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An equation describing the evolution of phenotypic distribution is derived using methods developed in
statistical physics. The equation is solved by using the singular perturbation method, and assuming that the
number of bases in the genetic sequence is large. Applying the equation to the mutation-selection model by
Eigen provides the critical mutation rate for the error catastrophe. Phenotypic fluctuation of clones �individuals
sharing the same gene� is introduced into this evolution equation. With this formalism, it is found that the
critical mutation rate is sometimes increased by the phenotypic fluctuations, i.e., noise can enhance robustness
of a fitted state to mutation. Our formalism is systematic and general, while approximations to derive more
tractable evolution equations are also discussed.
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I. INTRODUCTION

For decades, quantitative studies of evolution in laborato-
ries have used bacteria and other microorganisms �1–3�.
Changes in phenotypes, such as enzyme activity and gene
expressions introduced by mutations in genes, are measured
along with the changes in their population distribution in
phenotypes �4–7�. Following such experimental advances, it
is important to analyze the evolution equation of population
distribution of concerned genotypes and phenotypes.

In general, fitness for reproduction is given by a pheno-
type, not directly by a genetic sequence. Here, we consider
evolution in a fixed environment, so that the fitness is given
as a fixed function of the phenotype. A phenotype is deter-
mined by mapping a genetic sequence. This phenotype is
typically represented by a continuous �scalar� variable, such
as enzyme activity, protein abundances, and body size. For
studying the evolution of a phenotype, it is essential to es-
tablish a description of the distribution function for a con-
tinuous phenotypic variable, where the fitness for survival,
given as a function of such a continuous variable, determines
population distribution changes over generations.

However, since a gene is originally encoded on a base
sequence �such as AGCTGCTT in DNA�, it is represented by
a symbol sequence of a large number of discrete elements.
Mutation in a sequence is not originally represented by a
continuous change. Since the fitness is given as a function of
phenotype, we need to map base sequences of a large num-
ber of elements onto a continuous phenotypic variable x,
where the fitness is represented as a function of x, instead of
the base sequence itself. A theoretical technique and careful
analysis are needed to project a discrete symbol sequence
onto a continuous variable.

Mutation in a nucleotide sequence is random, and is rep-
resented by a stochastic process. Thus, a method of deriving
a diffusion equation from a random walk is often applied.

However, the selection process depends on the phenotype. If
a phenotype is given as a function of a sequence, the fitness
is represented by a continuous variable mapped from a base
sequence. Since the population changes through the selection
of fitness, the distribution of the phenotype changes accord-
ingly. If the mapping to the phenotype variable is represented
properly, the evolutionary process will be described by the
dynamics of the distribution of the variable, akin to a
Fokker-Planck equation.

In fact, there have been several approaches to represent-
ing the gene with a continuous variable. Kimura �8� devel-
oped the population distribution of a continuous fitness.
Also, for certain conditions, a Fokker-Planck type equation
has been mathematically analyzed �9–11� and applied to sev-
eral biological examples �12–15�. Generalizing these studies
provides a systematic derivation of an equation describing
the evolution of the distribution of the phenotypic variable.
We adopt selection-mutation models describing the molecu-
lar biological evolution discussed by Eigen �16�, Kauffman
�17�, and others, and take a continuum limit assuming that
the number of bases N in the genetic sequence is large, and
derive the evolution equation systematically in terms of the
expansion of 1/N.

In particular, we refer to Eigen’s equation �16�, originally
introduced for the evolution of RNA, where the fitness is
given as a function of a sequence. Mutation into a sequence
is formulated by a master equation, which is transformed to a
diffusionlike equation. With this representation, population
dynamics over a large number of species is reduced to one
simple integro-differential equation with one variable. Al-
though the equation obtained is a nonlinear equation for the
distribution, we can adopt techniques developed in the analy-
sis of the �linear� Fokker-Planck equation, such as the eigen-
function expansion and perturbation methods.

So far, we have assumed a fixed, unique mapping from a
genotype to a phenotype. However, there are phenotypic
fluctuations in individuals sharing the same genotype, which
has recently been measured quantitatively as a stochastic
gene expression �18–24�. Relevance of such fluctuations to
evolution has also been discussed �25–28�. In this case, map-
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ping from a gene gives the average of the phenotype, but
phenotype of each individual fluctuates around the average.
In the second part of the present paper, we introduce this
isogenic phenotypic fluctuation into our evolution equation.
Indeed, our framework of Fokker-Planck type equations is
fitted to include such fluctuations, so that one can discuss the
effect of isogenic phenotypic fluctuations on the evolution.

The outline of the present paper is as follows: We first
establish a sequence model in Sec. II. For deriving the evo-
lution equation from the sequence model, we postulate the
assumption that the transition probability of phenotype val-
ues is uniquely determined by the original phenotype value.
The assumption may appear too demanding at first sight, but
we show that it is not unnatural from the viewpoint of evo-
lutionary biology. In fact, most models studied so far satisfy
this postulate. With this assumption, we derive a Fokker-
Planck type equation of phenotypic distribution using the
Kramers-Moyal expansion method from statistical physics
�29,30�, and following the standard technique in the Markov
chain process �31–33�. We discuss the validity of this expan-
sion method to derive the equation, also from a biological
point of view.

As an example of the application of our formulation, we
study the Eigen’s model in Sec. III, and estimate the critical
mutation rates at which error catastrophe occurs, using a sin-
gular perturbation method. In Sec. V, we discuss the range of
the applicability of our method and possible extensions to it.

Following the formulation and application of the Fokker-
Planck type equations for evolution, we study the effect of
isogenic phenotypic fluctuations. While fluctuation in the
mapping from a genotype to phenotype modifies the fitness
function in the equation, our formulation itself is applicable.
We will also discuss how this fluctuation changes the condi-
tions for the error catastrophe, by adopting Eigen’s model.

For concluding the paper, we discuss generality of our
formulation, and the relevance of isogenic phenotypic fluc-
tuation to evolution.

II. DERIVATION OF EVOLUTION EQUATION

We consider a population of individuals having a haploid
genotype, which is encoded on a sequence consisting of N
sites �consider, for example, DNA or RNA�. The gene is
represented by this symbol sequence, which is assigned from
a set of numbers, such as �−1,1�. This set of numbers is
denoted by S. By denoting the state value of the ith site by
si��S�, the configuration of the sequence is represented by
the ordered set s= �s1 , . . . ,sN�.

We assume that a scalar phenotype variable x is assigned
for each sequence s. This mapping from sequence to pheno-
type is given as function x�s�. Examples of the phenotype
include the activity of some enzyme �protein�, infection rate
of bacteria virus, and replication rate of RNA. In general, the
function x�s� is a degenerate function, i.e., many different
sequences are mapped onto the same phenotypic value x.

Each sequence is reproduced with rate A, which is as-
sumed to depend only on the phenotypic value x, as A�x�;
this assumption may be justified by choosing the phenotypic
value x to relate to the replication. For example, if a protein

is involved in the metabolism of a replicating cell, its activity
may affect the replication rate of the cell and of the protein
itself.

In the replication of the sequence, mutation generally oc-
curs; for simplicity, we consider only the substitution of s�i�.
With a given constant mutation rate � over all sites in the
sequence, the state si� of the daughter sequence is changed
from si of the mother sequence, where the value si� is as-
signed from the members of the set S with an equal prob-
ability. We call this type of mutation symmetric mutation
�34�. The mutation is represented by the transition probabil-
ity Q�s→s��, from the mother s to the daughter s� sequence.
The probability Q is uniquely determined from the sequence
s, the mutation rate �, and the number of members of S. The
setup so far is essentially the same as adopted by Eigen et al.
�16�, where the fitness is given as a function of the RNA
sequence or DNA sequence of virus.

Now we assume that the transition probability depends
only on the phenotypic value x, i.e., the function Q can be
written in terms of a probability function W, which depends
only on x, W�x→x��, as

�
s���s��x�=x�s���

Q�s → s�� = W„x�s� → x�… . �1�

This assumption may appear too demanding. However,
most models of sequence evolution somehow adopt this as-
sumption. For example, in Eigen’s model, fitness is given as
a function of the Hamming distance from a given optimal
sequence. By assigning a phenotype x as the Hamming dis-
tance, the above condition is satisfied �this will be discussed
later�. In Kauffman’s NK model, if we set N�1, K�1, and
K /N�1, this assumption is also satisfied �see Appendix A�.
For the RNA secondary structure model �35�, this assump-
tion seems to hold approximately, from statistical estimates
through numerical simulations. Some simulations on a cell
model with catalytic reaction networks �22,36� also support
the assumption on the transition probability, in which the
phenotype of a cell is given by the concentration of a specific
chemical, and the mutation changes the path in the network.
In fact, a similar assumption has been made in evolution
theory with a gene substitution process �37,38�.

The validity of this assumption in experiments has to be
confirmed. Consider a selection experiment to enhance some
function through mutation, such as the evolution of a certain
protein to enhance its activity �7�. In this case, the assump-
tion means that the activity distribution over the mutant pro-
teins is statistically similar as long as they have the same
activity, even though their mother protein sequences are dif-
ferent.

With the above setup, we consider the population of these
sequences and their dynamics, allowing for overlap between
generations, by taking a continuous-time model �34�. We do
not consider the death rate of the sequence explicitly since its
consideration introduces only an additional term, as will be
shown later. The time-evolution equation of the probability

distribution P̂�s , t� of the sequence s is given by
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�P̂�s,t�
�t

= − Ā�t�P̂�s,t� + �
s�

A„x�s��…Q�s� → s�P̂�s�,t� ,

�2�

as specified by Eigen �16�. Here the quantity Ā�t� is the av-

erage fitness of the population at time t, defined by Ā�t�
=�sA(x�s�)P̂�s , t� and Q is the transition probability satisfy-
ing �sQ�s�→s�=1 for any s�.

According to the assumption �1�, Eq. �2� is transformed
into the equation for P�x , t�, which is the probability distri-
bution of the sequences having the phenotypic value x, de-

fined by P�x , t�=�s��s�x=x�s��P̂�s , t�. The equation is given by

�P�x,t�
�t

= − Ā�t�P�x,t� + �
x�

A�x��W�x� → x�P�x�,t� , �3�

where the function W satisfies

�
x

W�x� → x� = 1 for any x�, �4�

as shown.
Since N is sufficiently large, the variable x is regarded as

a continuous variable. By using the Kramers-Moyal expan-
sion �29,30,39�, with the help of property �4�, we obtain

�P�x,t�
�t

= �A�x� − Ā�t��P�x,t�

+ �
n=1

�
�− 1�n

n!

�n

�xnmn�x�A�x�P�x,t� , �5�

where mn�x� is the nth moment about the value x, defined by
mn�x�=	�x�−x�nW�x→x��dx�.

Let us discuss the conditions for the convergence of ex-
pansion �5�, without mathematical rigor. For convergence, it
is natural to assume that the function W�x�→x� decays suf-
ficiently fast as x gets far from x�, by the definition of the
moment.

Here, the transition W�x�→x� is a result of n point mu-
tants of the original sequence s� for n=0,1 ,2 , . . . ,N. Ac-
cordingly, we introduce a set of quantities, wn(x�s��→x), as
the fitness distribution of n point mutants of the original
sequence s�. �Naturally, w0(x�s��→x)=�(x�s��−x), which
does not contribute to the nth moment mn �n�1�.� Next, we
introduce the probability pn that a daughter sequence is an n
point mutant �n=0,1 ,2 , . . . ,N� from her mother sequence,
which are determined only by the mutation rate � and the
sequence length N. Indeed, pn’s form a binomial distribution,
characterized by � and N.

In terms of the quantities wn and pn, we are able to write
down the transition probability W as

W„x�s�� → x… = �
n=0

N

pnwn„x�s�� → x… . �6�

Now, we discuss if W(x�s��→x) decays sufficiently fast with
�x�s��−x�. First, we note that the width of the domain, in

which wn(x�s��→x) is not close to zero, increases with n
since n-point mutants involve an increasing number of
changes in the phenotype with larger values of n. Hence, in
order for the series on the right-hand side in Eq. �5� to con-
verge, at least the single-point-mutant transition w1(x�s��
→x) has to decay sufficiently fast with �x�s��−x�. In other
words, the phenotypic value of a single-point mutant s of the
mother sequence s� must not vary much from that of the
original sequence, i.e., �x�s��−x�s�� should not be large
�“continuity condition”�.

In general, the domain �x−x�s���, in which wn(x�s��→x)
�0, increases with n. On the other hand, the term pn de-
creases with n and with the power of �n. Hence, as long as
the mutation rate is not large, the contribution of wn to W is
expected to decay with n. Thus, if the continuity condition
with regard to a single-point mutant and a sufficiently low
mutation rate are satisfied, the requirement on W(x�s��→x)
should be fulfilled. Hence the convergence of the expansion
is expected.

Following the argument, we further restrict our study to
the case with a small mutation rate � �55� such that �N
�1 holds. The transition probability W in Eq. �6� is written
as

W„x�s�� → x… 
 �1 − �N��„x�s�� − x… + �Nw1„x�s�� → x… ,

�7�

where we have used the property that pn’s form the binomial
distribution characterized by � and N. Introducing a new
parameter, ���=�N�, that gives the average of the number of
changed sites at a single-point mutant, and using the transi-
tion probability �7�, we obtain

�P�x,t�
�t

= �A�x� − Ā�t��P�x,t�

+ ��
n=1

�
�− 1�n

n!

�n

�xnmn
�1��x�A�x�P�x,t� , �8�

where mn
�1��x� is the nth moment of w1�x→x��, i.e., mn

�1��x�
=	�x�−x�nw1�x→x��dx�.

When we stop the expansion at the second order, as is
often adopted in statistical physics, we obtain

�P�x,t�
�t

= �A�x� − Ā�t��P�x,t�

+ �
�

�x
�− m1

�1��x� +
1

2

�

�x
m2

�1��x��A�x�P�x,t� .

�9�

Equations �8� and �9� are basic equations for the evolution of
the distribution function. Equation �9� is an approximation of
Eq. �8�; however, it is often more tractable, with the help of
techniques developed for solving the Fokker-Planck equation
�see Appendix B and �40��, while there is no established
standard method for solving Eq. �8�.

At the boundary condition we naturally impose that there
is no probability flux, which is given by
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�
n=1

�
�− 1�n

n!

��n−1�

�x�n−1�mn
�1��x�A�x�P�x,t�

x=x1,x2

= 0, �10�

in the case of Eq. �8� and

�− m1
�1��x� +

1

2

�

�x
m2

�1��x��A�x�P�x,t�
x=x1,x2

= 0 �11�

in the case of Eq. �9�, where x1 and x2 are the positions of the
left and right boundaries, respectively.

Next, as an example of the application of our formula, we
derive the evolution equation for Eigen’s model, and esti-
mate the error threshold, with the help of a singular pertur-
bation theory. Through this application, we can see the va-
lidity of Eq. �9� as an approximation of Eq. �8�.

Two additional remarks: First, introduction of the death of
individuals is rather straightforward. By including the death
rate D�x� in the evolution equation, the first term in Eq. �8�
�or Eq. �9�� is replaced by (�A�x�−D�x��− �Ā�t�
− D̄�t��)P�x , t�, where D̄�t��	D�x�P�x , t�dx. Second, instead
of deriving each term in Eq. �9� from microscopic models, it
may be possible to adopt it as a phenomenological equation,
with parameters �or functions� to be determined heuristically
from experiments.

III. APPLICATION OF ERROR THRESHOLD
IN EIGEN MODEL

In the Eigen model �16�, the set S of the site state values
is given by �−1,1�, and the fitness �replication rate� of the
sequence is given as a function of its Hamming distance
from the target sequence �1,…,1�, i.e., the fitness of an indi-
vidual sequence is given as a function of the number n of the
sites of the sequence having value 1. Hence it is appropriate
to define a phenotypic value x in the Eigen model as a mono-
tonic function of the number n; we determine it as x= �2n
−N� /N, in the range �−1,1�. Accordingly, the replication rate
A of the sequence can be written as a function of x, i.e., A�x�;
it is natural to postulate that A is a non-negative and bounded
function over the whole domain. If the sequence length N is
sufficiently large, the phenotypic variable x can be regarded
as a continuous variable, since the step size of x �	x=2/N�
approaches 0 as N goes to infinity.

In order to derive the evolution equation of form �8� cor-
responding to the Eigen model, we only need to know the
function w1 in that model. �Recall that in our formulation the
mutation rate � is assumed to be so small that only a single-
point mutation is considered.� Due to the assumption of the
symmetric mutation, this distribution function is obtained as
w1�x→x−	x�= �1+x� /2, w1�x→x+	x�= �1−x� /2, and
w1�x→x��=0 for any other x�. Accordingly, the nth moment
is given by mn

�1��x�= ��1+x� /2��−	x�n+ ��1−x� /2��	x�n.
Now, we obtain

�P�x,t�
�t

= �A�x� − Ā�t��P�x,t� + ��
n=1

�
1

n!

�n

�xn�1 + x

2
� 2

N
�n

+
1 − x

2
�−

2

N
�n�A�x�P�x,t� , �12�

where �=N�, the mutation rate per sequence. When we ig-
nore the moment terms higher than the second order, we
have

�P�x,t�
�t

= �A�x� − Ā�t��P�x,t� +
2�

N

�

�x
�x +

1

N

�

�x
�A�x�P�x,t� .

�13�

In fact, if we focus on a change near x�0 �to be specific
x�O�1/�N��, the truncation of the expansion up to the sec-
ond order is validated (or equivalently, if we define x�= �2n
−N� /�N instead of �2n−N� /N, and expand Eq. �3� by 1/�N
instead of 1/N, terms higher than the second order are neg-
ligible, as is also discussed in �9�. However, in this case, the
validity is restricted to x��O�1� �i.e., �n−N /2��O�1��,
which means x�O�1/�N� in the original variable).

Now we solve Eq. �13� with a standard singular perturba-
tion method �see Appendix B�, and then return to Eq. �12�.
According to the analysis in Appendix B, the stationary so-
lution of the equation of form �13� is given by the eigenfunc-
tion corresponding to the largest eigenvalue of the linear op-
erator L defined by L=A�x�+2�
�� /�x��x+
�� /�x��A�x�
with 
=1/N. Now we consider the eigenvalue problem

A�x�P�x� + 2�

�

�x
�x + 


�

�x
�A�x�P�x� = �P�x� , �14�

where P�x��0, with � to be determined.
Since 
 is very small �because N is sufficiently large�, a

singular perturbation method, the WKB approximation �41�,
is applied. Let us put

P�x� = e�1/
�	x0
x R�
,x��dx�, �15�

where x0 is some constant and R is a function of 
 and x,
which is expanded with respect to 
 as

R�
,x� = R0�x� + 
R1�x� + 
2R2�x� + ¯ . �16�

Retaining only the zeroth order terms in 
 in Eq. �14�, we get

A�x� + 2��xR0�x� + R0
2�x��A�x� = � , �17�

which is formally solved for R0 as R0
�±��x�= �−x±�g�x�� /2

where g�x�=x2+ �2/���� /A�x�−1�. Hence the general solu-
tion of Eq. �14� up to the zeroth order in 
 is given by

P�x�=�e�1/
�	x0

x R0
�+��x��dx�+e�1/
�	x0

x R0
�−��x��dx� with � and  con-

stants to be determined.
Now, recall the boundary conditions �11�; P has to take

the two branches in R0 as P�x�=�e�1/
�	xb

x R0
�+��x��dx� for x�xb

and P�x�=e�1/
�	xb

x R0
�−��x��dx� for x�xb, where xb is defined as

the value at which g�x� has the minimum value. Next, from
the continuity of P at xb, �= follows, while from the con-
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tinuity of �P /�x at xb, the function g has to vanish at x=xb.
This requirement g�xb�=0 determines the value of the un-
known parameter � as

� = A�xb��1 −
�

2
xb

2� . �18�

From the form of function P, Eq. �15�, we find that P has its
peak at the point x=xp, where R0�x� vanishes, i.e., A�xp�=�
holds. Then, P�x� approaches ��x−xp� in the limit 
→ +0.
These results are consistent with the requirement that the
mean replication rate in the steady state be equal to the larg-
est eigenvalue of the system �see Appendix B�.

The stationary solution of Eq. �12� is obtained by follow-
ing the same procedure of singular perturbation. Consider the
eigenvalue problem

A�x�P�x� + ��
n=1

�
1

n!

�n

�xn�1 + x

2
�2
�n +

1 − x

2
�− 2
�n�A�x�P�x�

= �P�x� . �19�

By putting P�x�=e�1/
�	x0
x R0�x��dx� and taking only the zeroth

order terms in 
, we obtain

A�x� + ��1 + x

2
�e2R0�x� − 1� +

1 − x

2
�e−2R0�x� − 1��A�x� = � ,

which gives

R0
�±��x� =

1

2
log

1 +
1

�
� �

A�x�
− 1� ± �ĝ�x�

1 + x

with ĝ�x�= �1+ �1/���� /A�x�−1��2− �1−x2�.
By defining again the value x=xb at which ĝ�x� takes the

minimum, P is represented as P�x�=�e�1/
�	xb

x R0
�+��x��dx� for x

�xb and P�x�=e�1/
�	xb

x R0
�−��x��dx� for x�xb. The continuity of

�P /�x at x=xb requires ĝ�xb�=0, which determines the value
of � as

� = A�xb��1 − ��1 − �1 − xb
2�� . �20�

Again, P�x�=��x−xp�, in the limit 
→ +0, with xp given by
the condition A�xp�=�. When �xb��1, the form �20� ap-
proaches Eq. �18� asymptotically. This implies that the time
evolution equation �8�, if restricted to �x��1, is accurately
approximated by Eq. �9� that keeps the terms only up to the
second moment.

Let us estimate the threshold mutation rate for error ca-
tastrophe. This error threshold is defined as the critical mu-
tation rate �* at which the peak position xp of the stationary
distribution drops from xp�0 to xp=0, with an increase of �.
We use the following procedure to obtain the critical value
�*.

First consider an evaluation function whose form corre-
sponds to that of eigenvalue �20� as

f�x� = A�x��1 − ��1 − �1 − x2�� , �21�

and find the position at which the function f�x� takes the
maximum value. This procedure is equivalent to obtaining xb
in the above analysis, since the relation f�x�=�
− (�2A2�x� /�−A�x��1−��1+�1−x2��)ĝ�x� and the require-
ment that ĝ�xb�=0 and �dĝ�x� /dx�x=xb

=0 lead to
�df�x� /dx�x=xb

=0. Obviously, xb is given as a function of �;
thus we denote it by xb���. The position xb determines the
position xp of the stationary distribution through the relation
A�xp�=�= f�xb� as in the above analysis. If A is flat around
x=0 and higher than there in some positive region �x�0�,
xp��� discontinuously changes from xp�0 to xp=0 at some
critical mutation rate �*, when � increases from zero. A sche-
matic illustration of this transition is given in Fig. 1.

As a simple example of this estimate of error threshold,
let us consider the case

A�x� = 1 + A0��x − x0� , �22�

with A0�0 and 0�x0�1, and � as the Heaviside step func-
tion, defined as ��x�=0 for x�0 and ��x�=1 for x�0. This
form is chosen for simplicity, but it should be noted that the
threshold-type behavior of growth is rather common in a
biological system. According to the procedure given above,

-0.2 0.2 0.4 0.6 0.8 1
x

0.96

0.98

1.02

1.04

1.06

1.08

1.1

f(x)

A(x)

xbxp
λ

FIG. 1. Examples of profiles of the evaluation
function f for three values of �. The gray, thin,
and broken curves give the profiles of f for �
=0.31, �=0.386, and �=0.49, respectively, where
f is defined by f�x�=A�x��1−��1−�1−x2�� and
A is given by A�x�=1+0.2�x−0.25���x
−0.25���0.75−x�+0.1��x−0.75�; the profile of
A is indicated by the black curve. This illustrates
determination of xb and xp; xb is given by the
position where f takes a maximum, while xp is
given as the position where the line y= f�xb�
crosses the curve of A. For ��0.386, f�x� has a
maximum value at x=xb, and thus the critical mu-
tation rate for the error threshold is estimated to
be �*=0.386.
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the critical mutation rate is straightforwardly obtained as
�*=A0 / �1+A0��1−�1−x0

2�; for ���*, xp=x0 and for �
��*, xp=0.

Remark. Statistical mechanics approach to the mutation-
selection model has been developed recently �34,42–47�. An
exact transformation from the sequence model �Eigen model
�16�� into a class of Ising models �43,45� has recently been
reported. Hence the sequence model is treated analytically
with methods developed in statistical physics. Rigorous esti-
mation of the error threshold for various fitness landscapes
�34,46� and relaxation times of species distribution have
been obtained �47�. In fact, our estimate �above� agrees with
that given by their analysis.

Their method is indeed powerful when a microscopic
model is prescribed in correspondence with a spin model.
However, even if such a microscopic model is not given, our
formulation with a Fokker-Planck type equation will be ap-
plicable because it only requires estimation of moments in
the fitness landscape. Alternatively, by giving a phenomeno-
logical model describing the fitness without microscopic pro-
cess, it is possible to derive the evolution equation of popu-
lation distribution. Hence our formulation has a broad range
of potential applications.

IV. CONSIDERATION OF PHENOTYPIC FLUCTUATION

In this section, we include the fluctuation in the mapping
from genetic sequence to the phenotype into our formula,
and examine how it influences the error catastrophe. We first
explain the term “phenotypic fluctuation” briefly, and show
that in its presence our formulation �8� remains valid by re-
defining the function A�x�. By applying the formulation, we
study how the introduction of the phenotypic fluctuation
changes the critical mutation rate �* for the error catastrophe.

In general, even for individuals with identical gene se-
quences in a fixed environment, the phenotypic values are
distributed. Some examples are the activities of proteins syn-
thesized from the identical DNA �48�, the thermal fluctuation
of the shapes of RNA molecules with a given identical se-
quence �49�, and the numbers of specific proteins for
isogenic bacteria. Indeed, the phenotypic fluctuation of iso-
genetic biological elements is rather large �19–22,25�. It is
also suggested theoretically that the isogenetic fluctuation is
larger than the fluctuation induced by genetic mutation
�26,27�. Next, the phenotype x from each individual with the
sequence s is distributed, which is denoted by Pphe�s ,x�.

We assume that the form of distribution Pphe is character-
ized only in terms of its mean value, i.e., the distributions
Pphe’s having the same mean value X take the same form; it
is not unnatural to assume that those with the same mean
phenotype value have a similar fluctuation value �56�. By
representing the mean value of the phenotype x by x̄�s�, the

distribution Pphe is written as Pphe�s ,x�= P̂phe(x̄�s� ,x), where

P̂phe is a function of x̄ and x, which is normalized with re-

spect to x, i.e., satisfying 	P̂phe�x̄ ,x�dx=1.
In our formulation, the replication rate A of the sequence

with the phenotypic value x is given by a function of pheno-

typic value x, denoted by A�x�. The mean replication rate Â
of the species s is calculated by

Â„x̄�s�… =� P̂phe„x̄�s�,x…A�x�dx . �23�

As in the case of Eq. �1�, we assume that the transition
probability from s to s� during the replication is represented
only by its mean values x̄�s� and x̄�s��, i.e., the transition
probability function is written as W(x̄�s�→ x̄�s��). With this
setup, the population dynamics of the whole sequences is
represented in terms of the distribution of the mean value x̄
only, so that we can use our formulation �8� even when the
phenotypic fluctuation is taken into account; we need only
replace the replication rate A in Eq. �8� by the mean replica-

tion rate Â obtained from Eq. �23�.
Now, we can study the influence of phenotypic fluctuation

on the error threshold by taking the step fitness function A�x�
of Eq. �22� and including the phenotypic fluctuation as given
in Eq. �23�. We consider a simple case where the form of

P̂phe is given by a constant function within a given range �we
call this the piecewise flat case�. Our aim is to illustrate the
effect of the phenotypic fluctuation on the error threshold, so
we evaluate the critical mutation rate �* using the simpler
form f�x�=A�x��1− �� /2�x2� from Eq. �18�, while the use of
the form �21� gives the same qualitative result. With this
simpler evaluation function, the critical mutation rate �* is
given by

�0
* =

2A0

�1 + A0�x0
2 , �24�

in the case without phenotypic fluctuation. Here we examine
if this critical value �0

* increases under isogenic phenotypic
fluctuation.

We make two further technical assumptions in the follow-
ing analysis: First, we assume that A0 in the form �22� is
sufficiently small so that the value of critical �* is not large,
because our formalism is applicable only when � is small.
Second, we extend the range of x to �−� ,�� for simplicity.
This does not cause problems because we have set the range
of x0 to �0, 1�. Hence the stationary distribution has its peak
around the range 0�x�1; everywhere outside this range,
the distribution vanishes.

In general P̂phe is distributed around its peak. As a typical
case we study the following simple case in which distribu-

tion P̂phe of the phenotype of the species s is given by

P̂phe
�F�

„x̄�s�,x… = �
0 for x � x̄ − � ,

1

2�
for x̄ − � � x � x̄ + � ,

0 for x̄ + � � x ,
� �25�

where � gives the half-width of the distribution. This is an
illustration of a threshold-type dependence often observed in
biological systems. �The letter �F� represents the piecewise-

flat distribution case.� Then, Â is calculated by
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Â�F��x� = �
1 for x � x0 − � ,

1 +
A0

2�
�x − �x0 − ��� for x0 − � � x � x0 + � ,

1 + A0 for x0 + � � x .
�

An example of Â�F��x� is shown in Fig. 2. The evaluation

function f in Sec. III is given by f �F��x�= Â�F��x��1
− �� /2�x2�.

We are interested in whether or not there is a case where
�*�F� is greater than �0

* in this situation, so that we will con-
sider only the case where the position xb

*�F���xb
�F���*�F��� is

within the range �x0−� ,x0�, because from the profile of Â�F�

we can readily find that �*�F� is smaller than �0
* when xb

*�F�

�x0. When x0 / �2+A0����x0, the position xb
*�F� is within

the range �x0−� ,x0�. In that case, xb
*�F� and �*�F� are given by

xb
*�F�
2�x0−�� and �*�F�
A0 /4��x0−�� to the first order of

A0, respectively. Comparing this �*�F� with �0
* in Eq. �24�, we

conclude that �*�F���0
* for 0��� ��2+�2� /4�x0, and �*�F�

��0
* for ��2+�2� /4�x0���x0. Hence, when the half width

� of the distribution Pphe is within the range (��2
+�2� /4�x0 ,x0), the critical mutation rate for the error catas-
trophe threshold is increased. In other words, the isogenic
phenotypic fluctuation increases the robustness of the high
fitness state against mutation.

We also studied the case in which P̂phe�x̄ ,x� decreases
linearly around its peak, i.e., with a triangular form. In this
case, the phenotypic fluctuation decreases the critical muta-
tion rate as long as A0 is small, while it can increase for
sufficiently large values of A0, for a certain range of the
values of width of phenotypic fluctuation. On the other hand,
for a distribution Pphe�x̄ ,x�= ��n+1� /2�n+1���− �x− x̄��n�(x
− �x̄−��)�(�x̄+��−x) with a positive number n, the increase
of critical mutation rate is possible if 0�n�1 �57�. We have
also studied the case with Gaussian distribution, in which
case the increase of the critical mutation rate is not observed.

V. DISCUSSION

In the present paper, we have presented a general formu-
lation to describe the evolution of phenotype distribution. A
partial differential equation describing the temporal evolu-
tion of phenotype distribution is presented with a self-
consistently determined growth term. Once a microscopic
model is provided, each term in this evolution equation is
explicitly determined so that one can derive the evolution of
phenotype distribution straightforwardly. This Eq. �8� is ob-
tained as a result of Kramers-Moyal expansion, which in-
cludes infinite order of derivatives. However, this expansion
is often summed to a single term in the large number limit of
base sequences, with the aid of singular perturbation.

If the value of a phenotype variable �x� is much smaller
than unity �which is the maximal possible value giving rise
to the fittest state�, the terms higher than the second order
can be neglected, so that a Fokker-Planck type equation with
a self-consistent growth term is derived. The validity of this
truncation is confirmed by putting x�= �2n−N� /�N and veri-
fying that the third or higher order moment is negligible
compared with the second-order moment. Thus the equation
up to its second order, Eq. �9�, is relevant to analyzing the
initial stage of evolution starting from a low-fitness value.

As a starting point for our formalism, we adopted Eq. �2�,
which is called the “coupled” mutation-selection equation
�50�. Although it is a natural and general choice for studying
the evolution, a simpler and approximate form may be used
if the mutation rate and the selection pressure are sufficiently

small. This form given by �P̂�s , t� /�t=−Ā�t�P̂�s , t�
+�s�Q�s�→s�P̂�s� , t�, is called the “parallel” mutation-
selection equation �51,52�. It approaches the coupled
mutation-selection equation �2�, in the limits of small muta-
tion rate and selection pressure, as shown in �50�. If we
start from this approximate, parallel mutation-selection equa-
tion, and follow the procedure presented in this paper, we

obtain �P�x , t� /�t= �A�x�− Ā�t��P�x , t�+��� /�x��−m1
�1��x�

+ 1
2 �� /�x�m2

�1��x��P�x , t�.
In general, this equation is more tractable than Eq. �9�, as

the techniques developed in Fokker-Planck equations are

0.2 0.4 0.6 0.8
x

1.02

1.04

1.06

1.08

1.1

A(x)

FIG. 2. Example of profiles of the mean fit-
ness functions without phenotypic fluctuation
case �solid curve�, with a constant phenotypic
fluctuation over a given range given by Eq. �25�
�broken curve�, where we set A�x�=1+0.1��x
−0.5� and �=0.25.
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straightforwardly applied as discussed in �40�, and it is also
useful in describing evolution. Setting A�x�=x2 and replacing
m1

�1� and m2
�1� with some constants, the equation is reduced to

that introduced by Kimura �8�; while setting A�x�=x,
m1

�1��x��x, and replacing m2
�1� with some constant derive the

equation by Levine �9�. Because our formalism is general,
these earlier studies are derived by approximating our evo-
lution equation suitably.

Besides the generality, another merit of our formulation
lies in its use of the phenotype as a variable describing the
distribution, rather than the fitness �as adopted by Kimura�.
Whereas the phenotype is an inherent variable directly
mapped from the genetic sequence, the fitness is a function
of the phenotype and environment, and may be more
strongly influenced than the phenotype, by environmental
conditions. The evaluation of the transition matrix by muta-
tion in Eq. �8� would be more complicated if we used the
fitness as a variable, due to crucial dependence of fitness
values on the environmental conditions. In the formalism by
phenotype distribution, environmental change is feasible by
changing the growth term A�x� accordingly. Our formalism
does include the fitness-based equation as a special case, by
setting A�x�=x.

Another merit in our formulation is that it easily takes
isogenic phenotypic fluctuation into account without chang-
ing the form of the equation, but only by modifying A�x�. By
applying this equation, we obtained the influence of isogenic
phenotype fluctuations on error catastrophe. The critical mu-
tation rate for the error catastrophe increases because of the
fluctuation, in a certain case. This implies that the fluctuation
can enhance the robustness of a high-fitness state against
mutation.

In fact, the relevance of isogenic phenotypic fluctuations
on evolution has been recently proposed �25–27�, and change
in phenotypic fluctuation through evolution has been experi-
mentally verified �7,25�. In general, phenotypic fluctuations
and a mutation-selection process for artificial evolution have
been extensively studied recently. The present formulation
will be useful in analyzing such experimental data, as well as
in elucidating the relevance of phenotypic fluctuations to
evolution.
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APPENDIX A: ESTIMATION OF THE TRANSITION
PROBABILITY IN THE NK MODEL

In the NK model �17,53�, the fitness f of a sequence s is
given by

f�s� =
1

N
�
i=1

N

�i�s� ,

where �i is the contribution of the ith site to the fitness,
which is a function of si and the state values of other K sites.
The function �i takes a value chosen uniformly from �0, 1� at

random. We assume that the phenotype x of the sequence s is
given by x= f�s�.

When N�1, K�1, and K /N�1, the phenotype distribu-
tion of mutants of a given sequence s �whose phenotype is x�
is characterized only by the phenotype x �without the need to
specify the sequence s�. For showing this, we first examine
the one-point mutant case.

We consider the “number of changed sites” of sites at
which ��s are changed due to a single-point mutation. By
assuming that the average number of changed sites is K, the
distribution of the number of changed sites n, denoted by
Psite�n�, is approximately given by

Psite�n� 
 e−�n − K�2/2K, �A1�

with the help of the limiting form of binomial distribution.
Here, we have omitted the normalization constant.

Next, we study the distribution of the difference between
the phenotype x of the original sequence and the phenotype
x� of its one-point mutant, given the number n of changed
sites of the single-point mutant. We denote the distribution as
Pdiff�n ;X�, where X=x�−x. Here the average of x� is x�N
−n� /N, since �N−n� sites are unchanged. Thus, according to
the central limit theorem, the distribution is estimated as

Pdiff�n;X� 
 exp�−
�X +

n

N
x�2

2n
�2

N2
� , �A2�

where �2 is the variance of the distribution of the value of �.
This variance is estimated from the probability distribution
P�s,��i��

��� that the sequence � is generated. Although the
explicit form of P�s,��i��

is hard to obtain unless ��i� and s are
given, it is estimated by means of the “most probable distri-
bution,” obtained as follows: Find the distribution that maxi-
mizes the evaluation function S �called “entropy”� defined by
S=−	0

1P���log P���d� under the conditions 	0
1P���d�=1

and 	0
1�P���d�=x. Accordingly the variance �2 may de-

pend on x.
Combining these distributions �A1� and �A2� gives the

distribution of X without constraint on the number of
changed sites:

P�X� = �
n=1

N

Psite�n�Pdiff�n;X� 
 exp�−
�X +

K

N
x�2

2K
��2 + x2�

N2
� .

This result indicates that the phenotype distribution of
single-point mutants from the original sequence s having the
phenotype x is characterized by its phenotype x only; s is not
necessary. Similarly, one can show that phenotype distribu-
tion of n-point mutants is also characterized only by x.
Hence the transition probability in the NK model is de-
scribed only in terms of the phenotypes of the sequences,
when N�1, K�1, and K /N�1.
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APPENDIX B: MATHEMATICAL STRUCTURE
OF THE EQUATION OF FORM (9)

We first rewrite Eq. �9� as

�P�x,t�
�t

= − Ā�t�P�x,t� + L�x�P�x,t� , �B1�

where L is a linear operator, defined by L�x�=A�x�
+ �� /�x�f�x�+ ��2 /�x2�g�x� with f�x�=−�m1

�1��x�A�x� and
g�x�= �� /2�m2

�1��x�A�x�.
The linear operator L of the above form is transformed to

an Hermite operator using variable transformations �54� �see
below�, so that L is represented by a complete set of eigen-
functions and corresponding eigenvalues, which are denoted
by ��i�x�� and ��i� �i=0,1 ,2 , . . . �, respectively. Eigenvalues
are real and not degenerated, so that they are arranged as
�0��1��2� . . . .

According to �40�, P�x , t� is expanded as

P�x,t� = �
i=0

�

ai�t��i�x� , �B2�

where ai satisfies

dai�t�
dt

= ai�t���i − �
j=0

�

�aj�t�� j� . �B3�

The prime over the sum symbol indicates that the summation
is taken except for those of noncontributing eigenfunctions
as defined in �40�.

Stationary solutions of Eq. �B3� are given by �ak=1 and
ai=0 for i�k�. Among these stationary solutions, only the
solution �a0=1 and ai=0 for i�0� is stable. Hence the eigen-

function for the largest eigenvalue �the largest replication
rate� gives the stationary distribution function. Now it is im-
portant to obtain eigenfunctions and eigenvalues of L, in par-
ticular the largest eigenvalue �0 and its corresponding eigen-
function �0. Hence we focus our attention on the eigenvalue
problem

�A�x� +
�

�x
f�x� +

�2

�x2g�x��P�x� = �P�x� , �B4�

where � is a constant and P is a function of x.
We can transform eigenvalue problem �B4� to a

Schrödinger equation-type eigenvalue problem as follows:
First we introduce a new variable y related to x as y�x�
=	x0

x �h /g�x��dx�, where x0 and h are constants. Next, we
consider a new function ��y� related to P�x� as

��y� = �g�x�
h

e	y0

y � f̂�y��/2h�dy�P�x�
x=x�y�

,

where y0 is some constant, x�y� the inverse function of y�x�,
and f̂ a function of y defined by

f̂�y� = � h

g�x�
� f�x� +

1

2

dg�x�
dx

�
x=x�y�

.

Using these new quantities y and � and rewriting eigen-
value problem �B4� suitably, we get

�V�y� + h
�2

�y2���y� = ���y� , �B5�

where V�y�= Â�y�+ �df̂�y� /dy� /2− f̂2�y� /4h with Â�y�
=A(x�y�).
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