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Abstract

A novel mechanism for cell differentiation is proposed, based on the dynamic clustering in a globally coupled
nonlinear system. A simple model with metabolic reaction, active transport of chemicals from media, and cell
division is found to show three successive stages with the growth of the number of cells; coherent growth, dynamic
clustering, and fixed cell differentiation. At the last stage, disparity in activities, germ line segregation, somatic
cell differentiation, and homeochaotic stability against external perturbation are found. Our results, providing a
simple interpretation of the experiments of the preceding paper, imply that cell differentiation can occur without
a spatial pattern. From dynamical systems viewpoint, the new concept of “open chaos” is proposed, as a novel
and general scenario for systems with growing numbers of elements, also seen in economics and sociology.

1. Introduction

Why do cells differentiate? The orthodox an-
swer 10 this question is that the mechanism is
completely determined by genetic codes. This
belief is widely accepted by most molecular bi-
ologists. Is it correct though? It is known that
genes are not changed in the course of cell differ-
entiation [1]. Cells with identical genes can dif-
ferentiate, even when in the same environment.
Hence it is not a trivial question how identical
sets of genes can produce a variety of different
cells, not only from a biological but also from a
dynamical systems viewpoint.

Experiments on cell differentiation of E. coli
by one of the authors (TY ), however, leads to a
serious question to this widely accepted answer.
Indeed, as reported in the preceding paper [2],
cells with identical genes may split into several

groups with different enzymatic activities. Even
prokaryote cells with identical genes can be dif-
ferentiated there. We note that these cells are un-
der liquid culture, thus are in an identical envi-
ronment.

Of course, spatial information is also impor- -
tant in differentiation. However, usually one
does not seriously discuss whether a spatial
pattern is necessary for the cell differentiation.
Often, differentiation and pattern formation
are discussed together without distinction. The
experimental results of the preceding paper,
however, suggest that differentiation can occur
without such spatial (positional) information.
In the present paper we demonstrate theoreti-
cally that cell differentiation is possible without
spatial information.

Here we note that cells interact with the envi-
ronment, which is affected by all the other cells.
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All cells interact with other cells through the en-
vironment. The purpose of the present paper is
to present an alternative answer to the top ques-
tion, with an emphasis on the cell-environment
interaction. Our answer is based on dynamic
clustering in a globally coupled dynamical sys-
tem.

One of the simplest examples of such clus-
tering is given by globally coupled dynamical
systems [3]. When many identical elements
with chaotic dynamics interact globally through
a mean field, it is found that the elements dif-
ferentiate into some clusters. In each cluster, el-
ements oscillate synchronously, while elements
in a different cluster oscillate with a different
phase, frequency, or amplitude. Thus sponta-
neous differentiation of elements is possible
through interaction among chaotic elements. In
the present paper we extend this idea of cluster-
ing to spontaneous cell differentiation by intro-
ducing a simple metabolic chemical reaction !
and cell division dynamics.

The clustering mechanism, although it pro-
vides a universal key to differentiation, is not
enough for the explanation of fixed differentia-
tion in multi-cellular organisms. Indeed, differ-
entiation by clustering is temporal in nature: a
group of cells with rich substrates at one time
turns to be poor after some time in accordance
with the oscillation. By introducing a model with
a growing number of cells, we find that the ap-
pearance of a new stage after this dynamic clus-
tering, where the differentiation of cells is fixed.
Disparity in activities emerges. Thus our result

! We do not assume chaos for metabolic dynamics in each
cell, in contrast with the model studied in [3]. Only some
nonlinear oscillation is required here. This assumption of
the existence of nonlinear metabolic oscillation is realistic
from a biological point of view, since there are a number of
reports of such oscillations in glycolytic reaction. Even with-
out chaotic dynamics in each cell, some irregular (chaotic-
like) dynamics is created through the interaction with other
cgl!s. Hence the total dynamics seems to have chaotic insta-
bility, although chaos is not mathematically defined here,
due to the expansion of dimension of the phase space.

will provide a novel clustering behavior, also
from the viewpoint of dynamical systems.

As a dynamical system, our problem has one
important and innovating feature: growth of the
dimension of phase space with cell divisions.
Since the chemical dynamics in each cell is rep-
resented by a set of differential equations of a

given number of degrees of freedom, the total

number of degrees of freedom of the system in-
creases with the number of cells N(¢). In our
system, the increase is closely associated with
chaotic instability.

Our model of cell growth consists of (i) non-
linear dynamics in each cell; (ii) nonlinear
and global interaction among cells through a
medium; (iii) growth and death of a cell de-
pending on its internal state. We do not claim
that our model has a one-to-one correspondence
with the experiment in the preceding paper.
Rather we present a novel conceptual frame-
work for differentiation. We choose a rather
simple dynamics for the above processes, to see
the validity of the novel framework.

Indeed, these processes can generally be seen
in a system with growth, by reinterpreting a cell
as any replicating unit. For example, economic
developmental processes have the above three
features, by regarding resources and money as
the chemicals and activities. Emergence of spon-
taneous differentiation in our cell society, thus,
can be related with the sharing of resources, di-
vision of labor, and the formation of classes in
an economical or sociological system.

The present paper is organized as follows. A
specific model is introduced in Section 2, com-
bining the processes of metabolic reaction, ac-
tive transport of chemicals into cells, cell divi-
sion, and death. Numerical results of the model,
given in Section 3, show three stages of differ-
entiation; coherent growth, dynamic clustering,
and fixation of differentiation. Detailed dynam-
ical aspects are presented. In Section 4, impli-
cations of our results to cell differentiation are
given. The origin of germ line segregation, dif-
ferentiation of somatic cells in multicellular or-
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ganisms, a possible mechanism of programmed
death, and homeochaotic stability against exter-
nal perturbation are discussed. In Section 5, we
point out a new mechanism of chaotic instabil-
ity in a system with a growing number of degrees
of freedom.

2. Model

. The biochemical mechanisms of cell growth
and division are very complicated, and include
a variety of catalytic reactions. The reaction oc-
curs both at the levels of inter- and intra- cells.
Hence it is almost impossible to construct a

~ complete descriptive model. Here we introduce

a simpler model which captures the essence
of these processes (see Fig. 1 for a schematic
illustration of our model).
In the model we have to include the following
processes:
- metabolic reaction within each cell: intra-cell
dynamics;
— interaction with other cells through media:
inter-cell dynamics;
- cell division;
- cell death.

2.1. Chemicals

As a set of dynamical variables we need some
chemicals’ concentrations in each cell, and also
those of the medium surrounding the cells. Here
we use the following variables; a set of concentra-
tions of chemical substrates x[("’) (¢), the concen-
tration of mth chemical species at the ith cell, at
time ¢. The corresponding concentration of the
species in the medium is denoted as X ™ (7). We
assume that the medium is well stirred, and ne-
glect the spatial variation of the concentration.
Furthermore we regard the chemical species x(?)
(or X©@ in the media) as playing the role of the
source for other substrates. Another assumption
we make here is the existence of enzymes (for
convenience and simplicity we assume that there
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Fig. 1. Schematic representation of our model: (a) the whole
dynamics of our system; (b) metabolic reaction within each
cell.

is a corresponding enzyme E ™ for each chem-
icals x(m)).

2.2. Metabolic reaction

The metabolic reaction here is schematically
shown in Fig. 1b.

In the present paper we make further simpli-
fications:

(1) Only three chemicals including the source
x© are considered. In other words, each cell
contains the variables x,.(o) (1), x,-“) (t), and
x,.m (2). Of course, this is a vast simplification.
There can be several orders of cascade reactions
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in the course of synthesis of DNA [5]. We will
see, however, that our simple reaction scheme
is enough for our new scenario of cell differen-
tiation.

(2) Simplification of enzyme dynamics. To
be specific, we take the reaction scheme shown
in Fig. 1b. Here the enzyme EO is constitutive
while the others, E! and E2, are inductive [6].
First we assume that the concentration of the
enzyme E© is constant, given by E?, for sim-
plicity. Here, the generation of the enzymes E{!)
and E? are activated by the chemical x(?). The
rate equation within each cell (including the en-
zymatic dynamics) is written as

dxV (1) /dt = EP ()xP (1)

—EMN(0)xM (1) + E% (), (1)
dx® (t)/dt = EP (0x{" (1)
—E@(0)x® (1) - 6 x xP (1) (2)

The dynamics of enzymes E™ (¢) can be
highly complex and nonlinear, by gene expres-
sion, transcription, translation, and modifica-
tion [5]. Following the scheme in Fig. 1b, we
adopt here

dED (1)/dt = ay (x® (1) - du EV (1)),
dEP (1) /dt = ay(x'P (1) — den E[P (1)).

as one of the simplest choices. Each enzyme is
created from chemicals by reactions within a
cell. We neglect the possibility of transportation
of enzymes across cells (since the sizes of en-
zymes are much larger). For simplicity, we adi-
abatically solve the equations to get E,.“) ) =
eix!P (1); and EP (1) = epx? (1), with con-
stants ¢; and e,. Throughout the paper we adopt
this elimination. Further simplification we make
here is the neglection of the reaction x (2> — x(U,
Thus the terms with E(2) are neglected, although
some simulations with these terms lead to qual-
itatively identical results.

2.3. Active transport and diffusion through
membrane

A cell takes chemicals from the surrounding
medium. The rates of chemicals transported
into a cell are proportional to their concen-
trations outside. Further we assume that this
transport rate also depends nonlinearly on the
internal state of a cell. Since the transport here
requires energy [4], the transport rate depends
on the activities of a cell. The rate can depend
nonlinearly on the chemicals in the cell. To be
specific, we choose the following form;

2
Transp{™ () = p(3_ xF (1) X" (1), (3)
k=l

where v is taken to be 3 throughout the paper,
although other nonlinear dependences (v >
1, i.e.,, with positive feedback effect) lead to
qualitatively similar results. The summation
(Cho, x,-(k) (¢)) is introduced here to mean that
a cell with more chemicals is more active. This
form, again, is rather arbitrarily chosen, but
similar forms with “active” transport can lead
to the same result. Besides the above active
transport, the chemicals spread out through the
membrane with normal diffusion by

DIff™ (1) = DX (1) — x™) )

Combining the processes (B) and (C), the dy-
namics for xi-('”) () is given by

dx® (t)/dt = —E°x® (¢) + Transp® (1)

+ Diff? (1), (5)
dxV (1yjdt = E%%® (2) — ey xP (1)x" (1)

+ Transp!" (¢) + Diff{" (2), (6)
dxP()dt = ey x® ()x (1) = 8 x xP (1)

+ Transp}z)(t) + Diff}z)(t). (7

Since the processes (B) here are just the trans-
portation of chemicals through membranes, the
sum of the chemicals must be conserved. The dy-
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namics of the chemicals in the medium is then
obtained by converting the sign, i.e.,

N
dxX™ @) /dt = - Z{Transpf'")(t)

i=|
+ Diff"™ (1)} (8)

Since the chemicals in the medium can be con-
sumed with the flow to the cells, we need some
flow of chemicals (nutrition) into the medium
from the outside of the container. Here we as-
sume that only the source chemical X 0 is sup-
plied by a flow into the container. By denoting
the external concentration of the chemicals by
X0 and its flow rate per volume of the tank by f,
the dynamics of source chemicals in the media
is written as

dX@ () /dt = (X0 - X°)

N
~ Y (Transp® (1) + Diff” (1)}. (9)

i=1
2.4. Cell division

Through chemical processes, cells can repli-
cate. For the division, accumulation of some
chemicals is required. In our model the final
product from the chemical species “2” is as-
sumed to act as the chemical for the cell divi-
sion (note the term —4J x x‘-m(t) in Eq. (2)).
For example assume that chemical 2 is a mono-
nucleotide. Then the DNA synthesis process
occurs through the reaction 2 —DNA in Fig. 1;
thus dDNA/dt o« x?). Accordingly we impose
the following condition for cell division: the ith
cell (born at time ¢ = #y(i)) divides into two at
a time T such that

T

/dtx,.m (1) > R (10)
to(i) ‘

is satisfied, where R is the threshold for cell rephi-
cation. Here again, choices of other similar divi-

sion conditions can give qualitatively similar re-
sults as those to be discussed. The essential part

is that the division condition satisfies an integral
form representing the accumulation of DNA as
in Eq. (10).

When a cell divides, two almost identical
cells are formed. The chemicals x,5M) are almost
equally distributed. "Almost” here means that

each cell after a division has 1x™ + ¢ and

% xi(m) — €, respectively, with a small “noise”
¢, a random number with small amplitude, say
over [—1073,1073]. We should note that this
inclusion of imbalance is not essential to our
differentiation. Indeed any tiny difference is
amplified to yield a macroscopic differentiation.

2.5. Cell death

To avoid infinite growth, a condition for cell
death is further imposed. Here we choose either
a deterministic or a probabilistic death mecha-
nism. In the former case, we choose the condi-
tion for the death as

,
Y xPw<s, (11)

j=1

where S is a threshold for “starvation”. This
choice is again rather arbitrary. We have as-
sumed that a cell dies when the chemicals in-
cluded therein are too little. Again, a choice of
similar other forms is expected to give the same
results. Here, the chemicals inside the dead cells
are released into the medium. Thus there is a
jump in XU’ (¢) at every cell death.

In the probabilistic case, a number of ran-
domly chosen cells (together with the chemicals
included therein) are removed per given time
steps (decimation). This choice is closer to ex-
perimental situations, since incuvated cells are
decimated per some time steps in order to avoid
the divergence of the number of cells (see the
preceding paper). In fact, both the deterministic
and the probabilistic deaths give qualitatively
the same behavior with regard to the three stages
to be discussed.
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3. Results: three stage differentiation

A typical example for the growth of the num-
ber of cells is plotted in Fig. 2, as well as the
overlaid oscillation of chemicals xi(z) (2} overall
cells in Fig. 3. In Fig. 2, the number of cells dou-
bles at certain time during the first stage, while
the number increases almost linearly with time
at the last stage. As can be seen in Fig. 3, we have
observed the following three stages of evolution,
with the growth of the number of cells, for a wide
range of parameters.

(a) Stage I: coherent growth. All the metabolic
reactions of cells oscillate coherently. Thus cells
grow coherently. Starting from a single cell, the
number increasesas 1 -2 -4 -8 — 16-.- at
the stage I.

(b) Stage II: dynamic clustering. 1f there is
intra- and/or inter-cell nonlinear dynamics, the
coherent oscillation can lose its stability as the
cell number increases. As can be seen in Fig. 3 of
the overlaid time series of x,-‘2 ) (2), the variance
of the cells’ oscillations is enhanced with time.
Then dynamic clustering sets in. Depending on
the parameters, the number of clusters can be dif-
ferent. As the diffusion constant D is decreased,
the number of clusters increases, and the oscil-
lation gets more complicated. The projected or-
bit of (x;"(¢),x?(¢)) is given in Fig. 4a. The
phases of oscillations, as well as their amplitudes
vary by cells. Some cells start to have large con-
centrations of chemicals, which prepares them
for the differentiation at the next stage.

The origin of the clustering (i.e., temporal dif-
ferentiation) lies in the instability of the reac-
tion and transport dynamics. Any tiny differ-
ence between two cells is amplified to a macro-
scopic difference. The mechanism of clustering
has been investigated in globally coupled maps
[31], although here there exists a novel feature in
dynamical systems, as will be discussed in Sec-
tion 5. We note that the clustering here is pos-
sible by the interaction among cells through the
chemicals in the medium, whose concentrations
can also oscillate in time.
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Fig. 2. Temporal change of the number of cells N. Through-
out the present paperweusep = 1, f = 0.1, E® = ¢; = 1,
and R = 50. Other parameters are set at D = 0.1, 6 = 0.5,
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(c) Stage HI: Fixation of cell differentiation.
As the number of cells increases further, our cell
society enters into a new stage. An example of
overlaid time series is given in Fig. 3, as well
as the orbit in phase space (x,.“) (t),x‘-m (t)) in
Fig. 4b. We note that the cells are classified into
two completely distinct groups; the population

95
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Fig. 5. Magnified plot of the time series x,.m (t), for stage
I (corresponding to Figs. 2-4).

of cells in one group is very few (one or two in the
example) but they contain large concentrations
of chemicals, while the population of the other
group is large but the concentrations of the chem-
icals are much smaller. We call the former cells
active and the latter as sleeping. The active cells
replicate much faster than the other (sleeping)
ones. In Fig. 4b, orbits with a large amplitude are
those of the active group. The segment of straight
lines at the upper middle is a result of the cell di-
vision. (Here x ) of the sleeping cells is so small
that their orbits in the (x,~“) (t),xim (¢)) plane
are hardly visible in Fig. 4b.

In the extreme, and here, typical case, the
number of cells in the active group is just one. It
divides almost periodically in time. After each
division, one of the two created cells takes more
chemicals than the other. The difference be-
tween the two cells is enhanced, till the weaker
one belongs to the sleeping group. Thus the
number of cells increases by one per some pe-
riod as long as the "cell death” condition is not
satisfied. The sleeping cells, on the other hand,
are not identical. They are again weakly dif-
ferentiated by the concentrations of chemicals
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(see Fig. 5). This differentiation depends on the
ordering of the time of birth of the cell. Tempo-
rally there are weak oscillations in the chemicals
of a sleeping cell.

The above regular growth is seen if § (produc-
tion rate of DNA from x?)) and D (diffusion
coupling with a medium) are large (say é > .2,
D > .08). When the parameters é and/or D are
smaller, the dynamics is more complicated: the
number of active cells is larger than one (stage
“complex-11I"). Their oscillations are not peri-
odic, and the division cycle is not regular either.
See Fig. 6a for the irregular growth of cells, while
the overlaid time series of x,-(z) (¢) are given in
Fig. 6b, as well as the plot of the (x,-“),xfz)) mn
Fig. 6¢. Here, the oscillations of active cells are
chaotic ? and display dynamic clustering,

By a division of a cell in either group, the
balance of the number of cells between the two
groups may be destroyed. After this (rare) oc-
currence, one (or few) of the cells in one group
switch to the other group. In Fig. 7, sleeping cells
”wake up” around ¢ = 4620 and get active by
taking chemicals from the medium, while active
ones get inactive. Such waking-up of sleeping
cells has also been observed in the experiments
of the preceding paper.

Before closing the paragraph on stage III,
we note that for some parameter regimes (e.g.,
much larger D) this stage has not yet been ob-
served, and the cell society remains at stage II.

(d) Cell death. After the number of cells gets
large enough, the external source term is not suf-
ficient to support any more cells. The number
saturates at the maximal number and fluctuates
around it. When there is just one active cell, the
cell still divides periodically in time. However,
one of the divided cells dies within the same pe-
riod. Thus the number of cells does neither in-
crease nor decrease. Cell lineage for this case is
shown in Fig. 8. The cell lineage diagram shows

2 The term “chaos” is not used in a rigorous sense here.
Since the degrees of freedom are varying, the conventional
definition of chaos is not applicable in its rigorouse sense.
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Fig. 6a. (c) Plots of (xi(”(t),x,.m(l)) over the time steps
4000-4600.

from which cell a new cell is born at time ¢ (given
by -the vertical axis). In Fig. 8, we can clearly
distinguish active and sleeping cells ( where the
cell index ¢ (horizontal axis) satisfies £ < 28 or
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D =026 =05 X% =15, and S = 0.5. At the time step
around 4620, switching between active and sleeping cells is
observed.

£ > 103). Successive division and death is seen
for the cells with the index 28 < £ < 103.

If we wait for a very long time, the division
condition is satisfied for sleeping cells also (since
the condition is of an integral form). Then divi-

] l e |
| I I
000 2000 40.00 6000 80.0¢ 100.00 120.00 140.00
Cell index

Fig. 8. Cell lincage diagram for D = 0.1,4 = 0.5, X0 = 40,
and S = 0.3. The vertical axis shows the time step, while
the horizontal axis shows the cell index. (Only for practical
purpose of keeping trade of the branching tree, we define
the cell index as follows: when a daughter cell j is born from
a cell i°s kth division, the value s; = 5; + 27¥ is attached
to the cell j from the mother cell’s 5;. The cell index for the
cell j is the order of s;, sorted with the increasing order.)
In the diagram, the horizontal line shows the division from
the cell with index #; to n;, while the vertical line is drawn
as long as the cell exists (until it dies out).

sions of many cells occur successively within a
short time scale, but many of the divided cells die
right after the divisions. An almost simultane-
ous death of many cells occurs. Thus the number
returns to the level before the muitiple division.

If the number of active cells is larger than one
(“complex-III stage”), the death process is ir-
regular, while the total number of cells is con-
stant on average. Here switching between ac-
tive and sleeping cells can occur through cell
death. When the number of active cells is re-
duced, the cell society goes back to the stage 11,
where many cells with similar activities compete
for resources, and show dynamic clustering. Af-
ter some duration of stage I1, few cells become ac-
tive, and the society comes back to the complex-
I1I stage. Accordingly temporal oscillation is ob-
served in the ratio between active and sleeping
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cells.

4. Implications to cell differentiation

The results in the previous section have many
implications for cell growth and differentiation.
At first we present a possible interpretation of
the “differentiation-without-gene” experiment
in the preceding paper, based on our results
here. Besides this interpretation, we can pro-
vide novel viewpoints to cell differentiation in
general. They include mechanisms of germ line
segregation, somatic cell differentiation, pro-
grammed death, stability of complex cell lineage.

4.1. Explanation of the results in the preceding
paper

Since the present toy cell with simple meta-
bolic reaction systems can show dynamic cluster-
ing, it is rather natural to assume that the present
clustering can appear in an experimental system.
In the experiment of the preceding paper, dif-
ferentiation of cells and dynamic clustering of
oscillations of E-coli are observed. The possibil-
ity of fixation of differentiation corresponding
to our stage 11 is also suggested experimentally.
Two distinct groups of bacteria are found there,
one with high enzymatic activity, and the other
with low activity, where the populations of the
two groups oscillate in time. This oscillation is
explained by assuming that the cell society is at
the complex-11I stage in our simulation. Indeed,
populations of active and sleeping cells oscillate
in time in the stage.

We note that the differentiation in the exper-
iment is performed with the use of liquid cul-
ture, where the coupling is global (through a
medium) as in our model. Thus cell differenti-
ation occurs even without a spatially local in-
teraction, in strong contrast with conventional
models for differentiation and pattern forma-
tion (e.g., reaction-diffusion equation model of
Turing-type or a cellular automaton model).

One might think that the deterministic death
condition is different from the previous experi-
mental situation. In the experiments, some cells
are randomly removed to avoid overgrowth in
the medium. To take the experiments into ac-
count, we have also simulated a model with
stochastic decimation. The results are essen-
tially the same as those given so far, obtained
by the deterministic death condition. Of course,
death is not periodic, thus the growth is not
completely periodic in the regular regime of the
deterministic case. Still the dynamical behavior
is the same except for some effects of noise.
Statistically the ratio of active to sleeping cells
is kept at the same level. When an active cell
is eliminated, for example, one of the sleeping
cells starts getting more chemicals and becomes
an active cell.

Of course it is very difficult to check the va-
lidity of the present scenario to the experiment
completely. However, the present scenario for
cell differentiation, due to its simplicity and
plausibility, provides an important conceptual
framework, in general. As long as the genotypes
are homogeneous in the bacteria society, no
clearer scenario is known than the present one.

4.2, From time sharing to emergence of
disparity in activities

In the present model, many cells compete with
each other for finite resources (the source term
X©). Generally speaking, coherent growth
may not be advantageous in a system with fi-
nite resources, since all elements need the same
amount of resources at the same time. There
can be two remedies to this problem; the time
sharing system and disparity of activities by el-
ements. In the former case, time sharing (also
often adopted in computer systems,) is accom-
plished here through temporal differentiation
(clustering). Through clustering, elements use
resources successively, thus avoiding strong
competition for the resources. In the latter case,
elements split into (itwo) fixed groups. One
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group is “rich” and uses the resources more and
grows much faster than the other (poor) group.
In our system, these two types of differentiation
appear as successive stages.

We should note that the active and sleeping
cells coexist. Sleeping cells, although they may
look like a “loser” for the competition for re-
sources, can live together with active ones. In-
deed this coexistence is important for the stabil-
ity of cell history and society to be discussed.

When there are many active cells, they com-
pete with each other for resources. In this case,
the oscillations are chaotic and show dynamic
clustering. Thus time sharing of resources is still
adopted among active cells.

4.3. Germ line segregation

To have a stable cell society, cells, once differ-
entiated, often must be fixed in time. As found at
stage 111, such fixation occurs in our simulation.
This splitting into active and sleeping cells re-
minds us of the germ line segregation. Germ cells
are distinguished from somatic cells by their very
high division ability. The emergence of the germ
line segregation in our simple model is rather
striking.

4.4. Somatic cell differentiation

At stage III, concentrations of chemicals in
the sleeping group (somatic cells) are again dif-
ferentiated into smaller groups. This differenti-
ation is according to the slight difference of the
amount of chemicals, in our model. We should
note that a very simple metabolic network with
three chemicals has lead to this differentiation.
1t is expected that the inclusion of more chemi-
cals can easily provide a larger variety of differ-
entiated cells as observed in a real cell society.

In our model, the growth speed of somatic cells
is very low. This observation agrees rather well
with the well-known fact in biology that the di-
vision speed of cells gets much slower when they
are differentiated [7].

180 1.90 200 210 220 x 107
time

Fig. 9. Overlaid time series of xim (1), for the parameters

D = 0.1, § = 0.5, and X0 = 40. Instead of the determin-
istic death process, the stochastic decimation of a cell is
adopted. A cell is randomly removed with a probability of
10~3 per 0.01 second. Around step 2050, the active cell is
removed.

4.5. Sleep/active switch and homeochaos

Switching between sleeping and active cells is
observed in our simulation when the balance be-
tween the numbers of active and sleeping cells
is destroyed. There are two origins for this de-
struction: (a) internal dynamics (typically seen
at the “complex-I11” stage where the dynamics of
many active cells is chaotic); (b) external per-
turbation.

The second case is seen, when, for example,
some cells are eliminated externally. Then some
sleeping cell becomes active and the balance is
restored, implying that our system has stabil-
ity against external perturbation. In Fig. 9, the
active cell is removed around ¢ = 2030. Af-
ter this removal, sleeping cells get active and
compete for resources. After competition over
few periods of oscillations, one of the sleeping
cells wins and remains active. Thus the original
state is restored. This stability might remind one
of “homeostasis”. However, the stability here
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is sustained not by a static (fixed-point) state,
but by a dynamical state. Such dynamic stability
with the use of high-dimensional chaos is noted
as homeochaos [8].

4.6. Stability of cell lineage

Since chaotic dynamics underlies our cell sys-
tem, one might be afraid that the scenario here is
unstable, sensitive to initial conditions. This is
not the case. The scenario here is, for example,
invariant under changes of initial conditions
(except for a variation of the time required
for the first division), and also under slight
changes of parameters. The oscillation itself can
be chaotic (in stage II), and the time for the
division is not exactly identical by the initial
conditions. Still the division time is statistically
invariant, and the cell lineage is completely
identical.

Of course, the scenario depends on genetic
and environmental parameters, such as the ex-
ternal supply of resources and internal parame-
ters characterizing chemical reactions in the cell.
Since the supply of chemicals from the medium
cannot be genetically determined, the genetic in-
formation is not enough for the characterization
of cell differentiation. We should again empha-
size here that spatial information is not neces-
sarily important for differentiation, either.

Examples of cell lineage diagrams are shown
in Fig. 10. In Fig. 10a, coherent division (stage
I) is observed up to 32 cells (at around 500
steps), while the cell society enters into the stage
III at around 600 steps. Here cells with an in-
dex larger than 107 get inactive (sleeping cells).
Cells with the index less than 108 are active and
divide frequently, although one of the created
cells dies. Around the time step 2200, divisions
of many sleeping cells occur leading to the multi-
ple deaths. Then the system goes back to stage I1,
till new grouping into active and sleeping cells is
organized around 2700 steps. On the other hand,
the lineage of Fig. 10b, corresponding to Fig. 7,
shows the switching between active and sleeping
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_lig_. 10. Cell lineage diagram (a) D = 0.05, § = 0.3,
X0 = 15,and S = 0.5, up to time step 2910. (b) D = 0.2,

5 =105 X0 = 15, and S = 0.5, corresponding to Fig. 7;
up to time step 4910.

cells around time steps 2000 and 4600.

4.7. Cell death

In our simulations with the deterministic cell
death condition, some cells are programmed to

st it et e e et e M ki
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die. This history of cell death is stable against
changes of initial conditions. We have often
observed simultaneous deaths of multiple cells.
The process eliminates the overgrowth of inac-
tive cells in our simulation. Such programmed
death is also known in cell biology and immunol-
ogy. Indeed some of the cell lineages obtained
(see Fig. 10) from our simulations agree with
those found for some multicellular organisms
(such as the C elegance) in the following points.

(i) Not all of the cells divide (emergence of
sleeping cells). The number of such cells and the
cell lineage diagram are insensitive to a wide-
range change of initial condition. Many cells are
derived from few active cells.

(ii) The timing of divisions and deaths of cells
is independent of initial conditions.

If our scenario is true for the programmed
death, we have to conclude that programmed
death is due to the interaction among cells. It
is predicted that the cell lineage by a single cell
(with repetitive removal of one of divided cells)
does not show the programmed death as seen in
a cell society. Experimental check for this con-
jecture is strongly requested.

5. Open chaos; novel mechanism of unstable
and irregular dynamics ‘

Although the mechanism in our differentia-
tion is based on dynamic clustering in a network
of chaotic elements, there is a novel dynamic
instability in our system with “growing” phase
space.

By the active transport dynamics of chemicals,
the difference between two cells can be ampli-
fied, since a cell with more chemicals is assumed
1o get even more. Tiny differences between cells
can grow exponentially if parameters satisfy a
suitable condition. The grown cell is divided into
two, with an (almost) equal partition of the con-
tained chemicals. The process is quite analogous
with chaos in Baker’s transformations; stretch-
ing (exponential growth) and folding (division).

One difference between our cell division mecha-
nism and chaos is that phase space itself changes
after a division in the former, while the orbit
comes back to the original phase space in the
stretching-folding mechanism of chaos.

Thus conventional quantifiers (such as Lya-
punov exponents) in “closed” chaos may not be
applicable to our problem, since they require a
stationary measure in the closed phase space. A
quantifier to measure the instability along the
increase of phase space is required just as the co-
moving Lyapunov exponent was introduced to
measure the instability along a flow [9].

Our “open chaos” here provides a general sce-
nario of instability and irregular dynamics in a
system with growing phase space. Such systems
with replicating units for the competition of fi-
nite resources are often seen in economics and
sociology.

In open chaos, disparity of elements in activ-
ities emerges through time sharing by cluster-
ing. Still, “poor” cells are not extinct but coex-
ist. Such coexistence of very active and inactive
elements is also seen in economics and sociol-
ogy; coexistence of very big and small firms, or
the very rich and the poor. Spatial information
is not essential to the differentiation or class for-
mation here, as in our cell differentiation. It is
interesting to extend the idea of the present pa-
per to economics and sociology, and to discuss
the origin of differentiation, diversity, and com-
plexity there.
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