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Abstract

The origin and robustness of morphogenesis are studied by dynamical system modeling of a cell society, in which cells possessing

internal chemical reaction dynamics interact with each other through their mutual interaction with diffusive chemicals in a two-

dimensional medium. It is found that stem-type cells differentiate into various cell types (where a cell ‘type’ is defined by a type of

intra-cellular dynamics) due to a dynamic instability caused by cell–cell interactions in a manner described by the isologous

diversification theory. The differentiations are spatially regulated by the concentration of chemicals in the medium, while the

chemical concentrations are locally influenced by the intra-cell dynamics. Through this reciprocal relationship, chemical

concentrations come to exhibit spatial variation as differentiated cell types begin to emerge, and as a result the regulation exercised

by the chemical concentrations become spatially inhomogeneous. This reinforces the process of differentiation, through which

spatial patterns of differentiated cells appear. Within this reciprocal relationship, the concentration gradients are read and

interpreted by the cell as positional information. A spatial order of cells realized in this process represents a stable state of the system

governed by this reciprocal relationship, and that the developmental process through which this state is realized is robust with

respect to perturbations. The dependence of the morphogenesis on history and the community effect in cell differentiation are also

discussed.

r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

In morphogenesis, cells differentiate during the
developmental process, and these differentiated cells
form an ordered spatial pattern. There are two unsolved
fundamental problems of morphogenesis, understand-
ing the origin of positional information and elucidating
the reason for the robustness of development. This
paper addresses these problems.
With regard to the first of the above stated problems,

recent experimental studies have clarified how changes
in gene expression take place in the process of
differentiation and in the process of spatial pattern
formation. However, the description of changes in gene

expression alone is not sufficient to fully explain the
entire process of morphogenesis, because the manner in
which gene expressions are activated or inactivated
depends on the chemical state of the cell, and this state is
influenced by interactions with surrounding cells.
The second problem referred to above begin from the

observation that pattern formation processes in cell
societies during normal development are rather stable.
Despite the inevitable existence of fluctuations on the
molecular level and perturbations on the cellular level,
under ‘normal’ circumstances, pattern formation pro-
cesses proceed very predictably, with the development of
a particular type of tissue in any given organism
generally following the same course and resulting in
nearly identical patterns in all instances.
Furthermore, some experiments in which the devel-

opmental process is perturbed externally through the
removal or addition of cells suggest that the cells
somehow ‘know’ their position within a system
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consisting of an ensemble of cells, and with this
knowledge they are able to recover the effect of the
perturbation. Considering these observations, Wolpert
proposed the concept of positional information (Wol-
pert, 1969): Each cell knows its position by the
concentrations of certain diffusing chemicals surround-
ing the cell, and the gradient of these chemical
concentrations is assumed to carry positional informa-
tion, separated from genetic information of each cell. In
fact, the idea that the spatial variation of diffusional
chemical concentrations plays a role in morphogenesis
was originated by Turing (1952), as discussed later.
Although much has been learned in these pioneering

works, the two basic problems mentioned above remain
unsolved.
In a cell society, if positional information, embedded

in gradients of some chemical concentrations, is
externally given, cells can differentiate in appropriate
ways to generate a certain order of cell society, as
discussed by Wolpert. However, the manner in which
such positional information is generated spontaneously
is not discussed, within the positional information
theory. It is often argued that once the positional
information determining the first pattern formation is
supplied from outside the system, each subsequently
emerging pattern generates increasingly detailed posi-
tional information used in the following pattern forma-
tions, and the progressive chain of such interconnected
formation processes completes the morphogenesis. In
fact, there are asymmetric distributions of some
components in fertilized eggs, such as bicoid and nanos
mRNAs in the Drosophila egg, and it has been asserted
that the pattern formation process in the first stage of
development is controlled by this initial asymmetry of
chemical components (Alberts et al., 2002). However, it
cannot be the case that all positional information
governing pattern formation is embedded in the initial
asymmetry of egg. Indeed, morphogenesis has been
found to be robust with respect to changes in such initial
asymmetry of components. For example, when the
initial concentration gradient of bicoid in the Droso-
phila egg is altered experimentally, although the
subsequent pattern formation in the first stage of
development is modified according to this alteration,
the final pattern displayed by the fully developed body is
unaffected by this perturbation, up to a certain degree
(Driever and N .usselein-Volhard, 1988). This seems to
imply that the important positional information is not
entirely embedded in the initial conditions of the
developmental process, but rather it is to some extent
also generated during the developmental process.
In addition to the problem involving positional

information, that of elucidating the properties of the
system responsible for the robustness of pattern forma-
tion with respect to microscopic perturbations also
remains unsolved. In the standard picture of develop-

mental biology, cell differentiation is controlled by the
‘‘if–then’’-type mechanism, given by a threshold condi-
tion for concentration of signal molecules to determine
whether a differentiation occurs or not. A cell ‘reads’
signal concentrations and changes its internal state
according to the information. However, as discussed in
Kaneko and Yomo (1999) and also by Lacalli and
Harrison (1991), fluctuations in chemical concentrations
introduce a serious problem into the standard picture
with ‘‘if–then’’ type mechanism. To see this, first recall
that these signal molecules are often present in very low
concentrations. Here, the chemical concentration of
relevance is the number of molecules per unit volume in
the tiny region around the cell. Hence the number of
signal molecules associated with cell differentiation is
often quite small, while in diffusion processes, each
molecule moves randomly. Thus there can be large
fluctuations in the concentration of molecules affecting a
single cell in general. In fact, Houchmandzadeh,
Wieschaus, and Leibler have recently demonstrated
such large fluctuations of bicoid concentration in the
Drosophila eggs with the same developmental stage
(Houchmandzadeh et al., 2002). Such large fluctuations
no longer appear at later steps in the developmental
process, and robust pattern formation results. It should
be stressed here is that, the ‘‘if–then’’ type mechanism
has no potential to ‘correct’ errors arising from such
fluctuations to maintain developmental process ro-
bustly, as seen in real organisms. One might expect that
the errors in determining cell differentiations could be
eliminated by proofreading mechanisms existing in a
cell, to support the threshold mechanism. However,
such proofreading mechanisms consist of a chain of
chemical reactions, which also suffer from the fluctua-
tions at a molecular level. Therefore, there will always be
fluctuations even if we consider all possible fine tuning
of the threshold value.
Taking into account the above considerations, to

understand the process of morphogenesis, it is of great
importance to construct a model in which both the
generation of positional information and the robustness
of the developmental process with respect to both
macroscopic and microscopic perturbations are incor-
porated. This paper presents an attempt to realize this.
Note that, in Wolpert’s theory, positional information

is functionally separated from its interpretation by cells
with intra-cellular reaction dynamics. However, to
discuss morphogenesis, including the generation of
positional information, this separation is not always
valid. Here, the inter-dependence between positional
information by molecular gradients and intra-cellular
dynamics of cells should be considered.
Fifty years ago, Turing proposed a pioneering theory

for spontaneous pattern formation, based on chemical
reaction and diffusion, without assuming any external
mechanism for the imposition of spatial inhomogeneity
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(Turing, 1952). This theory partially answers the
question concerning the origin of positional information
and the inter-dependence between positional informa-
tion and cellular dynamics, in terms of dynamic
instability and diffusive interaction. In the present
paper, we adopt a dynamical systems modeling method
possessing a certain instability, and in this sense, our
theory is along the line of Turing’s theory. However, our
theory aims to go beyond the standard Turing’s theory
at some points, considering some insufficiency of the
standard theory to solve the questions raised above, as
discussed below.
First, in Turing’s model, although a spatial pattern of

varying chemical concentrations (a periodic striped
pattern) is formed, it is not so clear how this variation
in concentrations leads to the differentiation into
‘‘discrete’’ cell types, since the variation of chemical
concentrations is nearly continuous. Note that a Turing-
type dynamics can trigger transitions between discrete
cellular states when it couples with other cellular
dynamics giving rise to multiple stable states (Miura
and Shiota, 2000). However, to regulate the transition
between these cellular state elaborately, the Turing-type
dynamics generating cellular heterogeneity and cellular
dynamics sustaining discrete nature of cellular states
must be tightly coupled. Thus, a study of a coupled cell
system with rich intra-cellular dynamics having dynamic
instability and multistability is required, to discuss
irreversibility in cell differentiation straightforwardly.
The second problem is that in the standard Turing

model, the developmental process involving the increase
of cell number is not considered. In his original model,
the system size, i.e. the number of cells, is fixed in time.
It should be noted, however, that in development and
regeneration processes in multicellular organisms, the
regulated growth and differentiation of stem-type cells
play an essential role in generating and maintaining
spatial and temporal order in the cell society. For
example, in the regeneration process of injured tissue,
the original spatial pattern is recovered not through
simple spread of the remaining tissue, but through
elaborately regulated growth and differentiation of
undifferentiated cells in the affected region, which
appear due to the activation of quiescent stem cells or
the de-differentiation of differentiated cells. In these
processes, a changing population of each cell type due to
growth and differentiations is essential. Although there
are some theoretical studies incorporating domain
growth into Turing’s model (Crampin et al., 1999), the
discrete nature of differentiation process is not con-
sidered in these studies. A model that fully takes account
of cell division process coupled with the intra-cellular
reaction dynamics should be studied.
In spite of extensive studies in Turing patterns

(Meinhardt and Gierer, 2000), the above two problems
were not completely resolved. We have proposed the

so-called isologous diversification theory to resolve
the problems of the Turing model and to explain the
spontaneous differentiation of cells into discrete types in
a developmental process in which the number of cells
increases (Kaneko and Yomo, 1994, 1997; Furusawa
and Kaneko, 1998, 2001). In the theory, each cell state is
represented by concentrations of several chemicals that
change in time through intra-cellular catalytic reaction
processes and cell–cell interactions communicated by the
diffusion of penetrating chemicals. Through the reaction
processes within a cell, total amount of chemicals in the
cell increases, and the cell divides when this amount
reaches a certain threshold. As the cell number
increases, the state of the cell society consisting of an
ensemble of homogeneous cells is destabilized, and due
to this dynamic instability, cells become differentiated.
The irreversible loss of multipotency through develop-
ment from stem-type cells also results in the course of
development (Furusawa and Kaneko, 2001).
In the theory, the first problem in the standard

Turing’s theory is resolved by explicitly introducing rich
internal dynamics in a cell, with sufficient degrees of
freedom. These internal dynamics can have several
distinct attracting states, sometimes stabilized by their
own, and interpreted as different cell types.
The second problem is resolved by the division

process of cells leading to development. On the one
hand, this division process leads to successive choice of
initial conditions of cellular state of the next generation.
With this, differentiation and determination of cell types
is discussed. On the other hand, history dependence of
developmental process is studied with this introduction
of the change of cell numbers, and the transfer of
cellular states by cell divisions.
In this theory to this time, we have disregarded spatial

dimensions for simplicity. By including a spatially local
process in our model, it is possible to study how the
dynamic differentiation process and spatial pattern
formation develop through mutual dependence, and
lead to the formation of stable patterns and stable cell
types.1 In the present paper, we answer the basic
questions raised above, by extending the isologous
diversification theory to include the effect of spatial
extension.
Considering spatially local interactions, we have

found that in our model, differentiations are regulated
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1Another approach to bridge between gene expressions and pattern

dynamics is recently proposed by Hogeweg (2000). In this study,

Kauffman’s (1969) Boolean network model for gene expression

patterns is adopted as intra-cellular dynamics, while cell–cell interac-

tions causes transitions into choice of different attractors in the intra-

cellular dynamics. Following the increase in the cell number, spatial

pattern is formed. One major difference between this study and ours is

that her model requires externally given heterogeneity among cells in

the first stage of development, while our model exhibits spontaneous

diversification caused by instability in dynamics.
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by spatial variations of chemical concentrations in the
medium, which are sustained by the interactions of cells
placed with a given spatial order. In this way, a
reciprocal relationship between intra-cellular dynamics
and chemical gradients emerges: The formation of
gradients of chemical concentrations depends on the
intra-cellular states of the cells, and each intra-cellular
state is determined under the influence of the concentra-
tion gradients that control the growth and differentia-
tion. Only within the process governed by this reciprocal
relationship, are the concentration gradients read and
interpreted by the cell as positional information. In this
process, the resulting spatial pattern of cells can be
regarded as a stable state of the system possessing this
reciprocal relationship, and we will show that the
developmental process leading to this state is generally
robust with respect to perturbations. The dependence of
the developmental process on history and the commu-
nity effect in cell differentiation are also discussed.

2. Model

First, we summarize the standpoint from which we
designed our model of morphogenesis.
Due to the complexity of cellular dynamics in real

organisms, it is almost impossible to construct a model
that gives results in precise agreement with the
quantitative behavior of real biological processes. Of
course, one could go about constructing a complicated
model of a cellular system based on experimental data
obtained in cell biology studies and in this way imitate
the behavior of living cells. However, such mimicry
would get us no closer to understanding the essence of
cellular systems, because we could obtain behavior that
is as similar to that of biological processes as we desire
by simply adding increasingly complicated mechanisms
to the model. By contrast, in this study we adopt a
simple model containing only the features essential to
capture the essence of the developmental process,
including the generation of a spatial order of cells, and
with this we attempt to understand the universal
behavior of pattern formation in the class of multi-
cellular systems.
To investigate pattern formation in multicellular

systems, we have considered simple models consisting
of only the following basic features of multicellular
systems:

* Internal dynamics governed by a biochemical reac-
tion network within each cell.

* Interactions between cells (inter-cellular dynamics).
* Cell division and cell death.
* Cell adhesion.

2.1. Internal chemical reaction dynamics

Within each cell, there is a network of biochemical
reactions. This network includes not only a complicated
metabolic network but also reactions associated with
genetic expressions, signaling pathways, and so forth. In
the present model, a cellular state is represented by the
concentrations of k chemicals. The dynamics of the
internal state of each cell is expressed by a set of
variables fc

ð1Þ
i ðtÞ;y; cðkÞi ðtÞg representing the concentra-

tions of the k chemical species in the i-th cell at time t:
As the mechanism governing the internal chemical

reaction dynamics, we consider a catalytic network
among the k chemicals. Each reaction producing some
chemical j from some chemical i is assumed to be
catalysed by a third chemical c; which is determined
randomly. To represent the reaction matrix, we use the
notation Conði; j; cÞ; which takes the value 1 when the
reaction from chemical i to chemical j is catalysed by c;
and 0 otherwise. Each chemical acts as a substrate to
create several enzymes for other reactions, and from
each chemical there are several paths to other chemicals.
Thus these reactions form a complicated network. The
matrix Conði; j; cÞ is generated randomly before a
simulation and is fixed throughout that simulation.
We denote the rate of increase of c

ðmÞ
i ðtÞ (and hence

decrease of c
ð jÞ
i ðtÞ) through a reaction from chemical j to

chemical m catalysed by c as ec
ð jÞ
i ðtÞðcðcÞi ðtÞÞa; where e is

the coefficient characterizing this chemical reaction and
a is the degree of catalysation. For simplicity, we use
identical values of e and a for all paths. In this paper, we
set a ¼ 2; which implies a quadratic effect of enzymes.
We note, however, that this specific choice of a is not
essential in our model of cell differentiation.
Our model also takes into account the change in

volume of a cell, which varies as a result of the
transportation of chemicals between the cell and the
environment. For simplicity, we assume that the total
concentration of chemicals in a cell is constant, i.e.P

m c
ðmÞ
i ¼ const: It follows that the volume of a cell is

proportional to the sum of the quantities of all
chemicals in the cell. The volume change is calculated
from the transport of chemicals, as discussed below.

2.2. Cell–cell interaction

Each cell communicates with its environment through
the transport of chemicals into and out of the
surrounding medium. Here we consider only indirect
cell–cell interactions intermediated by diffusive chemical
substances in a two-dimensional medium. The state of
the medium is expressed by a set of variables,
fCð1Þðx; y; tÞ;y;CðkÞðx; y; tÞg; whose elements represent
the concentrations of the k chemical species at the
position denoted ðx; yÞ at time t:
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We assume that the rates of transportation of
chemicals into a cell are proportional to the differences
between the chemical concentrations on the inside and
the outside of the cell. Thus, the term in the equation for
each dc

ðmÞ
i ðtÞ=dt describing the transport of the m-th

chemical from the medium into the i-th cell is given by
DmðCðmÞðtÞ � c

ðmÞ
i ðtÞÞ; where Dm is a transport coefficient

of the cell membrane.
In general, the transport (diffusion) coefficients

should be different for different chemicals. Here, we
consider the simple situation in which there are two
types of chemicals, those which can penetrate the
membrane and those which cannot. This distinction is
made in the equation of motion by the parameter sm;
which is 1 if the m-th chemical is penetrating and 0 if it is
not.
Incorporating all of the above mentioned processes,

the dynamics of the chemical concentrations in each cell
are represented as

dc
ðcÞ
i ðtÞ=dt

¼
X

m; j

Conðm; c; jÞec
ðmÞ
i ðtÞðcð jÞ

i ðtÞÞa

�
X

m0; j0

Conðc;m0; j0Þec
ðcÞ
i ðtÞðcð j0Þ

i ðtÞÞa

þ scDmðCðcÞð px
i ; p

y
i ; tÞ � c

ðcÞ
i ðtÞÞ

� c
ðcÞ
i ðtÞ

Xk

m¼1

smDmðCðmÞð px
i ; p

y
i ; tÞ � c

ðmÞ
i ðtÞÞ; ð1Þ

where the first and second terms with
P

Conð?Þ
represent paths coming into and out of c; respectively.
The third term describes the transport of chemicals out
of and into the surrounding medium, where px

i and p
y
i

denote the location of the i-th cell. The last term gives
the constraint

P
c c

ðcÞ
i ðtÞ ¼ 1; which is satisfied due to

the change of the cell volume as chemicals flow in and
out of the cell.
The diffusion of penetrating chemicals in the medium

is governed by a partial differential equation for the
concentration of each chemical, CðcÞðx; y; tÞ as

@CðcÞðx; y; tÞ=@t

¼ �Der2CðcÞðx; y; tÞ

þ
X

i

dðx � px
i ; y � p

y
i ÞscDmðCðcÞ � c

ðcÞ
i ðtÞÞ: ð2Þ

We assume the boundary conditions

Cð0; y; tÞ ¼Cðxmax; y; tÞ

¼Cðx; 0; tÞ ¼ Cðx; ymax; tÞ ¼ const:


 ð0oxoxmax; 0oyoymaxÞ; ð3Þ

where De is the diffusion constant of the environment,
xmax and ymax denote the extent of the lattice, and dðx; yÞ
is the Dirac delta function. These boundary conditions
can be interpreted as representing a chemical reservoir

outside the medium that supplies those penetrating
chemicals that are consumed by the cells.

2.3. Cell division and cell death

Each cell receives penetrating chemicals from the
medium as nutrients, while the reaction in the cell
transforms them into non-penetrating chemicals which
compose the body of the cell. As a result of these
reactions, the volume of the cell increases. In this model,
the cell divides into two almost identical cells when the
volume of the cell becomes double its original size.
During this division process, all chemicals are almost
equally divided between the daughter cells, with the
differences taking the form of tiny random fluctuations
(e.g. B10�6 c

ðcÞ
i ). Although the imbalance represented

by these differences in chemical concentration is
essential to the differentiation process in our model
and in nature, the actual size of this imbalance does not
affect the results we present below. In our model, these
tiny differences between cells can be amplified, due to
the intrinsic instability of the internal dynamics.
Penetrating chemicals can penetrate the cell mem-

brane in both directions, and therefore these chemicals
may flow out of a cell. As a result, the volume of the cell
can become smaller. In our model, a cell dies when its
cell volume becomes less than a given threshold.

2.4. Cell adhesion

As a minimal model of cell–cell adhesion, we assume
that two cells positioned within a given distance have a
‘connection’, so that they adhere to each other. This
adhesion force is represented by a ‘spring’ between two
cells whose potential has a minimum as some distance,
so that two adjacent cells are separated by this amount.
We assume that the magnitude of the adhesion force is a
function of only the distance between the interacting
cells, and, in particular, is independent of intra-cellular
state.
In addition to the adhesion force, a random force,

modeling Brownian motion, is applied to all cells. By
this random force, the cells making up an ensemble seek
a configuration that is stable with respect to perturba-
tions, including these fluctuations. Then, when a cell
divides, the two daughter cells are placed at randomly
chosen positions close to the mother cell. Each daughter
cell creates new connections with the neighboring cells,
and the system adjusts into a new stable configuration.

3. Result

In this section, we present numerical results demon-
strating the developmental process and the resulting
spatial pattern described by our model. As mentioned,
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in our model, we adopt a simple type of intra-cellular
reaction dynamics governed by a reaction matrix that is
determined randomly. The behavior of the cellular
system depends on the choice of the random reaction
matrix. To extract universal features of the system,
which are independent of the detailed structure of the
network and parameter values, we have performed
simulations using thousands of different reaction net-
works and parameters. From these simulations, we have
found that differentiation resulting from cell–cell inter-
actions and a robust developmental process toward an
ordered spatial pattern of differentiated cells is observed
for some fraction of randomly generated reaction
networks (e.g. 6% of random networks). It is important
to note that in these results the diversification process
from multipotent stem-type cells to determined cell
types is basically the same as that found previously
(Furusawa and Kaneko, 1998, 2001) in the simulation of
models in which the spatial variation of chemical
concentrations in the environment is not accounted
for. For this reason, in this paper, we focus on the
emerging spatial pattern of differentiated cells and the
process by which it develops, while the diversification
process itself is described only briefly. A detailed
account of the diversification process is given in the
above cited papers.
In the present model, cellular diversification processes

are observed in the case with the intra-cellular chemical
reaction dynamics exhibiting nonlinear oscillatory be-
havior, as shown in Figs. 1(a) and 3(a).2 For other cases
without oscillatory dynamics, in which the concentra-
tions of chemicals are fixed over time, a homogeneous
cell society of nearly identical cells appears. Here, to
investigate the emergence of the developmental process
in multicellular organisms, we choose the case with
oscillatory intra-cellular dynamics in the beginning.3

One reason for studying reaction networks giving rise to
such oscillatory dynamics is discussed in Furusawa and
Kaneko (2000) (see also discussion in Section 8). Indeed,
cell society starting from a cell with oscillatory intra-
cellular dynamics has a higher growth speed as an
ensemble, and it is natural to assume that such cell
society is selected through evolution.

Note that in real biological systems, such oscillatory
dynamics are often observed in some chemical systems
that include chemicals such as Ca, NADH, cyclic AMP
and cyclins (Tyson et al., 1996; Hess and Boiteux, 1971;
Alberts et al., 2002). Such oscillations generally appear
in a system that includes positive feedback reactions,
which are observed ubiquitously in real biological
systems. Indeed, the replication process requires ampli-
fication of molecule numbers, for which positive feed-
back process is required. Thus, it is natural to employ
reaction networks that exhibit oscillatory dynamics in
our model.4

In the remainder of this section, we describe the
developmental process by considering two specific
reaction networks which exhibit different types of
spatial patterns, a concentric ring pattern and a striped
pattern of differentiated cells.

3.1. Differentiation process toward a ring pattern

In this section, we present numerical results demon-
strating the development toward a concentric ring
pattern of differentiated cells. For the simulations that
we carried out, employing a variety of reaction net-
works, this was the most frequently observed non-trivial
spatial pattern. Here we consider numerical experiments
employing a particular reaction network with the
number of chemicals set to k ¼ 32 and 9 connections
for each chemical. The parameters are set as e ¼ 1:0;
Dm ¼ 0:001; and De ¼ 0:001: The first, second, and third
chemicals are penetrating (i.e. s0 ¼ s1 ¼ s2 ¼ 1), and
the others are not.
As the initial state, we consider a single cell placed at

the center of the medium, whose chemical concentra-
tions c

ðcÞ
i are determined randomly with the constraintP

c c
ðcÞ
i ¼ 1: In Fig. 1(a), we show a time series of the

concentrations of the chemicals for a single, isolated cell.
The attractor of the internal chemical dynamics in this
case is chaotic. We call this initial type of cell ‘‘type-0’’ in
this section. According to our numerical results, it seems
that this state represents the only attractor that can in
practice be realized in simulations employing randomly
chosen initial conditions.
Now, with diffusion, external chemicals flow into the

cell. This happens because there will eventually develop
a lower concentration of penetrating chemicals within
the cell, since penetrating chemicals are transformed
into non-penetrating ones through the intra-cellular
reaction. This flow leads to the increase of the cell
volume. If this volume exceeds a given threshold, the
cell divides into two, with almost identical chemical
concentrations. As the number of cells increases
repeatedly by a factor of two (i.e. 1-2-4-8?) with
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2Although instability in dynamics, which amplifies a microscopic

difference among intra-cellular states, is necessary for our diversifica-

tion process, chaotic intra-cellular dynamics itself is not always

necessary for it. In some cases, the cellular dynamics exhibits periodic

oscillation without chaos at an early stage of development, but by

increasing the cell number, the entire dynamical system including all

cells and environment becomes unstable, which results in the

differentiations in the same manner as shown later. Furthermore,

even without oscillatory dynamics at all, differentiation at the present

mechanism is found to work, if there appears some instability in the

transient dynamics of cellular state (Takagi and Kaneko, 2003).
3Note that even in this case, differentiated cell types that appear

later through cell–cell interaction often have fixed chemical concentra-

tions without oscillations.

4The importance of oscillatory dynamics in cellular systems has been

pointed out by Goodwin (1963).
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further divisions, a cluster of type-0 cells eventually is
formed (Fig. 2(a)). Among these cells, although
the internal dynamics of each cell correspond to the
same attractor, the coherence of the oscillations
among individual cells is easily lost due to the chaotic

nature of the dynamics in these type-0 cells. The
microscopic differences introduced at each cell division
are gradually amplified to a macroscopic level, and this
destroys the phase coherence of the oscillation among
the cells.
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Fig. 1. (a) Overlaid time series of the cellular chemical concentrations cðmÞðtÞ for the type-0 cell in the case of a ‘ring pattern’. The vertical axis

represents the concentration, and the horizontal axis represents time. In this figure, we have plotted the time series of only 5 of the 32 internal

chemicals, for clarity. The lines designated by the numbers m ¼ 0; 1; 6; 15 and 18 represent the time series of the concentrations of the

corresponding chemicals cðmÞðtÞ: (b)–(e) Time series of cðmÞðtÞ in a single cell, representing the process of differentiation to type-1,2,3 and type-4 cells,

respectively. ( f ) Automaton-like representation of the rules of differentiation. The path back to the original node represents reproduction of the same

cell type, while the paths to other nodes represent transitions to the corresponding cell types.
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When the number of cells exceeds some threshold
value (here approximately 40), some cells located
internal positions within the cluster begin to display
different types of dynamics (Fig. 2(b)). In Figs. 1(b) and
(c), the time series of the chemical concentrations in
these new types are plotted. We call these ‘‘type-1’’ and
‘‘type-2’’ cells, respectively. Figs. 1(b) and (c) show that

each of the these attracting states occupies a distinct
region in the phase space, and that each can be clearly
distinguished as a distinct state. Transitions from the
type-0 state to other state are interpreted as the process
of differentiation.
Note that this differentiation is not induced directly

by the tiny differences introduced at the cell divisions.
Also, note the transition from one cell type to another
does not occur at the time of cell division, but later,
through the interactions among the cells. The phenom-
enon of differentiation observed here is caused by an
instability in the entire dynamical system consisting of
all the cells and the medium. It is due to this instability
that tiny differences between two daughter cells can be
amplified to a macroscopic level through the intra-
cellular dynamics and interactions between cells. Only
when the strength of this instability exceeds some
threshold does differentiation occur. Then, the emer-
gence of new cell types stabilizes the dynamics of the
other cell types. We thus see that the cell differentiation
process in our model results from the amplification of
tiny phase differences through orbital instability (tran-
sient chaos), while the coexistence of different cell types
stabilizes the system as a whole.
It should be noted that these differentiated cell types

do not necessarily correspond to attractors of the
internal dynamics of a single cell. In fact, for a single
cell system, there is no attractor corresponding to a
differentiated cell type, for the reaction matrix and
parameter values adopted in the simulation described
above. This implies that when a single differentiated cell
is transplanted into a medium containing no other cells,
this cell is de-differentiated back into a type-0 cell. Here,
a multiple-cell system, the stability of such internal
dynamics is sustained only through interactions among
cells.
As the cell number increases further, some type-2 cells

located internally within a cluster further differentiate
into other cell types, which are called type-3 and type-4
here (Figs. 1(d) and (e)). They form the ‘inner core’ of
the cluster as shown in Fig. 2(c). At this stage, a ring
pattern consisting of three layers is formed, in which a
ring of type-2 cells lies between type-0 cells, located at
the periphery, and type-1, 3 and 4 cells, located inside.
The transitions between different cell types through

differentiation follow specific rules. These rules originate
from a constraint on the transient dynamics exhibited
when a cell makes the transition between the attracting
states corresponding to two cell types. Fig. 1( f )
represents all possible transitions using an automaton-
like representation.

3.2. Differentiation process toward striped pattern

In our model, possible spatial patterns of differen-
tiated cells are not restricted to the ring pattern

ARTICLE IN PRESS

Fig. 2. Development of a cell cluster toward a ‘ring pattern’ in a two-

dimensional medium. Each mark corresponds to a particular cell type,

with different cell types distinguished by significantly different internal

dynamics.
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discussed in the previous section. In this section, we
describe an example of the development toward a
striped pattern, which was obtained in simulations of
the model using a reaction matrix, also generated
randomly, that is different from that resulting in a ring
pattern. Here, we consider numerical experiments
employing a particular reaction network for which the

number of chemicals is k ¼ 32 and there nine connec-
tions for each chemical. The parameters are set as e ¼
1:0; Dm ¼ 0:002; De ¼ 0:004: Chemicals 1–3 are pene-
trating (i.e., sc ¼ 1), and the others are not.
In this case, a single cell placed at the center of the

medium exhibits the oscillatory reaction dynamics
plotted in Fig. 3(a), for all initial sets of chemical
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Fig. 3. (a) Overlaid time series of concentrations cðmÞðtÞ for the type-0 cell in the case of a ‘striped pattern’. The vertical axis represents the

concentration of chemicals and the horizontal axis represents time. In this figure, we have plotted the time series of only five of the 32 internal

chemicals, as in Fig. 1. The lines designated by the numbers m ¼ 2; 3; 5; 11 and 17 represent the time series of the concentrations of the

corresponding chemicals cðmÞðtÞ: (b)–(d) Time series of cðmÞðtÞ in a single cell, representing the process of differentiation to type-1,2, and type-3 cells,

respectively. (e) Automaton-like representation of the rules of differentiation.
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concentrations chosen in our simulations. We call cells
in such a state ‘‘type-0’’ here. In this example, when the
number of type-0 cells becomes 4 through cell division,
the entire system becomes unstable due to cell–cell
interactions, and two type-0 cells differentiate into
another distinct cell type, called type-1 (Fig. 3(b)). With
further divisions of type-0 and type-1 cells, a cluster
consisting of cells of these two types is formed
(Fig. 4(b)). As the cell number increases further, some
type-0 cells located on the side of the type-0 region
farthest from the type-1 region differentiate into another
distinct cell type, called type-2. At the same stage, some
type-1 cells that have migrated into the type-0 region
differentiate into another cell type, called type-3.5 As a
result of these differentiations, a spatial pattern of cells
consisting of four stripes, each containing cells of just
one kind, is formed,6 as shown in Fig. 4(d).
In a system exhibiting the striped pattern, the

disappearance of point symmetry, like that possessed
by the ring pattern (Fig. 2(c)), is due to the development
taking place at the beginning of the differentiation
process from type-0 to type-1 cells when there is still a
small number of cells (Fig. 4(b)). It is at this stage that
the point symmetry is lost, and this asymmetric small
cluster of cells expands through further cell divisions.
Because of the difference regarding both rates and types
of nutrients absorbed and released for type-0 and type-1
cells, the asymmetric distribution of cells brings about
asymmetric concentration gradients of nutrients in the
medium, as shown later. These affect subsequent
differentiations and thereby cause the system to evolve
an asymmetric spatial pattern of cells.

4. Positional information

In the situation considering in the previous sections,
the concentration gradients of chemicals in the medium

appear to act as ‘‘positional information’’. In the case of
the ring pattern (Fig. 2), chemical concentrations vary
along the radial direction in a cell cluster, while in the
case of the striped pattern (Fig. 4), the variation of
chemical concentrations is limited almost entirely to the
direction perpendicular to the stripes. Because of the
existence of such a spatial dependence of the chemical
concentrations, a cell can know its position and the
proper manner to evolve (i.e. to make a transition to
another cell type or not) in order to maintain or
strengthen the existing ordered pattern. An important
point here is that such gradients are not imposed on the
system from the outside, but, instead, they emerge and
are maintained by the cell–cell interactions with appro-
priate intra-cellular dynamics. It can be clearly shown
that, for example, an ordered spatial pattern like that in
Fig. 4 and the concentration gradient sustaining this
pattern disappear and never return to the original state
when the internal states of all cells (i.e. the concentra-
tions of the chemicals within the cells) in the cluster are
suddenly changed by assigning them randomly chosen
values, even if the concentrations of nutrients in the
medium and the locations of the cells are not changed
(Fig. 5(b)). These results indicate that there is a
reciprocal relationship between the cellular dynamics
and the concentration gradients in the medium, in which
the dynamics of the cells maintain the gradients and the
gradients control the dynamics of the cells.
For chemical concentrations to act as positional

information, it must be the case that a cell can determine
its position by ‘perceiving’ this concentration, in the
sense that a cell placed at a particular position
differentiates in to the cell type that maintains the
pattern. In addition to this ‘controlling’ property of such
information, to maintain a robust developmental
process, it must be the case that this information itself
is preserved even when the system is subject to
perturbations. These features of the positional informa-
tion can be demonstrated by removing some cells and
examining the regeneration process. In the next section,
we study the reciprocal relationship between positional
information and cell differentiation, and clarify how
the concentration gradient can act as positional
information.

5. Stability of spatial patterns with respect to

perturbations

As mentioned above, in our model, an ordered spatial
pattern emerges as a result of the interplay between
intra- and inter-cellular dynamics. Here we give results
indicating that this emergence process is stable with
respect to macroscopic perturbations, for example,
those consisting of the removal of some cells. This
stability is an important implication of this interplay. On
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5This mixing of type-0 and type-1 cells at the boundary between

these two regions is caused only by the random determination of the

positions of the two daughter cells after cell division and the random

fluctuation force applied to each cell. In some cases, by chance, there is

no such mixing, and therefore in these cases, no type-3 cells appear.
6Starting from different initial conditions (i.e. different initial

concentrations of chemicals in original first cell), in some cases,

although the intra-cellular dynamics of each cell type and the order of

appearance of each cell type are the same as in the case depicted in

Fig. 4, a cell cluster evolves into a more disordered spatial pattern.

Such a disordered pattern appears when type-0 cells and type-1 cells

are intermingled in the first stage of development. This intermingling

occurs by chance, due to random determination of the positions of the

two daughter cells after each cell division and the random fluctuation

force that causes the Brownian motion of cells. This kind of

‘‘teratogenesis’’ can be avoided by introducing the dependence of

adhesion force on the intra-cellular dynamics, for example, if the

adhesion force between cells of the same type is sufficiently stronger

than that between cells of different types, as is often the case in actual

organisms.
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the basis of this observation, we discuss the nature of
positional information in the system.
In our model simulations, differentiation occurs when

the instability of the system exceeds some threshold
through the increase of the cell number, and the
emergence of differentiated cells stabilizes the system.
As a natural consequence, a large perturbation, such as
the removal of cells, causes the system to become
unstable. However, we found that after such an
alteration of the system, a series of cell differentiations
generally occur that lead the system back to the original
distribution, so that the system return to its stable state.
In our previous model, in which each cell is coupled
to each other in an identical manner through a

homogeneous environment, stability with respect to
the removal of cells results from the regulation of the
differentiation probability from stem-type cells into
various differentiated types of cells (Furusawa and
Kaneko, 1998, 2001). For example, we studied a cell
society consisting of multipotent stem-type cells ‘‘S’’ and
differentiated cell types ‘‘A’’ and ‘‘B’’, with the possible
transitions S-S;A;B: In this system, if the number of
type A cells is reduced ( for example, by perturbation),
the rate of occurrence of the transition S-A is
enhanced, and the original number distribution of cell
types is thereby approximately recovered.
Now let us return to the present model with non-tri-

vial spatial dependence. Here, again, the developmental
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Fig. 4. Development of a cell cluster toward ‘striped pattern’ in a two-dimensional medium. Each mark corresponds to a particular cell type,

distinguished by its particular type of internal dynamics.
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process generally possesses stability with respect to such
perturbations. In the present model, however, the
regulation of the differentiation process in response to
perturbations depends on the existing spatial pattern of
cells and the chemicals present in the medium. It is
through this regulation that the damaged spatial pattern
is regenerated. In this section, we describe regeneration
processes involving the striped pattern consisting of
three layers of cell types, as shown in Fig. 6(a). This
pattern was obtained using the same reaction matrix and

parameter values as in the example depicted in Fig. 4,
but starting from different initial conditions (i.e.
different initial concentrations of chemicals in the first
cell). We will consider three typical examples of external
perturbations here.

(I) Recovery from the removal of the entire type-2
region: In one case, we removed all the type-2 cells (Fig.
6(b)), after the striped pattern in Fig. 6(a) had
developed. After this operation, the rate of transitions
from type-0 to type-2 cells was enhanced at the side of
type-0 region farthest from the type-1 region, and as a
result, the striped pattern with three layers gradually re-
appeared (Fig. 6(c)). Figs. 6(d)–( f ) display the concen-
trations of nutrients in the medium, corresponding to
the dotted line in Figs. 6(a)–(c), respectively.
(II) Recovery the removal of the entire from type-0

region–de-differentiation of type-2 cells into type-0,
induced by the interaction with type-1 cells: In this case,
we removed all the type-0 cells that were located in the
middle of the striped pattern, and combined the
remaining cell clusters consisting of only type-1 and
type-2 cells, as shown in Fig. 7(b). After this alteration,
type-2 cells located at the boundary between the type-1
and type-2 regions de-differentiated back into type-0
cells, and the striped pattern with three layers was
thereby recovered (Fig. 7(c)). It is important to note that
de-differentiation from a type-2 cell to a type-0 cell
never occurs during the ‘‘normal’’ course of develop-
ment, i.e. without perturbations. In Figs. 7(d)–( f ), the
concentrations of nutrients in this case are plotted in the
same manner as in Fig. 6.
(III) Formation of a new pattern resulting from the

removal of the type-1 region: Here, all the type-1 cells
were removed from a cluster with a striped pattern (Fig.
8(b)). In this case, regeneration of the type-1 region was
not observed. Instead, type-0 cells at the periphery of the
cluster differentiated into type-2 cells. As a result, a
sandwich-like 2-0-2 structure was formed, and with
further development, a ring structure with inner type-0
cells and outer type-2 cells was formed. In this case, the
final cell society consisted only of type-0 and type-2 cells
(Fig. 8(c)). The concentrations of nutrients for this
process are plotted in Figs. 8(d)–( f ).

From these results, we identify the following char-
acteristics of the development and regeneration process
for the present model. First, the differentiation of a
type-0 cell into a type-2 cell occurs when the concentra-
tions of chemicals around the type-0 cell approximately
satisfy the conditions Cð0Þðx; y; tÞo0:02; Cð1Þðx; y; tÞ
o0:02; and Cð2Þðx; y; tÞ > 0:13; where CðiÞðx; y; tÞ denotes
the concentration of the i-th chemical in the medium.
Next, because type-0 cells absorb chemicals 0 and 1
strongly and chemical 2 only weakly, when a cluster
consisting entirely of type-0 cells exceeds a certain
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Fig. 5. Examples of spatial patterns of cells that appear in simulations

starting from multiple cells, instead of a single cell. In this simulation,

the reaction network and parameter values of Fig. 4 were used. Here,

185 cells were placed in the same locations as shown in Fig. 4(d), and

the initial concentrations of chemicals were determined randomly and

independently for each cell. In (a), the initial chemical concentrations

in the medium were set to constant values, independent of the spatial

variables. In (b), the initial chemical concentrations in the medium

were set to be the same as in Fig. 3(d). For these cases, the definitions

of the cell types are the same as those shown in Fig. 3. Note that these

spatial patterns of cells never appear as a result of the developmental

process from a single cell.
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number of cells, the peripheral region of this cluster
come to satisfy the condition for the emergence of type-2
cells, and a ring pattern consisting of type-0 cells on the
inside and type-2 cells on the outside appears. The
cluster in Fig. 8(c) corresponds to this situation. Then,
because type-1 cells absorb chemical 2 more strongly
than do type-0 cells, Cð2Þ decreases in a region of type-1

cells (see Fig. 6(a)). As a result, differentiation from
type-0 into type-2 cells is suppressed near such a region
of type-1 cells. This is the reason why only type-0 cells
that are on the side of the type-0 region opposite to the
type-1 region differentiate into type-2 cells. Addition-
ally, the decrease of Cð2Þ in the vicinity of type-1 cells
brings about the de-differentiation of type-2 cells into
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Fig. 6. Regeneration of striped pattern following the removal of the entire type-2 region. In the case depicted in (b), all type-2 cells were removed

from the striped pattern of cells depicted in (a). In (c), the effect on the development caused by this operation is shown. It is seen that rate of

transitions from type-0 to type-2 cell is enhanced on the side of the type-0 region that is opposite to the type-2 region, and the striped pattern with

three layers thereby reappears. In (d)–( f ), the concentrations of the nutrients in the medium along the dotted line in (a)–(c), respectively, are plotted.
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type-0 cells when a type-2 region is placed beside a
type-1 region (Fig. 7(c)).
These results indicate that there is a reci-

procal relationship sustaining the development
and regeneration processes that can be described as
follows:

(i) In a manner that depends on the types of cells
present, the concentration gradients in the medium
are formed.

(ii) The growth and differentiation of each cell is
determined by the concentrations of chemicals at
the corresponding position.
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Fig. 7. Regeneration of a striped pattern following removal of the entire type-0 region. In the case depicted in (b), all type-0 cells were removed from

the striped pattern of cells depicted in (a). In (c), the effect on the development caused by this operation is shown. We see that the transitions from

type-2 to type-0 cells, which never occur in normal development, occur at the boundary of the type-1 and type-2 regions, and the striped pattern with

three layers reappears as a result. In (d)–( f ), the concentrations of the nutrients in the medium along the dotted line in (a)–(c), respectively, are

plotted.
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To complete this reciprocal relationship, the cells
‘‘read’’ the chemical concentrations in the medium in
their neighborhood and change their internal state
accordingly. In this system, the cells read the concentra-
tion of chemicals as modification of their intra-cellular
dynamics. That is, each attracting state of the internal
dynamics, corresponding to a distinct cell type, is

modified by the existence and the states of surrounding
cells. This modification consists of the change of orbits
(or average position) in phase space. In Fig. 9 we plotted
the dependences of the cellular dynamics on their
position, using the cell society with a striped pattern
considered in Fig. 4(d). To quantify the change of the
intra-cellular dynamics, we determine the average
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Fig. 8. Regeneration of a striped pattern following the removal of the entire type-1 region. In the case of (b), all type-1 cells were removed from the

striped pattern of cells displayed in (a). In (c), the effect on the development caused by this operation is shown. In (d)–( f ), the concentrations of the

nutrients in the medium along the dotted line in (a)–(c), respectively, are plotted.
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position of the orbit of each cell in the k-dimensional
phase space, which is calculated as the average of the
concentrations cðmÞðtÞ in this cell over a certain period.
We use this average to smear out temporal fluctuations
of chemical concentrations resulting from the oscillatory
nature of the intra-cellular dynamics. Additionally, to
obtain the long time average without the complication
introduced by the change in the number of cells, we
disallowed cell division here.
In Fig. 9, the Euclidian distance between the average

position of the orbit of the intra-cellular dynamics and
the origin in the k-dimensional phase space is plotted as
a function of the position in the medium for each cell.
As shown in Fig. 9, the intra-cellular dynamics of each
cell are gradually modified as its position changes.
However, it should be noted that these modifications of
a given type of internal dynamics are much smaller than
the differences among the dynamics of different cell
types. Thus, there are effectively two types of informa-
tion contained in the internal dynamics of a cell:
‘‘analogue’’ information, reflecting the states of the
surrounding cells, and ‘‘digital’’ information corre-
sponding to the cell type. This analogue information
controls differentiation through the modification of
intra-cellular dynamics. On the other hand, a change
in the distribution of cell types, resulting from cell
division and differentiation, brings about a change in
the concentrations of chemicals in the medium. This
change then affects a change in the intra-cellular
dynamics, thereby altering the analogue information.
Within this reciprocal relationship, the concentration

gradients of chemicals are read and interpreted by the
cells, and they react by adjusting their internal states to
match the existing spatial pattern. The chemical gradient

in the medium is maintained by the configuration of cell
types, while, inversely, it controls the appearance of cell
types at each position. Thus, in this context, the gradient
of chemicals can be regarded as constituting positional
information for the cells. An important point in this
regard is that this positional information is not imposed
from outside the system. Instead, this positional
information in the form of concentration gradients of
chemicals naturally emerges in the developmental
process through instabilities in the dynamics that result
from cell–cell interactions.
The spatial pattern that develops through the process

described above can be regarded as a stable state of the
reciprocal relationship between intra- and inter-cellular
dynamics. It should be stressed that this state is
generally stable with respect to perturbations up to a
certain degree, and thus, the system recovers its original
pattern, when some perturbations (such as the removal
of cells) are applied to it. The regeneration depicted in
Figs. 6 and 7 is manifestation of this stability.
Now we discuss the reason that type-1 cells are not

regenerated in case III (in Fig. 8(c)), in contrast to the
situation for type-0 and type-2 cells. The fact that there
is no regeneration in this case does not imply a loss of
stability. Indeed, the potential for regeneration of the
type-1 region depends on the stage of development:
type-1 cells are regenerated from type-0 cells when the
number of type-0 cells is not large. Interestingly,
although differentiated cell types generally possess the
potential for regeneration when they are removed at the
same stage of their appearance (e.g. cell numberB4 for
type-1 cell), the potential for regeneration is lost for
some types at a later stage of development as is the case
for type-1 cells.
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Fig. 9. Variation of intra-cellular dynamics with respect to position. To measure the change undergone by the intra-cellular dynamics when the

position of a cell is changed, we determined the average position of the orbit of each cell in the k-dimensional phase space, which was calculated as the

averages of the k concentrations cðmÞðtÞ over a certain period for that cell. Each point corresponds to a cell placed between the two solid lines in (a),

and the Euclidian distance in the phase space between the average position for a cell and the origin is plotted as a function of the position of the cell in

the medium. Note that, the distance from the origin in the phase space does not necessarily indicate the distance between two different cellular states.

For example, the variation in the position of a type-0 cell’s orbit is much smaller than the distance between average positions of type-0 and type-2

cells.
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We have found that thus the potential for regenera-
tion depends on the number of cells present, while the
possibility of generating a different types of cell colony
(i.e. ring pattern consisting of type-0 and 2 cells)
depends on the initial conditions. These two issues—
the community effect and the dependence on history—
are discussed in the following two sections.

6. Dependence on history of the developmental process

As discussed in the previous section, the spatial order
of a cell cluster is realized as a stable state of a cell
society governed by the reciprocal relationship between
intra- and inter-cellular dynamics. In this developmental
process, different stable states of the cell colony are
realized in succession, as the number of cells changes. It
should be noted, however, that the ordered spatial
pattern realized at any given stage, as in Fig. 4, is not
always the unique stable state of the system. Instead,
there are generally multiple stable states, although one
(or only a few) of them can be selected through the
developmental process from a single, isolated cell.
The existence of multiple stable states of a cell colony

is suggested by the result we found in case III of the last
section. To check the dependence of the selected cell
colony systematically, we have carried out several
simulations, starting with multiple cells, instead of from
a single, isolated cell, while using the same reaction
matrix and parameters values as used in the case of
Fig. 4.
In one simulation, as the initial conditions, we

introduced 185 cells and positioned them in the same
positions as the cells shown in Fig. 4(d). Then, the
chemical concentrations of these cells were determined
randomly, and the total cell number was fixed at 185 by
disallowing the cell division process. The initial chemical
concentrations in the medium were set to constant
values, independent of the spatial variables. Fig. 5(a)
displays an example of the spatial pattern exhibited after

the system settles into a stable state, starting from
randomly chosen intra-cellular chemical concentrations
that were determined independently for each cell. As
shown in the figure, the cell clusters realized in this case
from multiple cells fall into homogeneous pattern
consisting mainly of type-3 cells, without any spatial
structure.
We also performed simulations using different initial

conditions for the intra-cellular dynamics with the same
number of cells, and observed qualitatively the same
results as shown in Fig. 5(a). In these simulations, when
the initial cell number was more than approximately 20,
the disordered pattern consisted mainly of type-3 cells as
Fig. 5(a) represents.
We have also carried out simulations starting from

different types of initial conditions in the simulation that
cell division is allowed. The results are summarized in
Table 1. As seen there, when the initial cell number is
between 4 and 20 and the initial states of cells are
determined randomly and independently for each cell, a
cell colony consisting entirely of stem-type cells (i.e.
type-0) emerges. This cell colony eventually develops
into a ring pattern of cells, with an outer region of type-
2 cells and an inner region of type-0 cells, while for
smaller number of initial cells, ‘normal development’ in
which the system consists of a striped pattern colony
progresses.
One might expect that by imposing the appropriate

positional information, the ordered pattern as depicted
in Fig. 4(d) could be regenerated. To check this
possibility, we carried out simulations by initially
imposing the chemical gradient in the medium that
existed in the case of Fig. 4(d) (in which case it was
realized through the normal developmental process),
while the initial chemical concentrations in the cells were
chosen randomly and independently for each cell, as in
the case of Fig. 5(a). Again, here the pattern realized
asymptotically was disordered as shown in Fig. 5(b). We
found that in this situation, the positional information
initially imposed is soon disturbed. As mentioned above,
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Table 1

Results of simulations starting from different initial conditions

Initial cell state Initial cell number Developed cell colony

Random Small ðt4Þ Normal development (striped pattern with type-0, 1, and 2 cells)

Medium ð\4;t20Þ Ring pattern with type-0 and 2 cells

Large ð\20Þ Disordered consisting mainly of type-3 cells

Type-0 Small ðt4Þ Normal development (striped pattern with type-0, 1, and 2 cells)

Medium ð\4;t20Þ Ring pattern with type-0 and 2 cells

Large ð\20Þ Disordered consisting mainly of type-3 cells

Type-1 Small ðt4Þ Normal development (striped pattern with type-0, 1, and 2 cells)

Large ð\4Þ Only type-1 cells

Type-2 small ðt4Þ Normal development (striped pattern with type-0, 1, and 2 cells)

Medium ð\4;t15Þ Ring pattern with type-0 and 2 cells

Large ð\15Þ Only type-2 cells
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positional information is generated through the reci-
procal relationship between the cellular dynamics and
the pattern, and as these simulation show, positional
information alone cannot force the regeneration of the
pattern to which it corresponds.
It is important to note here that the homogeneous

states depicted above never appear when a cell cluster is
developed from a single cell. In that case, only a striped
pattern is obtained, while different types of cell colonies
are obtained from initial conditions consisting of multi-
ple cells, as shown in Table 1. These results indicate that
there are several stable states realized with various initial
conditions for multiple cells, and that the stable state
corresponding to the spatial pattern depicted in Fig. 4(d)
has a relatively small basin of attraction. Nevertheless,
when the system starts from a single stem-type cell (or a
sufficiently small number), the ‘‘narrow path’’ leading
this state is always selected through the developmental
process. Indeed, we have performed several simulations
with different reaction networks and parameter values,
and found that this requirement of developmental
process to form the ordered spatial pattern as Figs. 2
and 4 is a general feature of the developmental process
in our model.
One of the most remarkable features of development

and regeneration processes in real organisms is that such
‘‘narrow paths’’ to an ordered body pattern are always
selected, despite the fact that such systems are subject
to considerable perturbations, both at the microscopic
level (e.g. molecular fluctuations) and at the macro-
scopic level (e.g. removal of cells). Our study suggests
that the existence of such a narrow path to an ordered
pattern and the stability of this path with respect to the
perturbations are consequences of the interplay between
intra- and inter-cellular dynamics.

7. Community effect

In our model, the differentiated cell types do not
necessarily correspond to attractors of the internal
dynamics of a single cell, and the interaction with other
cells is important. For example, when a single type-2 cell
(such as that in Fig. 4) is placed in a medium containing
no other cells, this cell de-differentiates back into a type-
0 cell. However, as shown in Fig. 10, the type-2 cell state
is stable when such a cell is surrounded by a sufficient
number of other type-2 cells. To confirm this point, we
have carried out simulations with the same model, but in
this case placing a large number (larger than 10) of type-
2 cells in an otherwise unoccupied medium. In this case,
the cell colony consisting of only type-2 cells grows.
As discussed in the previous section, there are

multiple stable cell colony states. A cluster consisting
only of type-2 cells corresponds to one such stable state,
but this state never appears in the ordinary develop-

mental process starting from a single cell. In this
case, only when the number of type-2 cells initially
placed in the medium is more than approximately 15, do
these cells remain in their type-2 states. Otherwise, all
the cells de-differentiate into type-0 cells. This result
clearly indicates that the states of the cells existing in a
cluster can be mutually stabilized by their cell–cell
interactions.
The state of a developed cell colony depends on the

number of initial cells, also for the case of type-0 and
type-1 cells, as given in Table 1.
In real organisms, the stability of the state of a single,

isolated cell is quite different from that of a cell existing
as part of an ensemble of cells. Gurdon et al. demon-
strated this difference for several cell types, using
transplantation experiments, and named this change in
stability the ‘‘community effect’’ (Gurdon et al., 1993).
For example, they transplanted muscle progenitor cells
of the Xenopus into other tissue and found that
cells transplanted as a group differentiate into muscle
cells, as in their normal development, while a single cell
transplanted alone changes in response to cell–cell
interactions. Although this effect can be explained
simply by introducing an autocrine factor to keep the
stability of their own cell type, the fact that several cell
types have this community effect suggests that this
characteristic is a general and intrinsic property of cell
societies, independent of the specific choice of such
factors.
The dependence of the developed tissue on the initial

cell number has also been observed in experiments
involving the artificial construction of tissue through the
control of the activin concentration by Asashima’s
group (Ariizumi and Asashima, 2001; Uochi and
Asashima, 1996). In these experiments, a number of
undifferentiated cells were taken from the animal cap of
Xenopus, and with these the construction of several
types of tissue (e.g. heart, notocord, muscle and so
forth) was caused by controlling the concentration of
activin. In these experiments, it was found that the type
of tissues constructed depends on the number of cells
used. The tissue is generated only for some range of
initial cell numbers. These experiments also suggest
that the community effect is a generic property of an
ensemble of cells.
According to our results, differentiations occur when

the instability of the system exceeds some threshold
through the increase of the cell number, and the
emergence of differentiated cells stabilizes each intra-
cellular state in the ensemble. In the process of
development, the dynamics of each cell type are
determined in such a way that the entire cell society
become stable. The community effect is thus under-
stood as a natural consequence of the developmental
process of interacting cells with intra-cellular chemical
dynamics.
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8. Discussion

We now summarize the results of our simulations, and
discuss their relevance to biological morphogenesis.
First, in our model, cells possessing internal nonlinear

reaction dynamics differentiate into several distinct cell
types when the cell number exceeds a threshold value.
The transition from one cell type to another is regulated
by the position of the cell in question. This regulation
leads to an ordered spatial pattern consisting of
differentiated cells, as shown in Figs. 2 and 4. An
important point here is that the positional information
that controls the fate of a cell is not imposed from the
outside of the system but, rather, emerges and is

maintained through cell–cell interactions communicated
through the exchange of diffusive chemicals. Each cell
‘‘reads’’ information from the external field and reacts to
this information by modulating its intra-cellular dy-
namics in accordance with it. This modulation controls
the rates of differentiation into various cell types, while
such cell differentiations, in turn, alter the state of the
environment. With this reciprocal relationship between
intra- and inter-cellular dynamics, the gradients of
chemicals in the medium act as positional information
controlling the fate of each cell. Here, three interdepen-
dent processes maintaining the ordered spatial pattern
of cells, the generation of positional information, its
interpretation, and differentiation in accordance with
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Fig. 10. The community effect in the case of a striped pattern. From an ensemble of cells exhibiting a striped pattern, (b) a group of type-2 cells and

(d) a single type-2 cell were transplanted into a new, otherwise unoccupied medium, and they developed under the same rules and parameter values

with the case depicted in Fig. 4. As shown in (c), the type-2 cells transplanted as a group remain type-2 cells, while the type-2 cell transplanted as a

single cell transforms into a type-0 cell and then, eventually develops into a striped pattern, as shown in (e).
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this interpretation, are tightly incorporated. Note that in
the pattern formation process of Turing’s model, such a
reciprocal relationship of intra- and inter-cellular
dynamics is not clearly discernible, because the internal
state of the cells and the environmental state are not well
separated.
The reciprocal relationship of intra- and inter-cellular

dynamics is responsible for the robustness of the
developmental process. In this process, differentiations
occur when the homogeneous state of the cell ensemble
becomes unstable through the increase of the cell
number, while the emergence of differentiated cell types
stabilizes the system. Then, when a large perturbation,
such as the removal of cells, is applied, the entire system
becomes unstable, and as a result, differentiations lead
the system back toward the original stable state. In other
words, ordered cell patterns generated as a result of this
developmental process correspond to a fixed, self-
consistent relationship between the intra- and inter-
cellular dynamics, which is stable with respect to
perturbations up to a certain degree. Indeed, the
potential for ‘‘regeneration’’ of a spatial pattern, as
described by Fig. 6, is a general feature of this system,
which appears without any finely-tuned mechanisms. As
discussed in the Introduction, even when the chemical
gradient emerging through normal development is
severely disturbed experimentally, the original gradient
is regenerated, to recover normal development. We
think that this regeneration is a manifestation of the
dynamic reorganization of positional information de-
monstrated in this paper.
The developmental process of our model is robust

with respect to microscopic perturbations, such as
molecular fluctuations, which are inevitable when the
number of chemical species is small. In the study
reported in Furusawa and Kaneko (2001), to investigate
the robustness with respect to such microscopic pertur-
bations, we introduced noise in simulations of this
developmental process7 to represent molecular fluctua-
tions, described by a Langevin equation. In that study, it
was found that the developmental process is stable as
long as the amplitude of this noise is not too large. This
is also true in the system studied presently, displaying
spatial patterns. Now even if the number of signal
molecules is not very large, the robust pattern formation
is possible, and the problem raised in the introduction is
resolved. As a rough estimate, the minimal number of
signal molecules per cell, necessary for robust develop-
ment, is around 100–1000. This explains why the

developmental process is robust with a quite small
number of signal molecules.
An illuminating demonstration of developmental

stability has recently been given in a sequence of
experimental investigations of tissue construction by
Asashima’s group (Ariizumi and Asashima, 2001; Uochi
and Asashima, 1996). In those experiments, a cell
ensemble consisting of undifferentiated cells of Xenopus
were put into a solution of activin with a given
concentration for some time. These ensembles were
allowed to develop and it was found that several
different types of tissue were generated, depending on
the concentration of activin. The types of tissues that
developed include heart, muscle, notocord, and so forth.
One of the remarkable findings of their experiments is
that, in each case, normal tissue is developed, even
though the developmental path leading to the construc-
tion of each type of tissue is far from the path of the
normal developmental process. This result strongly
suggests that normal tissue types correspond to ‘attrac-
tors’ of intra- and inter-cellular dynamics, as also found
in our model.
Another important feature of the developmental

process in our model is its dependence on history. The
reciprocal relationship described above generally has
multiple stable states, although a specific type of cell
society always appears in the developmental process
from a single stem cell. Such a dependence on history
also exists in real developmental processes, in which the
emergence of an ordered cell society of an adult body
requires a developmental process that begins from a
single or a small number of puripotent cells, while a
simple aggregate of differentiated cells never develops
into a well-organized adult body. How is the narrow
path from a small number of undifferentiated cells to an
ordered society of differentiated cells with a certain
order is chosen even under microscopic and macro-
scopic fluctuations? Elucidating the selection mechanism
is one of the most important problems in developmental
biology. Our results suggest that a spatially ordered cell
society is a stable state of a cellular system governed by a
reciprocal relationship between intra- and inter-cellular
dynamics, and the successive change of this stable state
as the number of cells increases is responsible for
selecting the narrow path of ‘correct’ development. Note
that without incorporating a mechanism allowing for
the change of the number of cells, as is the case in the
standard Turing model, such robustness in selecting a
developmental path cannot be discussed.
The dependence on history that we found shows that

there are several stable states of a cell colony in our
model. For example, using the same reaction matrix and
parameter values as in the case depicted in Fig. 4, we
observed at least five stable cell colonies: (i) a striped
pattern in most cases consisting of three types of cells;
(ii) a ring pattern consisting of two type of cells; (iii), (iv)
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7 In the simulations of Furusawa and Kaneko (2001), there was no

spatial dependence of the environmental chemical concentrations.

However, except for the spatial dependence of the regulation of

differentiations, the cellular diversification process observed in those

simulations is essentially the same as that observed in the system

studied in this paper.
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colonies consisting of homogeneous cell types (two cases
with different types); (v) disordered patterns with two
types of cells. In other words, different types of ‘tissue’
can be generated from the same reaction dynamics. In
the ‘normal’ developmental process starting from a
single cell, the striped pattern (i) is generated, while from
initial conditions with multiple cells, the other patterns
(ii)–(v) can be generated. Thus differentiation of tissues
from a different initial cell ensemble is also a general
consequence of our theory.
In the present context, it is interesting to reconsider

the experiments by Asashima’s group. In those experi-
ments, the formation of different types of tissue was
brought about by only changing the concentration of
activin in the medium. In other words, in the biological
system studied there, different stable states of cell
aggregates exist, as in our model. Also, in those
experiments, the type of tissue generated was found to
depend on the number of cells prepared initially. This
number dependence corresponds to what we have shown
in our model as the community effect. In the experi-
ments, the path leading to the generation of each type of
tissue was selected in accordance with the concentration
of activin in the medium. In the future, it is important to
study the selection of the developmental path and its
dependence on external conditions, both theoretically
and experimentally.
To confirm the universality of the mechanism

identified here as that governing pattern formation with
differentiated cells, we have carried out numerical
experiments using several different sets of parameter
values and choosing thousands of different reaction
networks. As a result, we have found that the cellular
diversification process leading toward a spatial pattern
that we have discussed in this paper is observed for some
fraction of randomly chosen reaction networks. Essen-
tially the same results are obtained as long as the
magnitudes of the internal reaction term and the cell–
cell interaction term are of comparable size, and the
intra-cellular reaction dynamics exhibit oscillations that
in some case can be chaotic. The results are found to be
independent of other details of the model. For example,
the essence of developmental processes is unchanged if
we change the catalysation degree a to 1 or 3. With the
parameter values used in the example considered in Figs.
2, approximately 30% of randomly chosen reaction
networks result in oscillatory behavior, while others
converge to fixed points. Then, approximately 20% of
the system with these oscillatory dynamics are destabi-
lized through cell division, resulting differentiations into
distinct cell types. Among the systems with the
spontaneous diversification, more than half of them
exhibit non-trivial spatial patterns of differentiated cells,
as in the examples depicted in Figs. 2 and 4. The
majority of these non-trivial spatial pattern is a ring
pattern as Fig. 2, since gradients of chemical concentra-

tions along the radial direction in a cell cluster generally
appear as a result of absorption/release by cells and
diffusion of nutrients. The results show that the
emergence of non-trivial spatial pattern is not a special
case of our results, but is a general property as long as
the spontaneous differentiation by cell–cell interactions
occurs.
One might ask why we chose to consider reaction

networks of the kind we used, even though only a small
fraction of randomly chosen reaction networks lead to
complex oscillatory dynamics, which are necessary to
realize pattern formation. To address this question, we
have studied the growth speed of an ensemble of cells to
determine what kind of reaction networks can possibly
appear through evolution using a model with cells
possessing internal dynamics described by Eq. (1) in a
one-dimensional medium. As is shown in Furusawa and
Kaneko (2000), if in such a system the internal dynamics
can realize chaotic state and if the cell ensemble contains
a variety of cell types differentiated from stem-type cells,
the cell society can maintain a larger growth speed as an
ensemble by realizing a cooperative use of resources
than if the colony consists of only a single type of cells,
because in the latter case cells strongly compete with
each other for the same resources. This difference in
growth speed of a colony is also observed in the present
simulations using two-dimensional medium. These
results suggest that the emergence of a cell society with
complex cellular dynamics and a diversity of cell types
generated through differentiation of stem-type cells is a
necessary course of evolution, because separate aggre-
gates of cells must compete for finite resources necessary
for growth and reproduction, and a colony with higher
growth speed must be selected. Hence, the use of
reaction networks leading to complex oscillatory dy-
namics for a general model for morphogenesis is
supported by considerations from the evolutionary
viewpoint. In this sense, our results provide a novel
standpoint to understand the emergence of multicellu-
larity in evolution, as discussed in Furusawa and
Kaneko (2000, 2002).
It is commonly believed that pattern formation in the

development of biological systems is maintained by two
functions of cells, generation of positional information
and interpretation of this information to change the cell
state, and that in this process there is a succession of
switches of gene expression that are precisely controlled
and finely tuned. Our dynamical system model of cells is
not necessarily inconsistent with such a genetic switch-
ing process, since the reaction network we adopted in
the model can include those associated with genetic
expressions. However, the essential point of our results
is that the above stated two functions acting in pattern
formation cannot be separated in the cellular dynamics
of our model, and they emerge as a natural consequence
of interacting cells with intra-cellular reaction dynamics,
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without the institution of any finely tuned mechanisms.
The mechanism at work in our model, consisting of the
interplay between intra- and inter-cellular dynamics
provides a novel standpoint to understand the robust-
ness of spatial patterns of cells and tissue differentiation.
As emphasized throughout the paper, we believe that
the robust and spontaneous pattern formation of
interacting cells with intra-cellular dynamics provides a
fundamental mechanism for morphogenesis of multi-
cellular organisms.
One may still wonder if the differentiation and pattern

formation in our theory are relevant to biological
function, since any specific functional role of each
chemical process is not prescribed in our model. Still,
each cell type has a specific chemical composition
different from the other type, and this specialized
chemical composition, diffusing out from the cell, works
as a boundary condition for the other cells, and
stabilizes the chemical state of the other cell-type.
Organized pattern and specialized chemical composition
of each cell-type is used by transport of chemicals
necessary for other cells, so that a cell colony can keep
growing. This mutual cooperation of cells with different
cell types provide one of the most primitive form of
functional integration. From this point of view, iso-
logous diversification may contribute to the develop-
ment of biological function.
To fully answer the questions of how and to what

extent contemporary organisms utilize isologous diver-
sification, however, evolutionary processes together with
present-day mechanisms of cell differentiation have to
be further studied (see Kaneko and Yomo, 1999, for this
direction). The following comments about the evolution
of development are relevant to this question. In
comparison with developmental process presented in
the paper, modern developmental processes are much
more sophisticated and hierarchically organized, which
is under the control of ‘‘program-like’’ routine of gene
expression. Still, for evolution to sophisticated pro-
cesses, at least primitive processes are necessary.
Otherwise, evolutionary potential does not exist. Here,
we have shown the basis for the evolution, by showing
generality of cell differentiation and morphogenesis.
In order to bridge the gap between modern develop-

mental processes and our diversification process, it is
important to study how the morphogenesis by the
present dynamical processes is embedded into ‘‘pro-
gram-like’’ behavior as a routine of gene expressions,
through evolution (Newman, 2002). With such ‘‘pro-
gram’’, a complicated and hierarchical organization of
developmental process is made possible.
Furthermore, it is also important to study how an

initial state of fertilized egg is chosen so that the life
cycle of an organism continues recursively. Such study
may provide a novel insight about the difference
between development starting from finely tuned initial

condition (e.g. Drosophila egg with pre-existing asym-
metry) and that starting from relatively loosely deter-
mined initial condition as in mammalian development.
Since the choice of initial conditions among a large
number of chemicals is discussed in connection with
growth of organisms in our model, it will provide an
appropriate framework to study the evolution of
morphogenesis, in future.
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