the environment
by transportation through the cell membrane with the aid of
some other chemicals, i.e., “transporters.” Here, we assumed
that the rate of transport of a chemical is proportional to its
concentration, and the rate of increase of xi by such transpor-
tation is given by Dxmi

�Xi−xi�, where the mith chemical acts
as the transporter for the nutrient i and xmi

is the concentra-
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tion of the mith chemical. The parameter D is a transport
constant, and the constant Xi is the concentration of the ith
chemical in the environment. In addition, we took into ac-
count the changes in cell volume, which varies as a result of
transportation of chemicals into the cell from the environ-
ment. For simplicity, we assumed that the volume is propor-
tional to the sum of the chemicals in the cell, which can
increase by the uptake of nutrients. The concentrations of
chemicals are diluted because of increases in the volume of
the cell. Based on the above assumptions, this dilution effect
is equivalent to imposing the the restriction �ixi=1. When
the volume of a cell is doubled because of nutrient intake,
the cell is assumed to divide into two identical daughter
cells.

To summarize these processes, the dynamics of chemical
concentrations in each cell are represented as

dxi/dt = Ri − xi�
j

Rj �1�

with

Ri = �
j,�

Con�j,i,��xjx�

− �
j�,��

Con�i, j�,���xix��„+ Dxmi
�Xi − xi�… , �2�

where Con�i , j ,�� is 1 if there is a reaction i+�→ j+�, and 0
otherwise, while the last term in Ri is added only for the
nutrients and represents its transportation into a cell from the
environment. The last term in dxi /dt with the sum of Rj gives
the constraint of �ixi=1, because of the growth of the vol-
ume.

Of course, how these reactions progress depends on the
intracellular reaction network. Here, we study the evolution
of the network, by generating slightly modified networks and
selecting those that grow faster. First, n mother cells are
generated, where the connecting paths of catalytic networks
were chosen randomly, so that the numbers of incoming,
outgoing, and catalyzing paths of each chemical are set to the
initial path number kinit. From each of n mother cells, m
mutant cells were generated by the random addition of one
reaction path to the reaction network of the mother. Then,
reaction dynamics were simulated for each of the n�m cells
to determine the rate of growth of each cell; that is, the
inverse of the time required for division. Within the cell
population, n cells with faster growth rates were selected to
be the mother cells of the next generation, from which m
mutant cells were again generated in the same manner.

III. RESULT: POWER-LAWS IN ABUNDANCES AND
NETWORK STRUCTURE ACHIEVED THROUGH

EVOLUTION

A number of network evolution simulations were per-
formed using several different initial networks, parameters,
and various settings. We found that all of the simulations
indicated common statistical properties with regard to both
reaction dynamics and the topology of networks. Here, we
present an example of simulation results to show the com-
mon properties of our simulations.

The rank-ordered concentration distributions of chemical
species in several generations are plotted in Fig. 1, in which
the ordinate indicates the concentration of chemical species
xi and the abscissa shows the rank determined by xi. The
slope of the rank-ordered concentration distribution in-
creased with each generation and, within a few generations,
converged to a power-law distribution with an exponent −1,
which was maintained over further generations. Or, equiva-
lently, the distribution p�x� of the species with abundance x
is proportional to x−2 �12�.

Indeed, the emergence of such a power-law by selecting
cells with higher growth rates is a natural consequence of our
previous study �1�. There, we found that there is a critical
amount of nutrient uptake beyond which the cell cannot
grow continuously. When the nutrient uptake is larger than
the critical amount, the flow of nutrients from the environ-
ment is so fast that the internal reactions transforming them
into chemicals sustaining “metabolism” and transporters can-
not keep up. At this critical amount of nutrient uptake, the
growth rate of a cell becomes maximal, and the power-law
distribution of chemical abundance appears in the intracellu-
lar dynamics. This power-law distribution at the critical state
is maintained by a hierarchical organization of catalytic re-
actions and, based on this catalytic hierarchy, the observed
exponent −1 can be explained by using a mean field approxi-
mation. Experimentally, the power-law distributions of
chemical abundances were confirmed from large-scale gene
expression data of various organisms and tissues, including
yeast, nematodes, normal and cancerous human tissues, and
embryonic stem cells. This suggests that the intracellular re-

FIG. 1. �Color� Rank-ordered concentration distributions of
chemical species. Distributions with several different generations
are superimposed using different colors. The solid line indicates the
power-law x�n−1 for the reference. This power-law of chemical
abundance is established around the tenth generation and is sus-
tained for further evolutions in the network. In this simulation,
growth rates of 10�2000 networks were measured, and the top ten
networks with regards to the growth rate were chosen for the next
generation. The parameters were set as K=1000, D=4.0, and kinit

=4. Chemicals xm for m�5 are considered as nutrients, and their
concentrations in the environment are set as Xm=0.2. For each nu-
trient chemical, one transporter chemical is chosen randomly from
all other chemicals.
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action dynamics in real cell systems generally lie close to the
critical state �see Ref. �1� for details�.

In the evolutionary dynamics of the present simulations,
to increase the growth rate of cells, network changes that
enhance the uptake of nutrients from the environment are
favored. This nutrient uptake is facilitated by increasing the
concentrations of transporters, although, if the uptake of nu-
trients is too large, the cell can no longer grow continuously
because they exceed a critical amount, as mentioned above.
Now, with the evolutionary process shown in Fig. 1, the
nutrient uptakes increase to accelerate the growth rate of
cells until further mutations of the network may lead the
system to exceed the above critical value of the nutrient up-
take. Here, successive increases in the growth rate by the
“mutation” to the reaction network is possible only when the
enhancement of nutrient uptakes caused by it is in step with
increases in the other catalytic activities. As a natural conse-
quence, networks are selected so that the nutrient uptake is
kept near this critical point, where successive catalytic reac-
tion processes maximize the use of nutrients and form a
power-law distribution of abundance.

Next, we investigated the topological properties of the
reaction networks. The connectivity distributions P�k� of
chemical species obtained from the network of the 1000th
generation are plotted in Fig. 2�a�, where kin, kout, and kcat
indicate the numbers of incoming, outgoing, and catalyzing
paths of chemicals, respectively. These distributions were fit-
ted by power-laws with an exponent close to −3. Thus, a
scale-free network was approached through evolution, and
this power-law behavior was maintained for further evolu-
tionary processes.

As shown in Fig. 3, in this simple model, the evolved
reaction network formed a cascade structure in which each
chemical species was mainly synthesized from more abun-
dant species. That is, almost no chemical species disrupted
the flow of chemical reactions from the nutrients, as the net-
work approached the point of optimal cell growth. It should
be noted that the reaction dynamics for each chemical were
also inhomogeneous, in that synthesis of each chemical spe-
cies had a dominant reaction path. Such an uneven use of
local reaction paths has been reported in real metabolic net-
works �9�.

IV. MECHANISM: EMBEDDING THE POWER-LAW IN
ABUNDANCE INTO NETWORK STRUCTURES

Why the scale-free-type connectivity distribution emerges
in this evolution is explained by the selection of preferential
attachment of paths to those chemicals in greater abundance.
Note that the power-law distribution of chemical abundance
has already been established through evolution. Here, we
found that when a new reaction path is attached to an abun-
dant chemical species, it gives a larger influence on the
whole cellular state, as is to be expected from reaction kinet-
ics. Consequently, a change in the rate of growth after the
mutation of the network is also greater when a path is at-
tached to an abundant chemical species, as shown in Fig. 4.
Thus, when a certain number of cells with higher growth
rates is selected from the mutant pool, the probability that

those selected cells have new links to such abundant chemi-
cals is statistically higher than those expected from random
change without selection. Therefore, there is a positive cor-
relation between the abundance of chemical species and the
probability that new links will be added to such species in
evolutionary dynamics: that is, preferential attachment ap-
pears to such abundant chemicals. To represent this probabil-
ity, we use the variable q�x�, which indicates the probability
that a new reaction path is attached to a chemical with abun-
dance x after selection. For example, assume that a change in
the rate of growth by the addition of a path outgoing from a
chemical increases linearly with its abundance x. This as-
sumption is natural as the degree of influence on the cellular
state is generally proportional to the flux of the reaction path
added to the network: that is, the product of substrate and

FIG. 2. �Color� Evolution of the network topology. �a� Connec-
tivity distribution P�k� of chemical species obtained from the net-
work of the 1000th generation. The solid line indicates the power-
law P�k��k−3. For comparison, we show the distribution of krand,
obtained by a randomly generated reaction network with the same
number of paths with the network of the 1000th generation. �b� The
probability q�x� is that a path to a chemical with abundance x is
selected in evolution. The probabilities for incoming (qin�x�), out-
going (qout�x�), and catalyzing paths (qcat�x�) are plotted. The data
were obtained by 1.5�105 trials of randomly adding a reaction path
to the network of the 200th generation, and the paths giving the top
0.05% growth rates were selected.

EVOLUTIONARY ORIGIN OF POWER-LAWS IN A… PHYSICAL REVIEW E 73, 011912 �2006�

011912-3



catalyst abundances. In this simple case, qout�x�, which rep-
resents the probability of attachment for an outgoing path
will increase linearly with x, even though the network
change is random. Here, the connectivity distribution P�kout�
is obtained by the transformation of the variable as follows.
Suppose that the probability of selection of a path attached to
a chemical with abundance x is given by q�x�, then the path
number k�q�x�. By the transformation k=q�x�, the distribu-
tion

P�k� =
dx

dk
p�x� =

p„q−1�k�…
q�„q−1�k�…

�3�

is obtained. By applying the abundance power-law p�x�
�x−2, we obtain P�k�=k−��+1�/� when q�x�=x�. Conse-
quently, a scale-free network with an exponent of −2 should
evolve qout�x��x.

Numerically, we found that the probabilities qout�x� and
qcat�x� were fitted by q�x��x� with ��1/2, as shown in Fig.
2�b�. Then, using the above transformation, the connectivity
distribution was obtained as P�k�=k−3. Here, it is interesting
to note that the connectivity distribution observed from real
metabolic and other biochemical networks follows the
power-law P�k��k−� with � being between 2 and 3, as is
often seen in experimental data �2,3�.

The probability q�x� is determined through the evolution-
ary process. To clarify the reason for q�x��x� with ��1 in
outgoing and catalyzing paths, we investigated the relation-
ship between substrate abundance x and catalyst abundance y
of a path to be selected. For this, we simulated changes in
growth rates by the random addition of a reaction path to the
network of the 200th generation. For 1.5�105 trials, paths
giving 0.05% of the highest growth rates were selected and
are plotted in Fig. 5 as green points on the x-y plane, while
others are plotted as red points. As shown, a path with small
flux is not selected because adding such a path cannot
change the cellular state sufficiently, and a path with large

flux is also not selected because such a large change destroys
the hierarchical structure of catalytic reactions, which results
in a decrease in nutrient intake or the critical point is ex-
ceeded so that the “cell” can no longer grow. Then, the fluxes
of the selected paths satisfy ��xy��+�, with � and �
being constants. We also found that the density of paths to be
selected is almost constant in the above region. Conse-
quently, for each chemical x, the probability that such a path
exists is given by the probability that there is such a partner
chemical with abundance y, which satisfies � /x�y� ��
+�� /x. That is,

q�x� = �
�/x

��+��/x

p�z�dz � p��/x���/x� . �4�

By using Eq. �1�, we obtain

P�k� =
− p��/y�

„�p�y� + ydp�y�/dy�…y2 , �5�

with yp�y�=k. Indeed, if p�x�=x−2, the above expressions
lead to q�x��x, as well as P�k�=k−2. This expression holds
when the evolved network is just at the critical point. The
evolved network is near this critical point but there is a slight
deviation, as can be seen in the deviation from the power-law
in Fig. 1, for a low abundance of chemicals. Note that the
asymptotic behavior for a large k is also given for a small y.
Then, the asymptotic behavior for a large k is given by
P�k��1/ (�p�y�+ydp�y� /dy�), which depends on p�y� for a
small y. If the asymptotic behavior of p�y� for a small y is
given by y−� with ��2, then P�k��k�/�1−��. As ��2, the
exponent of the power is smaller than −2. For example, for
�=3/2 �which corresponds to the relationship between x and
rank n as x�n−2 for large n, as seen in Fig. 1�, P�k��k−3 is
obtained. In general, even if the behavior of p�y� for a small
y is not fitted by a power-law, its increase with y→0 is
slower than y−2. The decrease of P�k� with k is then faster
than k−2, as is often seen in experimental data �2,3�.

FIG. 3. �Color� Changes in the network structure. The abscissa shows the rank determined by the abundance of substrate i, and the
ordinate shows the rank for the product j: the top left is the most abundant and the bottom right is the least abundant. A point is plotted when
there is a reaction path i→ j, while the abundance of catalyst for the reactions is given by different colors determined by rank. As each
product is dominantly synthesized from one of the possible paths, we plotted only the path with the highest flow. �a� The network structure
at the tenth generation is rather random, even though the power-law in abundance has already been established. �b� The network at the
1000th generation. Only a small number of paths are located in the upper-right triangular portion of the figure, indicating that almost all of
the chemical species were synthesized from more abundant species.
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On the other hand, the probabilities qin�x� of having in-
coming paths after selection show no dependence on the
chemical abundance x, and therefore, the above explanation
is not directly applicable for such paths. As for incoming
chemicals, we have found “hot” chemical species that facili-
tate the synthesis of the transporters for the nutrient uptakes,
while others promote the formation of a cascade structure of
reaction dynamics as shown in Fig. 3. These hot species are
more likely to acquire an incoming path after selection. Such
inhomogeneity of the probability among chemicals results in
the inhomogeneity of the number of incoming paths as
shown in Fig. 2�a�. Still, further studies are necessary if such
inhomogeneity results in the same power-law as qout�x� and
qcat�x�.

V. GENERALITY OF RESULTS

Through several simulations, we found that the emer-
gence of two statistical features to be quite general and we
expect that these do not rely on the details of our model.
Specifically, we first checked the results by changing the
initial conditions of the simulation, i.e., the initial concentra-
tions of chemicals and the reaction network in the first cell,
and confirmed that the results are independent of the initial
conditions. Next, we studied a model by changing the param-

eters. Still, by restricting parameter values at which a cell
reproduces efficiently, Zipf’s law for abundances is generally
observed. For example, we confirmed that the results are
qualitatively unchanged if we change the diffusion constant
D in the range 0.1�5.0 and the initial path number kinit in
the range 4�10. Furthermore, we have found Zipf’s law for
the following class of models, based on a cell that reproduces
efficiently.

�1� Generality against network structure: We studied the
models with homogeneous connectivity as well as highly
inhomogeneous connectivity. For example, the emergence of
Zipf’s law was also observed when the connectivity distribu-
tion of reaction network P�k� obeys a power-law with the
exponent ranging 2�3.

�2� Generality against parameter distribution: In the
present model, for simplicity all the reaction coefficients
were chosen to be equal, and all the diffusion coefficients
were also identical. Instead of identical parameter values for
chemical reactions and diffusion coefficients, we studied the
case with distributed parameters depending on each chemical
species or each reaction. For example, even when the reac-
tion coefficients are distributed in the range 1�100, the re-
ported results were obtained.

�3� Generality against reaction kinetics: Here, we studied
the case with a higher order catalytic reaction �e.g., the reac-
tion kinetics xjx�

2 instead of xjx� in Eq. �2� for all chemicals�
and the case with Michaelis-Menten reaction kinetics. Also,
qualitatively the same results were obtained.

�4� Generality against the form of transport of nutrient
chemicals: In the present model, the transport of chemicals is

FIG. 4. �Color� Changes in growth rate with the addition of a
reaction path. Reaction paths were added to the network of the
200th generation from the 100th, 500th, and 900th most abundant
chemical species to investigate the changes in growth rate, whereas
the product and the catalyst of the path were chosen randomly.
Here, the concentrations of the 100th, 500th, and 900th most abun-
dant chemicals were 1.80�10−3, 2.03�10−4, and 2.98�10−5, re-
spectively. The histograms show growth rates obtained by 20 000
trials. The growth rate is measured as the inverse of the time for a
cell to divide, thus the unit of the x axis is �division/time�. In some
trials, the growth rates decreased markedly with the addition of a
path, as the amount of nutrient uptake exceeded the limit of cellular
dynamics. For the paths from the 100th, 500th, and 900th most
abundant chemical species, 39%, 23%, and 4% of such trials
showed growth rates of less than the given threshold �we choose
12.38�, respectively. Such data are not plotted in the figure. As
shown, adding a reaction path from a more abundant chemical was
more effective in changing the growth rate of the cell.

FIG. 5. �Color� Relationship between substrate abundance x and
catalyst abundance y for the selected paths. A randomly chosen
reaction path was added to the network of the 200th generation, and
the growth rate of a cell after adding the path was simulated. For
1.5�105 trials, paths giving 0.05% of the highest growth rates were
regarded as being selected and are plotted as green points on the x-y
plane, while others are plotted as red points. As shown, the selected
paths satisfy ��xy��+�, with �=3.8�10−8 and �=4.0�10−6,
respectively.
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mediated by some chemicals, represented by the term
Dxmi

�Xi−xi� in Eq. �2�. Instead of this active transport, we
studied the cases with a passive diffusion for the transport of
nutrients, represented by the term D�Xi−xi�. As a result, the
emergence of Zipf’s law was also observed.

�5� Generality against the condition for the cell division:
In the present model, cell division occurs when the sum of
all chemicals exceeds a given threshold. Instead, we studied
the case that some chemicals are regarded as chemicals
maintaining the cell membrane, and cell division occurs
when the amount of those membrane chemicals exceeds a
threshold. We confirmed that the reported results are inde-
pendent of the change of cell division rules.

In any case, we found that a hierarchical structure of cata-
lytic reactions is organized at the state with optimal growth.
This hierarchical organization of catalytic reactions main-
tains the power-law distribution of chemical abundance, as
discussed in Ref. �1�. Hence, we believe that the result is
general when a reaction network system that synthesizes
chemicals in a cell shows recursive growth.

Now, it is expected that Zipf’s law generally emerges
through evolution, for a cell system consisting of the follow-
ing processes: �i� intracellular reaction dynamics within
cells; �ii� intake of nutrients �that may depend on the internal
chemical concentration�; �iii� synthesis of chemicals through
the above process leads to cell growth so that the cell divides
when a certain condition is satisfied; and �iv� evolutionary
processes together with this cell division, i.e., random muta-
tions to reaction networks and selection of cells with higher
growth rate. Higher growth in the cell is selected through �iv�
and Zipf’s law of abundance is generally reached for a cell
with optimal growth. Furthermore, as the embedding mecha-
nism is also general, the evolution to power-law in network
paths is also expected to be general.

Indeed, we have performed simulations with several dif-
ferent evolutionary criteria, and the results are essentially the
same, provided the degree of mutation is not large. For ex-
ample, when we assume that the probability of being se-
lected as parent cells for the next generation is proportional
to cellular growth rate, the evolutionary dynamics are quali-
tatively the same as those presented here. As another ex-
ample, we have performed simulations in which a fixed
�large� number of cells is put in a given environment and,
when a cell divides into two, a randomly chosen cell is re-
moved to keep the total cell number constant, instead of
introducing discrete generations as in the genetic algorithm
rule adopted in the present paper. In such rules of simulation,
cells having higher growth rates are also selected, and the
power-law distribution of chemical abundance emerges as a
result of evolutionary dynamics �13�.

VI. SUMMARY AND DISCUSSION

In the present paper, we have shown that the power-law in
abundances of chemicals and network paths naturally
emerges through evolution, by taking a class of cell models
consisting of catalytic reaction networks. We show that the
power-law of abundance is later embedded into that of net-
work path distribution, while the relation between the two
powers is analyzed.

With regard to the evolution of reaction networks, prefer-
ential attachment to a more connected node has often been
discussed �2,14�. In the previous models, preference of path
attachment is simply defined as a function of the numbers of
existing paths, and the origin of such a preference in evolu-
tionary dynamics remains obscure. On the other hand, our
study is different from those reports in two important re-
spects. First, the dynamics of chemical abundance in the net-
works were introduced explicitly �described as node
“strength” in Ref. �15��, whereas previous models generally
considered only the topological structure of the network.
Second, selection only by cellular growth rate results in such
a preference, even though attachment itself is random. Here,
we found that more abundant chemical species acquired
more reaction links, as attachments of new links to such
chemicals have both a greater influence on the cellular state
and a higher probability of being selected. With these mecha-
nisms, the power-law in abundance is naturally embedded in
the intracellular reaction network structure through evolu-
tion, which is simply a process of selecting cells with faster
growth rates.

One possible approach to show the existence of the evo-
lutionary dynamics we present here is to investigate the posi-
tive correlation between intracellular abundance and the
number of reaction links of each chemical species in a real
cell. For example, analysis of intracellular metabolite con-
centrations might reveal both the power-law distribution of
metabolite abundance and the positive correlation between
the abundance and the number of reaction links of each me-
tabolite. The positive correlation of abundance and number
of reaction links, if observed, is consistent with our theory on
the embedding of the power-law distribution of metabolite
abundance into the power-law distribution of reaction links
in metabolic networks, which is already known well.

Another way to show the existence of such evolutionary
dynamics is experimental verification of the preferential at-
tachment of paths to more abundant chemical species. Such
experimental verification may be possible by comprehensive
analysis of the phenotypic changes produced by the addition
of metabolic pathways. For example, we can transplant
metabolic pathways by genetic engineering, and analysis of
phenotypic changes by such addition of metabolic pathways
should allow us to extract the correlation between the degree
of phenotypic changes and the abundance of metabolites to
which pathways are attached. Because large phenotypic
changes enhance the probability that the addition of new
pathways to such chemical species is selected in evolution-
ary dynamics, the observation of positive correlation in such
analysis suggests that the preferential attachment of links to
more abundant chemical species can be maintained.

As discussed, the emergence of the power-law distribution
of chemical abundance is expected to be a general feature of
growing cells, as this feature seems to appear necessarily in
any system having both intracellular reaction dynamics and
intake of nutrients from an environment, when the cellular
growth rate is maximized. Similarly, our simulations support
the idea that evolutionary dynamics favoring the power-law
distribution of reaction path numbers emerge when cells hav-
ing higher growth rates are selected and mutations are ran-
domly added to reaction networks. An important point here
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is that the emergence of general features is independent of
details of the system, provided the conditions required for
such features are satisfied. The power-laws of both abun-
dance and connectivity, which are often observed in intrac-
ellular reactions, can be simple consequences of our mecha-
nism by Darwinian selection.

As the power-law in abundance and links in the network
are general for a reproducing cell consisting of a reaction

network, we trust that the theoretical origin of universality of
our results is understood without assuming a specific choice
of models, as, for example, has been established in renormal-
ization group theory for critical phenomena.
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