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An isologous diversification theory for cell diffcrentiation is proposed, based on simulations
of interacting cells with biochemical networks and the cell division process following
consumption of some chemicals. According to the simulations of the interaction-based
dynamical systems modecl, the following scenario of the cell diffcrentiation is proposed.
(1) Up to some threshold number, divisions bring about almost identical cells with synchro-
nized biochcmical oscillations. (2) As the number is increascd, the oscillations losce syn-
chrony, leading to groups of cclls with different phases of oscillations. (3) Amplitudes of
oscillation and avcraged chemical compositions start to differ by groups of cells. The
differentiatcd behavior of states is transmitted to daughter cells. (4) Recursivily is formed so
that the daughter cells keep the identical chemical character. This “memory” is made
possible through the transfer of initial conditions. (5) Successive differentiation proceeds.

The mechanism of tumor ccll formation, origin of stem cclls, anomalous differentiation
by transplantations, apoptosis and other features of cell differentiation process are also
discussed, with some novel predictions. © /997 Society for Mathematical Biology

1. Introduction.

1.1. Biological background. The development of organisms from their
fertilized eggs is one of the most elegant emergence features in biology and
has been investigated by many ccllular and molecular biologists to elucidate
how different types of cells appear and organize the beautiful structure of a
matured body. Many of the essential genes for the body plan have been
identified. Each gene, responding to the products from the other genes,
turns on or off so as to give differential physiological states and to produce
a variety of cells.

*Author to whom correspondence should be addressed.
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The gene network picture is expressed by “canalization”. Depending on
initial conditions, there are a variety of final states, as expressed schemati-
cally by the landscape in Fig. la. In terms of dynamical system theory, there
are many attractors in the network system. If the initial condition for
canalization is given by the initial genc expression and/or by the environ-
ments, a cell differentiates into one of the attractors according to their
basins. A beautiful and pioneering study is given by Kauffman (1969) to
demonstrate that the Boolean networks of genes have a variety of final
states. His work clearly shows that with various initial conditions, the gene
nctwork leads to the existence of a variety of cell types under a single
external condition. However, needless to say, a single initial condition
embedded in a fertilized egg produces several different cell types. Thus, the
following esscntial question toward the gene network picture remains: How
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Figurc 1. Schematic representation for two pictures of cell differentiation. (a)
Fixcd landscape; (b) our picture based on interplay between intra- and inter-
cellular dynamics.
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do the different initial and /or external conditions arise, leading to different
cell types through the developmental process? How can the differentiation
process be robust against perturbations to initial and external conditions?

There are some experiments which point out the relevance of cellular
interactions to internal statcs of a cell and to the robustness against
perturbations. One of the authors and his colleagues reported (Ko ez al,
1994) that even under a single external condition, cells differentiate to
some distinct physiological states. In their cxperiment, E. coli was succes-
sively cultivated in a well-stirred liquid culture in order to impose the same
external condition on each of the cells. The population of the E. coli was
shown to include distinct cell types. The fraction of each cell type exhibited
a complex oscillation in the time course. Moreover, it was shown that in a
few repeats of the single colony isolation, some colonies inherit the physio-
logical state, whilc the others present the state other than that their
parental colonics exhibit. It is unlikely that each cell of E. coli in the
culture from a single cell exhibits diffcrent initial conditions in its gene
network. Thus, the experiments show that under the same initial and
external conditions, the cells can autonomously differentiate.

It has been established thalt by transplant experiments, some cells,
changing their fate, de-differentiatc and come to a different cell type.
Therefore, the inter-cellular relationship is essential to the determination
of a cell type. The experimental results show that the differentiation
process is dynamic in principle, and the fate of a cell is determined
dynamically through the interactions with environment or with other cells.
Rubin, in a series of papers, has shown that a cell line (NTH 3T3) from a
mouse epigenetically transforms to different types of foci in size under the
same condition (Yao and Rubin, 1994; Chow et al., 1994, Rubin, 1994a, b).
In addition, the frcquency of transformation and the type of transformed
cells depend on the cell density and the history of the cell culture before
the transformation. This, of course, does not deny possible roles of muta-
tions, but it at least suggests the relevance of inter-cellular interactions to
the cell transformation or differentiation. The importance of interaction to
differentiation has also been pointed out, for example, by Goodwin (1982)
and Newman and Comper (1990). However, we believe that no one has
taken fully into account of interaction-induced and dynamic vicwpoints
successfully. We hereby propose a novel theory of cell differentiation based
on a dynamic and cell-interaction viewpoint.

It may be useful to state the standpoint of our theory and modeling, in
advance. We do not aim to give a modcl with a one-to-one correspondence
with biological facts at present. Rather, we present an abstract model and
discuss its general features to show that a prototype of cell diffcrentiation
emerges even without implementing a programmed switching process of
genes. It should be noted that the differentiation progresses with au-
tonomous choice of initial conditions of internal cellular states through
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interactions. The process is shown to be a general consequence of dynami-
cal systems of reproducing and interacting units with internal degrees of
freedom.

To make a one-to-one correspondence with experimental observations,
models with detailed physiological information must bc required Our
modcl may look rather premature with regards to such correspondence.
However, on the other hand, our theory and modeling are essential to
understand how a cell society and differentiated multi-cellular organisms
cmerge without sophisticated programs implemented in advance. The the-
ory also provides a novcl viewpoint to several problems in cell biology, such
as transformation and apoptosis.

1.2. Isologous diversification theory. In the present paper, we propose a
novel viewpoint of cell differentiation, which satisfies thc dynamic, and
interaction-based, picture and also explains the inheritance of cell types
through an initial condition of chemicals in cells.

The background of this theory lics in dynamic clustering in globally
coupled chaotic systems (Kaneko, 1989, 1990, 1991, 1994a), where chaos
leads to differentiation of identical elements through interaction among
them. The relevance of dynamic change of rclationships among elements to
biological networks has been discussed (Kaneko, 1994a). Even if such
oscillatory clement does not show chaotic behavior, the dynamic clustering
appears when phase differences of oscillators arc amplified through the
interaction among them. Cell diffcrentiation provides such an example
(Kaneko and Yomo, 1994).

One important missing factor in the dynamical systems theory is the
change of degrees of freedom. Cells divide to create a new set of dynamical
variables. Previously, we introduccd the term “open chaos” to address the
instability in conjunction with the change of the degrees of freedom
(Kaneko and Yomo, 1994). In open chaos, small deviation is amplified,
which finally leads to the change in the dimension of the phase space itsclf,
unlike those in chaos.

Based on these dynamical systems studies and simulations of the cell
differentiation model (to be presented), we propose “isologous diversifica-
tion theory” as a general mechanism of spontancous differentiation of
replicating biological units. Here, we adopt the term “isologous”, in con-
trast with “homologous”, to stress our general mechanism that any “identi-
cal” (rather than similar) units naturally differentiate through intcractions’.
It is useful to describe the basic framework of the theory here to facilitate
the understanding of the later simulation results. The “isologous diversifi-
cation” is summarized as follows (see also Fig. 2 for a schematic representa-
tion).

" The use of the term “isologous™ is suggested by Susumu Ohno.
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Figurc 2. Schematic representation of our isologous diversification. Each spiral
represents oscillatory dynamics. In figure, each stage shifts to next by a singlc
reproduction process (e.g. a cell division) for simplicity. but in general, there are
several reproductions in each stage. See section 5 for details.
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Let us take biological units (e.g. cells), interacting with each other, and
with the ability to reproduce. A state of each unit has internal dynamics
(c.g. biochemical reaction) which allows for non-linear oscillation (through,
€.g., autocatalytic reaction). Through this inter- and intra-unit dynamics,
the total system consists of coupled non-linear oscillator units. As the
number of units increases by the reproduction, they are differentiated
spontaneously, through the following stages?.

(1) Synchronous oscillations of identical units. Up to some threshold
number of units, all of them oscillate synchronously, and their statcs
are identical.

(2) Differentiation of the phases of oscillations of internal states. When the
number of units exceeds the threshold, they lose identical and
coherent dynamics. Although the state of each unit is different at an
instance, averaged behaviors over oscillation periods are essentially
the same. Only the phasc of oscillations differs by units.

The emergence of the stage is a general consequencc of the
dynamic clustering (Kaneko, 1989, 1990). It is expected that the
oscillators split into clusters with different phases of oscillations,
when there is strong interaction among them.

(3) Differentiation of the amplitudes of internal states. At this stage, the
states arc different even after taking the temporal avcrage over
periods. It follows that the behavior of stages (e.g. composition of
chemicals, cycles of oscillations and so on) is diffcrentiated. The
clustering of units with regard to amplitudes here is again a naturc of
coupled oscillators when the interaction is suitably chosen.

(4) Transfer of the differentiated state to the offsprings by reproduction. Each
type of differentiated cell is prescrved to its offsprings. The chemical
composition of a cell attains recursivity with respect to divisions.
Thus, a kind of “memory” is formed, through the transfer of initial
conditions (e.g. of chemicals) during the reproduction (e.g. cell divi-
sion). By reproduction, the initial condition of a unit is determined to
give a unit of the same type at the next generation.

(5) Hierarchy of organized groups. This stage is the result of successive
differentiation with time. Thus, the total system consists of units
(cells) of diverse behaviors, leading to a heterogeneous society.

As mentioned, the above stages arc based on the general features of
coupled dynamical systems. With the reproduction of units the interaction
among them gets stronger and leads to successive diversification of the
behavior. Thus, the identical elements tend to be diversified through the
interplay of non-linear oscillations, interaction and the change of degrees
of freedom (e.g. the number of cells).

* The later stages are not necessarily chronologically scparated. Stage (5) often proceeds with (3) and
(4), while stage (4) can occur with (3).
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The fourth stage is conceptually new. The observed memory there lies
not solely in the internal dynamics but also in the interactions among the
units. If one is concerned with the internal dynamics, the memory should be
determined by the basin for the attractors of internal dynamics, as in
Fig. la. The final destination of the balls in the figure corresponds to the
memory. However, there remain two factors that need to be considered.
One is the division process, which increascs the degrees of freedom
(Fig. 1b). The other is the interaction among the units, which brings about
the differentiation. We believe that this emergence of recursivity, or mem-
ory, is a general feature of coupled dynamical systems with varying degrees
of freedom (e.g. the number of cells), and thus is essential to the informa-
tion and memory in biological systcms.

An important consequence of our theory is global stability. The obtained
distribution of types of units (cells) is robust against cxternal perturbations.
Noise at the division process may change the destiny of somc individual
cells, but the number distribution of cell types is only weakly influcnced by
it. Indeed, this macroscopic robustness is derived naturally from our
interaction-based picture. In the study of coupled non-linear dynamical
systems, the stability of collective behavior is theoretically confirmed
(Kaneko, 1990, 1992).

Putting the above processes into biological terms, each unit (cell) takes
resources (nutrition) for reproduction (cell division). First, the existence of
oscillatory (biochemical) dynamics in each unit (cell) is a natural assump-
tion, as will be discussed. The differentiation of phases (at the first stage) is
the establishment of the time-sharing system for resources, since the ability
to get resources generally depends on the internal state of a cell. For
example, it may be interesting to note that different regions of the DNA
replicate at different characteristic times during the cell cycle (Alberts et
al., 1983). It is also known that the cell cycle (of divisions) loses synchro-
nization spontaneously as in our first stage, although it is often attributed to
statistical events rather than deterministic instability (Alberts et al., 1983).
The third stage is no other than the division of labors in several biochemi-
cal reactions in the cell, since the differentiated units utilize different
resources (chemicals). The fourth stage, where the differentiated feature is
epigenctically inherited through reproduction, provides an cssential way of
maintaining the diversity among the units (cells). Lastly, the fifth stage is
simply what gives the complexity of organisms as we portrayed. Through
this process, a co-operative society of units emerges as a higher level®.

1.3. Cell differentiaton model. Although the isologous diversification is
proposcd as a rather general scenario for biological systems, it is most
important to verify the scenario for the cell differentiation problem through

*In this respect, isologous diversification provides a logic for “major transitions™ (Szathmary and
Maynard-Smith, 1995).
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simulations of a specific model. With this demonstration, we provide a
coherent answer to the problem raised in section 1.1.

First, we note that it is rather natural to assume some oscillatory
behaviors in cellular chemical reactions. Indeed, oscillations are observed
in some mctabolic cycles (Hess, 1971) as in the concentration of Ca2*,
cyclic AMP, NADH and so on, while there are cyclic behaviors in cell
divisions themselves, as in the oscillations of cyclin and MPF (M-phase-
promoting factor) (Alberts et al., 1983). Thus, the dynamical systems
approach to cell differentiation is a rather natural postulate from physiol-
ogy. The importance of oscillatory dynamics in ccllular systems has been
pointed out by Goodwin (1963, 1982).

Here, we adopt autocatalytic reaction networks in each cell, while inter-
actions among cells are considered through the medium contacting with
cells. It should be noted that the chemicals here include those associated
with the genetic expressions, and even the components of DNA. Thus, our
model is compatible with the picture by a genetic switch network. Indeed,
in our simulations, some chemicals are activated after some divisions,
consistent with expressions of genes by switchings. Since gene expressions
arc tightly linked with intra-cellular chemical reactions, which are subject
to inter-cellular changes, cell differentiation satisfies the postulates of
isologous diversification.

Previously, we proposed a simple model of cell differentiation, by includ-
ing the cell division process, besides the cellular interactions. Through
simulations of this simple model, we have found the clustcring of chemical
oscillations by cells at the initial stage, and then the differentiation to rich
and poor cells at the later stage (Kaneko and Yomo, 1994). In the present
paper, we extend the model to study how cells are differentiated and
determined successively into different types. (Sec also Kaneko and Yomo,
1995 for a brief report.)

The proposed isologous diversification thcory and our simulation results
capture the essence of differentiation in view of cellular biology. Our result
covers from the loss of totipotency, origin of stem cells, hierarchical
organization, differences in growth rates, to the importance of the tiny
amount of chemicals that trigger differentiation. Some predictions are also
madec on the formation of tumors and their trans-differentiation.

In our model, the units arc made to interact in a homogeneous environ-
ment (well-stirred medium in the biological sense), and hence there is no
spatial variation. The differentiation is proposcd to be brought about by a
dynamic mechanism, in contrast with the (spatial) Turing instability. In-
dcced, our dynamic scenario is consistent with the experimental reports in
the differentiation of cells in a well-stirrced medium (Ko et al., 1994). It
must be noted that the authors do not disregard the spatial cffect that is
important at a later stage of development for the spatio-temporal organiza-
tion. Indeed, some preliminary studies including a spatial factor in differ-
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entiation suggest the validity of the present scenario and also the amplifi-
cation of differentiation by spatial inhomogeneity at a later stage.

1.4. Organization of the paper. The present paper is organized as fol-
lows. In section 2, we present our model within a rather general framework.
Before showing the cell differentiation process, we give a few remarks on
the chemical dynamics within each cell in section 3, in relation with the
structure of the chemical network. Explicit examples of dynamic differen-
tiation are given in section 4. Following these results, we propose a gencral
scenario of cellular differentiation in section 5, while some additional
analysis of the scenario is given in section 6, based on dynamical systems
theory. We discuss the initiation of differentiation, chemical “division of
labors”, formation of tumor-like cells and simultaneous multiple deaths. In
scction 7, some results on the numerical experiments of cell transplanta-
tions arc given, from which the significance of cellular memory is clarified.
Section 8§ is devoted to summary and discussions.

2. Model. The biochemical mechanisms of ccll growth and division are
very complicated, including a variety of catalytic reactions. The reaction
occurs both at the inter- and intra-cellular levels. Here, we study a class of
modecls which captures such biochemical rcaction and inter-cellular interac-
tions.

Our model for cell society consists of

(1) Biochemical reaction network within each cell: intra-cellular dynam-
icS,

(2) Interaction with other cells through media: inter-cellular dynamics,

(3) Cell division,

(4) Cell death.

Our proposed scenario is independent of the details of modeling as long
as items (1)—(3) are included. For simulations, however, we need a specific
model. Here, one example of such a model is given, to proposc a dynamic
scenario of cell differentiations. The basic structurc of our model is the
samc as the previous one (Kancko and Yomo, 1994), although the present
model includes a biochemical network rather than a simple set of reactions,
to cope with the complexity in cell systems. See Fig. 3a for a schematic
illustration of our modeling.

2.1. Internal reaction. First, we adopt a set of k chemical concentrations
as dynamical variables in each cell, and also those in the medium surround-
ing the cells. Here, chemicals arc not specified. They may include chemicals
associated with genetic expressions, as well as the “mctabolic” process in a
very broad sense.
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Figure 3. Schematic representation of our model (a) Whole dynamics of our
system; (b) chemical reaction with cach cell.

Based on the argument in Kaneko and Yomo (1994), we usc the
following variables: a set of concentrations of chemical substrates x{")(t),
the concentration of the mth chemical species at the ith cell, at time ¢. The
corresponding concentration of the species in the medium is denoted as
X “(¢). We assume that the medium is well stirred, and neglect the spatial
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Figure 3. (Continued).

variation of the concentration. Furthermore, we regard the chemical species
x® (or X in the media) as playing the role of thc source for other
substrates.

The reactions m — [ are usually catalyzed by enzymes, which are induc-
tive and are again synthesized with the aids of other chemicals x'/. If this
synthetic reaction is linear in x'9), the concentration of the corresponding
enzyme E["”' obeys the dynamics dE"~'/dt = const. Xx') — SE" ™/,
Assuming, for simplicity, fast dynamics for enzymes, we adiabatically solve
the above reaction equation of enzymce concentrations, to get E;””’ ax®,

Let us apply the Michaels—Mentens form for the reaction from x™ — x®
aided by the enzyme E'"~'. Thus, the reaction from chemical m to [ aided
by chemical j leads to the term e, x“e)xX(¢) /(1 + x"Xt) /x,,), where x,,
is a parameter for the Michaels—Mentens form, and e, is the coefficient for
the reaction.

Summing up, x is produced with the path from chemical m, with the
aid of chemical j. Here, j and m depend on [, and generally there can be
several paths for the production of m. Here, wc usc the notation
Con(m, 1, j), which takes the value 1 when there is a path from chemical m
to / catalyzed by chemical j, and takes 0 otherwise. In the present paper,
the coefficients e, and x,, arc identical for all paths.

In addition, we assume that there are paths from the source chemical
and to a “division factor”. The source is a nutrition-type chemical for
others, while the division factor includes chemicals synthesized and to be
utilized by the division, such as lipids for membranes, ATP or DNA. Here,
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we do not allocate it with a specific chemical, but it is assumed that there is
a threshold for the synthesis of the division factor (e.g. DNA) to the cell
division*. as will be given in process 2.3.

The paths from the source chemical x™ lead to the term
SNegxP()x{(t), where S(/) =1 when there is a path from 0 to /, and 0
otherwise. The path 1o the final product from some chemicals x leads to
a linear decay of x'°, with a coefficient y. This term is expressed by
yP(Dx{X1), where P(I) =1 if there is a path from chemical / to the final
product, and otherwise P(/) = 0. Summing up all these processes, we obtain
the following contribution of the chemical network to the growth of x!/
(i.e. dx(1) /de):

Mct(t) = S(D ey x () xD(1)

+ 2 Con(m, L. e x()x(™ () /(1 +x"(0) /x,,)

.y

— X Conll,m’, jNex™()x{(0) /(1 +x(t) /x )

m’.j

—yP(Dx"(1), (D

where we note that the terms with X Con(--+) represent paths coming into
[ and out of [, respectively. Here, the chemical network can include
metabolic reactions and/or those related with genetic expressions.

The biochemical reaction here is schematically shown in Fig. 3b. When
m =1, the reaction is regarded as autocatalytic, in the sense that there is a
positive feedback to generate chemical k. (In general, it is natural to
assume that a set of chemicals works as an autocatalytic set.) Later, we will
study the case with autocatalytic reactions only, in more dctail.

2.2. Active transport and diffusion through membrane. A cell takes chem-
icals from the surrounding medium. Interactions among cells, thus, occur
through the medium. It is natural to assume that the ratcs of chemicals
transported into a ccll are proportional to their concentrations outside.
Further, we assume that this transport rate also depends on the internal
state of a cell. Sincc the transport here requires cncrgy (see e.g. Alberts
et al., 1983), the transport ratc depends on the activitics of a cell. To be
specific, we choose the following [orm:

Transp{™(¢) =p( Y. x}"(r))X("”(t). 2)
-1

* With regard to the interplay between metabolic reaction and the cell division factor, the present
model may have @ common feature with the “chemton model™ by Ganti (1975).
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The summation (L,_, x{X(1)) is introduced here to mean that a cell with
more chemicals is more active. Here, we choose this bi-linear form for
simplicity, although non-linear dependence on L,_, x{X(¢) (i.e. with a
positive feedback) leads to qualitatively similar results. Besides the above
active transport, the chemicals spread out through the membranc with
normal diffusion by

Diff™(1) = D(X™(1) —xm). (3)
Combining processcs 2.2 and 2.3, the dynamics for x{"X¢) is given by
dx©O(r) /dt = —e xO(8) Y x!(¢) + Transp”(z) + Diff’(¢), ~ (4)
I

dx{(t) /dt = Met"(¢) + Transp{"(¢) + Diff{"(1). (5)

Since the present processcs are just the transportation of chemicals
through the membrane of a cell, the sum of the chemicals must be
conscrved. If the volume of the medium is V' in the unit of a cell, the
chemical in the medium is dilutcd by this factor, and we get the following
equation for the concentration of the medium:

X(m)(t),

out

N
dX(t)/dt = —(1/V) Y {Transp{™(¢) + Diff"(¢)} — D
i=1

(6)

where the last term corresponds to the outflow (washout) of chemicals to
the outside of the medium.

Since the chemicals in the medium can be consumed with the flow to the
cells, we need some flow of chemicals (nutrition) into the medium from
the outside. Here, only the source chemical X° is supplied by a flow into
the medium. By denoting the external concentration of the chemicals by X ¢
and its flow rate per volume of the medium by f, the dynamics of source
chemicals in the media is written as

_ N
dXO(¢)/de =f(X°—X°) - (1/V) Y, {Transp®(¢) + Diff@(2)}. (7)
i=1

2.3. Cell division. Through chemical processes, cells can replicate, which
requires consumption of ATP, formation of membrane and replication of
DNA and so on. In our model, the division factor, generated from some
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chemical species, is assumed to act as the chemical for the cell division.
Thus, it is rather natural to introduce the following condition for cell
division: The cell ¢ divides when

/ : dtY yP(1)xD(t) > R (8)
t(d) !

is satisfied, where R is the threshold for cell replication, and ¢,(i) is the
time of the birth of the cell (i.e. the previous division). Here again, choices
of other similar division conditions can give qualitatively same results as
those to be discussed. The essential part for the division condition is that it
satisfies an integral form representing the consumption.

When a cell divides, two almost identical cells are formed. The chemicals
x{™ are almost equally distributed. “Almost” here means that each cell
after a division has (3 + €)x!{™ and (3 — €)x{™, respectivcly, with a small
“noise” €, a random number with a small amplitude, say over
[—107%107%]. Although the existence of imbalance is essential to the
differentiation in our model and in nature, the mechanism or the degree of
imbalance is not important for the differentiation itself. Indeed, any tiny
difference is amplified to yield a macroscopic differentiation, resulting in
the samc population distribution of differentiated cells later®. The essence
of our cell differentiation lies in the amplification process by open chaos.

Since x{" stands for the concentration, rather than the amount, it might
look strange to make the concentration half by division. Here, we assume
that the volume of a ccll is approximated to be constant except for a short
span for the division. During the short span for thc division, the volume
gets twice as big and thus the concentration is made half in the above
process. In other words, we approximately separate the stages of the
volume expansion and chemical process. Another possible interpretation is
that the biochemical reaction process occurs within a limited region of a
cell, which is not affected by the growth of a cell size itself.

It is also possible to model the rcaction process, including the growth of
the cell volume explicitly. In this case, an additional term for dilution is
included in equations (4) and (5), given by —x{"X(¢)}(dV,,/dt)/V,,,, with
Veen as the cell volume, which increases in proportion to the consumption
of the division factor. When this term is included, the division to half
should be replaced by the preservation of x{™)(¢) by the division. Indeed,
we have confirmed, in several simulations that this modification of the

*Of course, the (almost) equal partition is not necessary for the differentiation of our simulation. We
use this partition (o stress the intrinsic mechanism of differentiation. By adopting uncqual division, our
differentiation process is accelerated initially. Still. cssentially the same differentiation process occurs
with the uncqual partition.
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model does not make any essential difference with regard to the qualitative
behaviors.

2.4. Cell death. In some simulations, we impose a deterministic condi-
tion for cell death. Here, we adopt the following condition for the death:

k
Y 2 <S; (9)

i=1

where S is a threshold for “starvation”. The choice of the death process is
again rather arbitrary. We have assumed that a cell dies when the chemi-
cals included therein are too little, although a choice of similar forms is
expected to give the same results. Here, the chemicals inside the dead cells
are released into the medium. Thus, the concentration X “X(¢) is added by
xP/V at every cell death.

3. Internal Chemical Dynamics. Before presenting the dynamics of our
cell society, let us briefly describe the nature of chemical (metabolic)
reaction given by equation (1). Roughly speaking, the dynamics strongly
depend on the number of autocatalytic paths. Here, we choose a random
network so that each chemical has a given number of outgoing autocatalytic
chemical paths. If the number is large, only a few chemicals are activated,
and all the other chemical concentrations vanish. Here, no other chemical
paths are active, since the ongoing reaction is just Source — x> — Division
Factor, without any reactions x? —»x® (see Appendix A). When the
number of autocatalytic paths per chemical is small, on the other hand,
many chemicals are generated, but the dynamics fall onto a fixed point
without any oscillatory behavior. In the medium number of autocatalytic
paths, non-trivial (metabolic) reactions appear. Some (not necessarily all)
chemicals are activated. The concentrations of chemicals oscillate in time,
which often show a switching-like behavior. That is, chemicals switch
between low and high values successively. Similar behavior is also seen in
randomly connected Lotka—Volterra equations as saddle-connection-type
dynamics (Sasa and Chawanya, 1995).

In Fig. 4, we have plotted the time series of x> by taking only one cell
and medium, without imposing the division condition (i.e. the dynamics are
given by two sets of chemicals for one cell and the medium), where periodic
alternations of dominating chemical species are observed.

In the present paper, we discuss cases with a medium number of
autocatalytic paths, since they lead to non-trivial (metabolic) oscillations.
Here the term ‘“‘autocatalytic path” is not necessarily taken strictly. Chemi-
cals autocatalytic “as a set” can be adopted in the chemical network. See




154 K. KANEKO AND T. YOMO

2.20 -
'-5 ’5 55 _\5 -‘5 ..5

2.00. b h | " :' .y L A L
: ﬂ:'-_ i\ vﬂ:“_ N R I
' M) v L) 'r <%

1.80 . '_7 . : P - : e W | _
Y | BN I AR Ly
POUEY B REC ) B T NS B E S T3

oo | uiigl B oy EIp i GE|E G | IS S| R
RN YRR L R R H IR
:535-;:;5-;;; HERHE B R B

tao_ | g E [ E € S Pz oEG

ColrE BRI E I
1 E ¢ S AP dF 2

0. | 3£ § g = : i ,

(1 & 3 £ ¢ : i
! E < s H
1.00 5 3 ; : ¢
i !
i |
0.80 i
i
: {
060 4 H H H
{ : ] 2 : 2
1i 4] 3 N ERE :

0.40 T3 g4 =2 5 1 25 811l: i
r s g1 22 3 1*s 835 5
»8 ha i 'R ERE D

020 3 3 D 3 kR EE R
. ® . H . 3
HEH L ¥ : B s

oo Lo tiUUIL Helis i ey iH i

U y4 2 — 3

2 x10
140 1.50 1.60 170 gime 1.80

Figure 4. Overlaid time serics of x"(¢) of a singlc cell in medium, obtained
from a network with three conncctions of eight chemicals whose connection is
given in Fig 5a. Each line with number m =1, 2, 4, 5, 7, 8 gives time series of
corresponding chemical x*(¢). Notc that chemical 2 has a lower concentration
and appears only around bottom of figure, while concentrations of chemicals 3
and 6 arc_too low to be discernible in figure. Paramcters are set as p = 10.0,

ep=e,=Xy=40, y=02, x,, = 10.0, D, =f=0.005 and V = 1000, whilc divi-
sion and death processes are not included.

Appendix B for an evolutionary account for the choice of autocatalytic
nctworks.

4. Example of Differentiation Process. We have carried out several simu-
lations of our modecl with the chemical number k=8, k=16, k = 32 and
k = 64, taking a variety of randomly chosen chemical networks with connec-
tions from two to six per chemical. Sincc typical behaviors arc rather
common, we present an example of simulation results by taking the
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(b)

Figurc 5. Biochemical network adopted in simulations shown in present paper.
(a) Three outgoing conncctions per chemical; (b) two oulgoing connections per
chemical. Specics with a double circle has arrow to division factor product
(P(1) = 1), while all chemicals have arrows from source chemical 0 (i.e. $(m) =1
for all ).

network with k = 8, given in Fig. Sa (with three randomly chosen autocat-
alytic paths per chemical).

Up to some cell numbers, all cells have identical chemical concentrations
at each instance, and oscillatc synchronously. All the cell divisions occur
simultaneously, and the cell number increases as 1, 2, 4, 8,... . When the
number exceeds some threshold value, the oscillation is de-synchronized, as
in Fig. 6, where the time series of chemicals is plotted. In the figure, phases
of oscillations of cight cells split roughly into two groups. On the other
hand, the snapshot values of chemicals at this stage are plotted in Fig. 7
with respect to the cell index defined in the order of birth. (In the example
in the figure, the differentiation starts when the cell number is 8.) At this
stage, the difference by cells, however, is seen only for snapshot values. The
average chemical concentrations over several periods are almost identical.

When cells further divide, differences in chemicals start to be fixed by
cells. Average chemical concentrations measured over periods of oscilla-
tions, as well as their compositions, differ by cells. The chemicals averaged
from the latest division time are plotted in Fig. 8a—d. for different temporal
regimes. In Fig. 8a (at ¢ =280), the 3rd, 6th, 12th and 13th cclls have
diffcrent chemical compositions from others in the average. Thus, two
groups start to be formed around ¢ = 280, while the fixation to two distinct
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Figure 6. Time series of x{*(¢) for 134 <t < 140, overlaid over all cells. Cell
division occurs around ¢ = 137.8, when cell number doubles from 8 to 16. Cell
index is defined in order that cell is born. In simulations of present section
(given in Figs. 6-14 and 22) we  adopt chemical network of Fig. 5a and use
parameters p = 10.0, ¢ =¢, =1, X;,=40, D = 0.02, y = 0.2, x,, = 10.0R = 2000,
§=0.05, D,,, = f=0.005 and V = 1000.

groups is seen around ¢ = 400. In Fig. 8b, three groups are formed, which
are the group of cells 3, 6, 12, 13, 17, 18, 19 and 20, the group of cells 4, 8,
15, 16, 29-32 and that of the other cells. For ¢ > 600, the distinction is
much clearer, as is seen in Fig. 8c—d. One group of cells has a larger ability
of taking the source chemical x*, since they have larger ;x, with -~ as

the temporal average. We refer to the term £, x as activity. A cell with
larger activity is called strong(er) or active here, which divides faster than
other cells.

In Fig. 9a and b, chemical oscillations of two stronger cells arc plotted,
while that of the other group is given in Fig. 9c. One can clearly see that
the time series of Fig. 9a and c are different in nature, while only the phase
of oscillations differs between Fig. 9a and b. The time series of chemicals 1,
2 and 3 overlaid for all cells are given in Fig. 10a—c, respectively, where
differentiation to two (or more) groups is again discernible. The orbits of
two groups lie in a distinct region of the phase space (see Fig. 11), while the
phases of oscillations remain different by cells within each group.

Here, one notes that the difference by chemicals is prominent for
chemicals 2 and 3, while that for chemical 1 is much smaller. (Chemicals 4
and 5 show behavior similar to 1). The clearest difference is seen in
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Chemical Concentration (Snapshot)
1

Cell Index

Figure 7. Snapshot chemical concentrations of x{"(¢) at ¢ =114, when cell
number is 8. Concentration of chemicals x{"" for m =1, 4 and 8 are shown,
since concentrations of other chemicals are very low at this instant. Lines
connecting x{") are just for sake of presentation. As described in text, a cell’s
index is labeled in order of birth: when first division occurs, one of the cclls
remains, to be denoted as 1, while the other is labeled as 2. When the next
division occurs for cell 2, for example, one of the divided cells has cell index 3,
whilc the other remains as 2, and so forth. Data for Figs. 6—14 arc obtaincd
from a simulation with parameters given in Fig. 6.

chemical 3, whose concentration is the smallest among the chemicals. As
will be discussed, this suggests the relevance of extremely dilute chemicals
to diffcrentiations.

It should be noted that the offspring of one group of cclls preserves its
feature here. In Fig. 8c, cells 29, 30, 31, and 32 are direct offsprings of cells
4, 8, 15 and 16. At these later stages, differentiated features are transmitted
to daughter cells. (Both of the divided cells are called daughter cells
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Figure 9. (Continued).

throughout the paper, since there is no principal reason to distinguish the
two right after division.)

As the cell number increases, further differentiation proceeds. As shown
in Fig. 8d, each group of cells further differentiates into two sub-groups.
There are more types of cells at this stage.

5. Proposed Scenario on Cell Differentiation. Several simulations with a
variety of chemical networks show similar behaviors with those given in the
previous section. Insofar as we have checked, the following differentiation
process starts at some cell number when a chosen chemical network allows
for oscillations. Summing up these simulation results, we arrive at the
isologous diversification scenario for cell differentiation (sce Fig. 2 for the
schematic representation). In our model, the scenario is summarized as
follows, where each item corresponds to each stage of the isologous
diversification in section 1.2.

5.1. Synchronous oscillation of chemicals and synchronized division. Up
to some number of cells, the chemical (metabolic) oscillations of all cells
are coherent, and they have almost the same concentrations of chemicals.
Accordingly, the cells divide almost simultaneously, and the number of cells
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Figure 10. (Continued).

is the power of 2. It is interesting to note that mammalian cells are not
differentiated up to the third divisions. Our result suggests that the cell
differentiation is triggered not by a gene which counts the cell division but
“through the cellular interaction.

5.2. Clustering by phases of oscillations. As cells divide further, the
chemical oscillations start to lose their synchrony. Cells separate into
several groups with almost the same phases of oscillations. As has been
discussed (Kaneko and Yomo, 1994; Kaneko, 1994a), this temporal cluster-
ing corresponds to time-sharing for resources: Since the ability to get them
depends on the chemical activitics of cells, cells can get resources succes-
sively in order with the use of the diffcrence of phase of oscillations. Thus,
competition is avoided, although any control mechanism is not imposed
externally.

At this stage, differentiation is not yet fixed. In other words, only the
phases of oscillations are different by cells, but the temporal averages of
chemicals, measured over some periods of oscillations, are almost identical
by cells. Cells are identical on the average. The difference of phase,
however, is a trigger to the fixed differentiation at the next stage.
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Figure 11. Orbits of chemical oscillations. Plotted are (x (1), x® (1)) for
800 <t <900 overlaid over all cells (whose number is 64). Two groups are
clearly seen.

The cell number starting to show differentiation depends on the parame-
ters of our model. When the non-linearity in our model (e.g. ¢; or p in our
model) is weak, differentiation starts only after the cell number is large (c.g.
128), while with stronger non-linearity, this stage starts around cell 8. For
higher non-lincarity, this stage is not clearly discerned, and the next stage
starts after a few divisions.

This clustering corresponds to the second stage of the isologous diversi-
fication, and is explained from the studies of globally coupled dynamical
systems (Kaneko, 1989, 1990).

5.3. Fixed differentiation. After some divisions of cells (for cxample, at
the stage of 32 cells), differences in chemicals start to be fixed by cells. The
average chemical concentrations and their ratios differ by cells. Thus, cells
with different chemical compositions are generated. This leads to diffcren-
tiation of cells not only with regard to activities (i.e. diffcrentiation between
strong and weak cells) (Kaneko and Yomo, 1994), but also with regard to
the composition of chemicals. As seen in Fig. 8a—d, two distinct groups of
cells are created when the cell number is 32, and the average chemical
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compositions are different between the two. (See section 5.5 for the further
differentiation at the later stage).

Thus, we have reached the third stage of the differentiation in the
isologous diversification theory. In connection with the theory, the follow-
ing three points should be noted.

5.3.1. Interaction-induced change of internal dynamics. If cells are inde-
pendent, one could think that the fixed differentiation would correspond to
different attractors in the intra-cellular dynamics. This is not the case. As
will be discussed later, an ensemble consisting of only one type of cells is
unstable. There is an admissible range for the ratio between the numbers
of two groups of cells, which depends on the parameters of our model, and
is determined by the cellular interactions. Thus, the differentiation process
depends both on intra-ccllular dynamics and interactions.

5.3.2. Two-level differentiations with phase and amplitude. As mentioned,
the phases of oscillations differs by cells even within cach group. Hence
there are two levels of differences by cells, one for the change of phases of
oscillations, and the other for the fixed differentiation. Indeed, this two-level
differentiation gives a source for the hierarchical organization.

It is interesting to note that the phase difference is given by “analogue”
means, while the fixed difference of averages leads to a rather “digitally”
distinct separation. Cells’ differences by phases are not rigid, since the
phase diffusion can change them: Perturbations brought about by division
are enough to shift the phase and destroy the memory of the previous
clustering. On the other hand, cells are clearly separated into a few groups,
distinguished by the average amplitudes of chemicals. This difference by
thc amplitude of oscillations is more rigid since it is not shifted continu-
ously, as in the case of the phase. Thus, digitally distinct groups are formed,
which are stable against perturbation such as the division. This emergence
of digital information is the basis of the cellular memory. A daughter of a
ccll of a given type keeps its mother’s characteristics. Indeed, the cells with
stronger activities, in Fig. 8, are successive daughters of a “strong” ancestor
cell, as mentioned. (Cells 29-32 are daughters of 4, 8, 15 and 16, while cells
17-20 are daughters of 3, 6, 12 and 13).

The separation by amplitude is seen in the locus of the orbits in the
phase space of chemical values. The orbits of the two groups of celis lie in
distinct regimes in the phase space. As scen in the overlaid orbits of Fig. 11,
the oscillation phascs are different by cells, albeit lying on the same locus in
each group, while the difference of orbits between the two groups is clearly
discernible.
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5.3.3. Separation of inherent time scales. Another important feature here
is the diffcrentiation of the frequency. One group of cells oscillates faster
than the other group. Typically, cells with low activities oscillate more
slowly in time with smaller amplitudes, and divide slowly, as seen in Fig. 9
and Fig. 10. (In Fig. 10a), lines taking higher concentrations correspond to
stronger cells, while the concentration of chemical 3 is smaller for stronger
cells in Fig. 10b. Thus, faster oscillations correspond to stronger cells for all
chemicals in the figures.) Hence, inherent time scales differ by cells, which
is also scen in the differentiation of speed of division. Indeed, one group of
cells divides faster than the other group of cells. It should be noted that the
inhcrent time scales of cells are created spontaneously through cell divi-
sions and differentiations®.

5.4. Transmission of differentiation to daughter cells. After the above
fixed differentiation, chemical compositions of each group are inherited by
their daughter cells. In the other words, when the system enters into this
stage, a cell loses totipotency, as will be more clearly shown by the
transplantation experiment in section 7. By using a term from cell biology
(see e.g. Alberts et al., 1983), we say that the determination of a cell has
occurred at this stage, since daughters of one type of cell preserve the type.
Hence, a cell at this stage is called a determined onc.

With the above transmission, “recursivity” is achicved. In Fig. 12, chemi-
cal averages of cells between successive divisions are plotted. Initially,
chemical compositions change through divisions, but later they come to
almost fixed values. In Fig. 12a, averages of chemicals are plotted in the
order of divisions. Up to around the 7th division (to create the 90th cell),
chemical avcrages differ by divisions, while the averages split into roughly
two distinct groups later and keep the averages by divisions. We have also
plotted the “return map” in Fig. 12b, that is, the relation between the
chemical averages between the mother and daughter cells. In the return
map, the recursivity is seen as points lying around the diagonal (y =x) line.
The emergence of recursivity is seen after some divisions.

Note in Fig. 12b that the concentration of chemical 2 is close to zero up
to the division to 32 cells, but later is increased to keep the recursivity.
From a molecular biology viewpoint, this may be regarded as some genes
starting to be expressed to produce some proteins. In our result here,
such expressions start to appear after some divisions without any pre-
programming.

This recursivity is not expected from studies of coupled oscillators. For
the division, we have just imposed one condition of an integral type, which
itself does not imply any recursive condition. Through the interference

¢ Differentiation of time scale is also studied by Volkov et al. (1992) in a coupled oscillator model with
growing degrees of elements, corresponding to the clonal growth.
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Figure 12. (a) Chemical concentrations x{", averaged over two successive
divisions, arc plotted in order of divisions. Upper column shows the expansion
of lower for divisions later than 60th. Different marks correspond to different
chemicals, while lines arc_plotted only for convenience; (b) return map of

chemical concentrations x{"™ averaged over two successive divisions. Daughtcr
cell’s average concentration is plotted versus its mother’s cell’s average before
division to the daughter. Chemicals 2, 5 and 8 are plotted with diffcrent marks,
while dotted lines arc drawn only for convenicnce. Lower column is the
cxpansion of upper column.

between cellular interactions and intra-cellular dynamics, a cell selects an
initial condition after each division, so that it keeps its recursive structure.

It is important to note that the chemical characieristics are “inherited”
just through the initial conditions of chemical concentrations after the
division, although wc have not imposed any external mechanisms for a
genetic transmission. (It should be mentioned, however, that we do not
deny roles of genes in the differentiation process, since our chemical can
include DNA. Our viewpoint here is neither that genes determine every-
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Figurce 12. (Continued).

thing nor that they are unimportant, but that they are included as one of
the components in networks.)

In our model, the inheritance is achieved through the transfer of “initial
conditions” at the division. It should be noted that thc initial chemical
composition after division is not necessarily recursive. Indeed, the return
map of the snapshot chemical values after divisions does not fall onto the
fixed point as in Fig. 12b, but scatters within some range (although it is
smaller than that at initial divisions). This is because the phase of oscilla-
tion itself is not necessarily relevant to keep the type. The recursivity holds
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only for the averages but not for the initial condition after each division,
although it is attained through the choice of the latter.

Here we have reached the fourth stage of differentiation of the isologous
diversification theory, by demonstrating the emergence of epigenetic inheri-
tance through coupled non-linear dynamics and selection of initial condi-
tions. The almost “digital” distinction of chemical characteristics, noted
previously, is relevant to preservation of them to daughter cells, since
analogue differences of phases may easily be disturbed by the division
process, and cannot be transmitted to daughters robustly.

5.5. Successive differentiation. Due to determination, it is possible to
draw a cell lineage diagram for each differentiation process, by defining cell
types by distinct chemical characteristics. The generation of cell lincage
gives rather useful information to be compared with that obtained in cell
biology. From the cell lincage, one can see the differentiation processes
hierarchically, and how cellular memory is sustained.

In Fig. 13, we have plotted the cell lineage diagram, where the division
process with time is represented by the connected line between mother and
daughter cells. The color in the figure shows the cell type, determined

according to the chemical averages in Fig. 8. (The “green” cell has x® > 125,

while the blue cell has x®<.03 in Fig. 8d, with -~ as the temporal
average.)

Cellular memory is clearly seen in this figure, where green and blue
colors are preserved through divisions for ¢ > 400. We also note that the
same type of determined cells (“green” cells) appears from different
branches around = 500. Such convergence of cell types from different
branches is also known in cell biology. In fact, lincage analysis shows that in
C. elegans, as well as in other animals, each class of differentiated cells,
such as hypodermis, ncuron, muscle and gonad, is derived from several
founder cells originating in separate branches of the lincage tree (Kenyon,
1985).

Successive differentiation and determination of cells are seen in the cell
lincage diagram (Fig. 13). After two types of cells (i.e. red and green in the
figure) are differentiated around t = 550, the “red” cells arc again differ-
entiated into red and blue cells. (See the two levels of “stronger” chemicals
in Fig. 8d) Once this differentiation occurs, this characteristic is fixed
again, and after some time, such characteristics are determined by the
daughter cells. With the cell divisions, this hicrarchical determination of
cells successively continues. For example, daughters of “green” cells can
later differcntiate into “dark green” and “light green” cells. Here, the
differencc between two green-type cells (for example, that of chemicals, or
the frequency) is smaller than that between red and green cells. (Examples
of these successive determinations can be seen in Fig. 8.)
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Figure 13. Cell lineage diagram corresponding to simulation in Figs. 6-12.
Vertical axis shows time, while Horizontal axis shows a cell index. (Only for
practical purpose of keeping track of branching tree, we define index for lincage
as follows: when daughter cell j is born from cell i’s kth division, value
sp=g8;+ 2% js attached to cell j from mother cell’s s;. The cell index for cell j
is the order of s;, sorted with increasing order. Note that index for the lineage
diagram is different from cell index adopted in other figures, where index is
given just as the order of birth). In the diagram, horizontal line shows division
from cell with index #n; to n;, while vertical line is drawn as long as cell exists
(until it dies out). Color corresponds to cell's character defined from average
chemical pattern. After differentiation, activity of a cell is in order of green, red
and blue, while_irlitial red cells correspond to El_diffcrenliated ones. The

“green” cell has x!?> 125, while the blue cell has x{*) < .03 in Fig. 8d.
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Initial “red” cells have the potential to be either “grecen” and “blue”
cells, while some of the “red” cells remain as the same type by the division.
Thus, one can write down an automaton-like representation as
“red” —“red”, “green” or “blue”, while the division allows only for
“green” — “green” and “blue” — “blue”. Since the “red” cell creates “blue”
and “green” besides creating itself by divisions, the red cells may be
associated with stem cells”. When, for example, higher differentiation into
dark and light green cells occurs, the green cell will again play the role of a
stem cell over green-type cells.

With this hierarchical differentiation, successive diversification proceeds,
as is postulated in the isologous diversification theory.

6. Further Remarks on Dynamic Differentiation. It is useful to make
some remarks about how the above scenario works and make some possible
predictions on the stability of differentiation processes.

6.1. [Initiation of differentiation. In our simulation the diffentiation starts
after some divisions have occurred. Since the division leads to almost equal
cells, a minor difference is enhanced to lead to macroscopic differentiation.
We have found that a small difference of chemicals with very low concen-
tration leads to the amplification of the difference in the concentration of
other chemicals. In Fig. 14, snapshot chemical concentrations are plotted at
the time step when the phasc difference by cells is triggered. We note that
the difference of chemical 7 (with high concentration) is negligible, while
the difference of chemical 5 (with very low concentration) is remarkable. It
is interesting to notc that such a chemical with low concentration is
important, rather than that with high concentration. This observation
reminds us of a certain protein that is known to have a signal transmission
in order to trigger a switch of differentiaton with only a small number of
molecules.

The relevance of chemicals with low concentration is also seen in the
determined differentiation. As noted in Fig. 8, the difference is most
remarkable for chemicals with low concentrations. It is interesting to check
this proposition from experimental cell biology. The relevance, on the other
hand, is a consequence of our isologous diversification theory. Since the
theory is based on the amplification of tiny differences by a non-linear
mechanism, the difference of “rare” chemicals by cells can be casily
amplified to lcad to a macroscopic difference of cells.

7 In some simulations with a different nctwork, two types of cells (with strong and weak activities) arc
formed, where the division of a “strong” cell brings about one strong cell and one weak cell each. In this
case, the association of the strong cell with the stem cell may be more transparent.
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Figure 14. Snapshot chemical concentrations of x{™, at ¢ = 63, just at onset of
chemical difference by cells (clustering). Chemicals 4, S and 7 are plotted in a
logarithmic scale. in order of cell index (order that ccll is born).

6.2. Specialization of a cell. In our simulation, there are different types
of cclls with regard to the variety of chemicals within. Often, only a few
chemicals take high concentrations in a cell with “stronger activity”, whilc
those in a “weaker” cell are more equally distributed. The latter type of
cell keeps chemical variety. In Fig. 8, the difference by chemical species is
smaller in weaker cells (recall the comment on Fig. 10c, where weaker cells
have larger concentrations of a tiny amount of a chemical). Generally, the
bias in chemical concentrations tends to increase with the cell number. This
tendency is seen not only with regard to the number of such cells, but also
to the chemical composition of cach specialized cell.

The emergence of different cell types makes possible the division of
labor in chemical reactions, mentioned in the isologous diversification
theory. As expected, the number of cell types increases with the increase of
chemical species &, although the increase seems to be rather slow. The
number of cell types could be much larger if a one-to-one correspondence
between a chemical and a cell type were adopted. Since chemicals are
connected in a biochemical network and cells originate in a single ancester,
the number of cell types is radically reduced.
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6.3. Tumor-type cell. In simulations with a larger diffusion coupling, a
peculiar type of cell appears. These cclls destroy the ordered use of
chemical resources, which makes the cell society disorganized. This type of
cell is an extreme limit of a specialized cell, and has a much higher
concentration of one chemical than other species. In some examples we
have observed, one chemical m has more than 10° times the concentration
of others. The major biochemical (metabolic) path here is rather trivial,
since the reaction is mostly governed by the path Source Substrate x© —
x — Division Factor. Chemical diversity in the cell is largely reduced. On
the other hand, the concentration x™ is so large that the cell divides faster
than other cells. These cells destroy the mutual relationships among cells,
attained through the successive stages of the isologous diversification.
Taking into account this fact that these cells destroy the chemical order
sustained in the cell society, they may be rcgarded as “tumor” cells.

The formation of these “tumor” cells may be triggered by mutation,
which, in our model, is represented by the “noise” term in the division
process (the random number at the division process, when e is larger). Still,
the growth of tumor cells depends on the cellular interactions, for example,
on the diffusion constant or the density of differentiated cells. Depending
on the interaction term, errors in the division process may or may not lead
to the “tumor”-type cell.

In Fig. 15 we have plotted the average chemicals versus the cell index,
obtained from a set of simulations with the same network as in section 4,
and by choosing a larger diffusion coupling (D = 0.2), and smaller threshold
for the division. In Fig. 15b, the “tumor” cell starts to appear at t = 140,
where the 15th cell (when the total cell number is 32) has a very high
concentration of chemical 4. The chemical x® of the cell is around 3.6,
while concentrations of other chemicals are close to zcro. Since the cell
divides much faster than other cells, its offsprings increase in number
rapidly, and keep the same chemical characteristics. Thus, the “tumor”
cells start to dominate the system. As in Fig. 15¢, offsprings of the tumor
cells keep the property of an extremely high concentration of the chemical
x, although its concentration can be weaker with the divisions. These cells
are again differentiated through divisions, as seen in Fig. 15d. Here, we
note that chemicals other than the species 4 are richer in the normal
(weaker) cells. Hence, the “tumor” cell here is strongly specialized.

Of course, the extremely high concentration of one chemical here can be
due to the simplicity of our biochemical network with only eight species.
For a network with more components, the bias must be weakened. How-
ever, it is still expected that there will appear a cell type with a strongly
biased composition of chemicals, even if the bias is not so extreme as in the
case here. We propose that the chemical diversity is decreased in a tumor
cell in general, which is our prediction, to be tested experimentally.
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Cell Lineage
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Figure 16. Cell lineage diagram corresponding to simulation of Fig. 15. Vertical
axis shows time, while horizontal axis shows cell index, dcfined as in Fig. 13. The
cell death condition is included here, which leads dcaths of some non-tumor
cells in the lcft side.

The cell lineage is given in Fig. 16, wherc the “tumor” cells are plotted at
the right side of the lineage, and their division is faster. One can also see
the difference of division spceds among the “tumor” cells: Some start to
lose their high activity, and start to be differentiated. It should be noted
that the recursivity is not satisfied for “tumor” cells. By plotting the rcturn
map of chemical 4, as in Fig. 12b, we havc found that the fixed point is not
achieved for it, while the return maps of other chemicals or cells of a
non-tumor type satisfy the recursivity. This loss of recursivity implics the
hetcrogeneity of tumor cells. (See also Rubin, 1990).

In our simulation, since the source chemical is limited, the number of
“tumor” cells (with strong activity) cannot grow indefinitely. With the
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Figure 17. Temporal change of number of cells N, and very strong. strong and
weak cells for simulations of Figs. 15 and 16. They arc defined by L, x> 10,
1<, x"™ <10 and L, x" < 1, respectively.

m e

increase of cell density, some cclls losc their strong activity. In Fig. 17, we
have plotted the temporal evolution of cell numbers with three levels of
activity. Around ¢ = 400, there is saturation of the number of “tumor” cells,
and the loss of activity occurs.

In the experiment of E. coli by Ko et al. (1994), there appcars a
long-term oscillation of the numbers of cells with different activities. Such
oscillations are observed from the longer time simulation of our model. The
complex dynamics of the number ratio of active to weak cells naturally
arises through the interaction among cells.

In the example of the network (Fig. 5a), the “tumor” formation is
enhanced when the diffusion D is larger. In this case, cellular interactions
through the medium are stronger, and the competition for resources is
tighter. Taking also into account the “tumor” formation beyond some
number of cells, we may conclude that the “tumor” formation is enhanced
by the competition for resources by cells, or roughly speaking, by the
effective density of cells.

Rubin (Yao and Rubin, 1994; Chow et al., 1994; Rubin 1994a, b), in a
series of experiments, has shown that formation of a type of tumor strongly
depends on the density of cells, even if the mutation may be relevant to the
triggering of it. The enhancement of “tumor” formation in a high density,
found in our results, agrees with the experiments. This suggests that some
type of tumor formation depends on epigenetical factors, and indeed is a
general consequence in an interacting cellular system.

Indeed, the formation of “tumor”-type cells is a consequence of isolo-
gous diversification theory. In the theory, the differentiation process is not
programmed cxplicitly as a rule, but occurs through the interaction. Thus,
when a suitable condition of the interaction is lost—for example, by the
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increase of density—*selfish” cells, destroying the co-operative use of
resources, are formed.

In the natural course of cell differentiation, the interaction among cells
through the chemical environment is not global, but is somehow localized
in space. Such a spatial effect is important when the cell number and the
total size of the systcm are increased. If the range of interaction is limited,
the effective density of cells does not increase even if the cell number does.
Thus, the cell society can be developed without tumor formations. Another
way to avoid the ccascless growth of the cellular density is the introduction
of cell death. By incrcasing the cell death threshold (S), tumor formation is
avoided.

6.4. Cell death. When the ccll death condition is included, we have
obscrved simultaneous deaths of many cells. Here, we give another set of
differentiation proccss, by using a different pathway, given in Fig. 5b, and
by taking a larger threshold S for cell death®. The chemical averages are
ploticd in the order of cells’ indices in Fig. 18, which shows the differentia-
tion process clearly. In Fig. 18a, snapshot chemical valucs arc plotted,
where slight differentiaton has started. In Fig. 18b, the fixed differentiation
proceeds. One can see cight cclls with stronger activity: the 31st and 32nd
cclls arc daughters of the 7th and 16th, and cells 33-36 arc daughters of 7,
16, 31 and 32, respectively. Around the time step 2000, cell deaths start to
be observed. Chemical averages after this stage are given in Fig. 18c, where
differentiation between strong and weak cells has occurred, as well as slight
differentiation among strong cells. Two groups are clearly distinct, as in the
orbits in the phasc space, say in (x®, x®),

After differentiation to three groups, cell death processes start to appear.
Through the deaths, the number of cells varics aperiodically around 32, as
shown in Fig. 19, where spontancous deaths of multiple cells are often
observed.

The above process of cell deaths with differentiation is clearly scen in the
ccll lineage diagram of Fig. 20. In Fig. 20a, an carly stage of differentiation
is shown. Colors correspond to cell types, where the activity of cells is in the
order of green (thick line), blue (dashed line) and red (thin line) for ¢ > 800.
One can see simultancous deaths of cells of the same type, arising from the
same branch. Cell deaths over longer time scales are shown in Fig. 20b and
c. At a later stage steady distribution of cell types is formed through the
deaths. Weaker cells exist with some ratio.

In the development of organisms from fertilized eggs, some cells deter-
ministically dic at certain stages, termed apoptosis, or programmed death.
Despite several studies in molecular genetics, no genes or molecules

¥ Simulation with the network of Fig. 5a and with a larger S leads to the same behavior as presented
here. We usc a differcnt pathway in order to also see the gencrality of our results.
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Figure 18. (Continued).

responsible for the age of a individual cell have been identified, although
the presence of apoptosis-rclated genes had been reported in some works.
Thus, whether a certain program or gene network governing cell aging
exists or not remains an open question. Our simulation showing simultanc-
ous deaths of multiple cells, as in apoptosis, indicates that cell death can
deterministically occur without a special program. In other words, the fate
of a cell including its death may be mainly governed by the interaction
among the cells, influencing its physiological state. This interaction-based
apoptosis will be justified by the transplant experiment. We predict here
that a cell, transplanted just before its death, can survive longer than
cxpected, indicating a change in its fate.

In the present model, no spatial structures are included. Cells cannot
move in space for richer nutrition. Thus, the number of cells is limited, and
such multiple deaths are repeated. (With the introduction of spatial struc-
ture, such repetition may be lost by the loss of spatial coherence.) In our
model, the period for such deaths is not fixed but fluctuates in time. Such
fluctuation is characteristic of an interaction-determined, rather than a
genetically determined system.
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Figure 19. Time series of number of cells N, for simulation in Fig. 18.

6.5. Dependence on parameters and universality. We have made several
simulations changing the parameters in our model. Due to a large number
of parameters, it is hard to give roles of parameters clearly, but they are
roughly summarized as follows.

When the non-linearity is weak, the differentiation starts later. It seems
that the differentiation will start after the cell number is large cnough, as
long as there is chemical oscillation, even if the non-linearity is not large®.

Increasing the parameter p or y enhances differentiation. These changes
increase the amplitude and/or the frequency of oscillation, and may be
regarded as the increase of “non-linearity”. The decrease of the growth
threshold R, on the other hand, suppresses the differentiation. Cells
remain identical, although chemical speciation within is often enhanced,
and only a few chemical concentrations are larger than zero; in other
words, an ensemble of “tumor”-type cells tends to be formed. Increase of
the diffusion D has a similar effect as the decrease of R.

As mentioned, single cell dynamics depends on the network, which
reflects on the behavior of cellular society. Generally speaking, our differ-
entiation scenario works as long as a single cellular dynamics allows for the

? Due 1o the limitation of computation resources, it is difficult to practically check if the differentia-
tion starts after the number is larger than 256 where the computation rcquires a much longer time.




K. KANEKO AND T. YOMO

182

'qg1 ‘B Ul 11" > () SBY [[39 an[q 3y dIym ‘71" <

Fwa sey ([0

(U321, AU, 'SOUO PAIBIIUAIIPUN O} PUOUSILIOD |30 PAL [BHIUT 2[IYMm ‘Pl PUB AN[Q “UDIT JO 19pIO UI ST [[30 B JO AIIATIOR “UOHIBNUDINZID
1017y uroned [Eorwayd 28RIoAR WOIY PAUYIP ‘IFIRIRYD § [[90 01 SpU0dSaIInd 10[0d () U] "000'0T > 7 10F (3) 00ty > 7 10} (q) -009T >/
104 (®) €] ‘Si4 se 1ouuww owes ui pajofd st werdelqg ‘¢1-81 SSLI Ul uonenuus 03 SUIPUOdsaLIOd weideip afeauy 3D 07 S

00051 00001 00°08 000 X3pu| 199 004 08 09 oY oz

el T J T(pos) ! I (pos)

000 —

0zo

ore

090 i

080

00t

0Tt

ot
— 09'1

081
00T i
(44

(444

- 09T

08c
00

= 0C¢
ove —_

-—— o8¢

- (9'E
pe.

oo usaub

— 0TY —

ELiEY eniq
*ogorx

[tad

050

=05t

(q) ¢

olx swiy (®)



ISOLOGOUS DIVERSIFICATION 183

{c) «x 103 R
time

2000 —— — - —
1500 - — - —- — -
1800 —  — -1-
1700 —————— -
16.00
15.00
14.00 - -
1300 -
12.00 — R
11.00 —3—- ——
10.00 —}-- -
9.00 — - e
8.00 — Bl —

7.00 —f— - —

600 —— LT |
5.00 —| -
400 — -
3.00
2.0 o b

100 — T ———

0.00

0.00 20000 400.00
Figure 20. (Continued).

oscillatory dynamics. As for paths to the division factor (P(/)) and paths
from the source chemical (S(/)), there is a tendency that the differentiation
process is enhanced when these connections are not full (= k).

6.6. Macroscopic stability. To close the section, it should be noted that
our scenario, although bascd on chaotic instability, is rather robust against
changes of initial conditions or crrors in the division process. Of coursc,
which cell becomes one given type can depend on the initial conditions. On
the other hand, the number distribution of each type of cell, as well as the
cell lineage diagram, does not depend on initial conditions, as long as very
special initial conditions are not adopted, as in the transplantation cxperi-
ment (see the next section).

The variety of cell types and their number distribution are robust against
the noise (error) in the division process (which may be regarded as the
mutation when the corresponding chemical is DNA). On the other hand,
when the population of one type of cell is decreased (e.g. by external
removal), the distribution is recovered through further divisions.

This kind of robustness at an ensemble level is indeed expected from our
isologous diversification theory, since the stability of macroscopic character-
istics is attaincd in coupled dynamical systems (Kanko, 1992, 1994a; Yomo
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and Kaneko, 1994). This robustness gives a key to understanding how a
stable cell socicty is formed, without being damaged by somatic mutations.

7. Transplantation Experiments and Cellular Memory. The differentia-
tion in our isologous diversification scenario originates in the interaction
among cells, but later, at the third stage, chemical characteristics of a cell
are memorized through the initial condition after division. The differentia-
tion at thc former mechanism is reversible, while the latter mechanism
leads to determination. It is intercsting to note that the determination is
not implemented in the model in advance, but emerges spontaneously at
some stage of cell numbers.

In the natural course of differentiation and in the simulations in sec-
tion 4, however, it is not possible to separate the memory in the inherited
initial condition from the interaction with other cells. To see the tolerance
of the memory in the inheritcd conditions, one effective method is to
choose a determined cell and transplant it to a variety of surrounding cells
that are not seen in the “normal” course of differentiation and develop-
ment. Let us discuss the results of these “transplantation” experiments.

In real biological experiments on differentiation, some “artificial” initial
conditions arc adopted by the transplantation of some types of cells. To
check the validity of our scenario and to see the tolerance of the memory in
the inherited initial condition, we have made several numerical experiments
taking such “artificial” initial conditions. Here, we have made the following
observations by initially taking cells obtained at the normal diffusion
process and putting them into undifferentiated cells at an earlier stage.

7.1. Starting only from a few differentiated cells of the same type in addition
to undifferentiated cells. Figure 21a gives the evolution of average chemical
concentrations by cells starting from four determined cells (whose cell
index is from 1 to 4) and four undifferentiated cclls. The former cells are
sampled from later stages (+ = 691) in the simulation of section 3, while the
latter ones come from the former stages (¢ = 205). In Fig. 21a, cells 14-17
arc the first daughters of cells 1-4 and the cells from 25 to 32 are the
daughters of the above cight cells. The former group of cells keeps the type,
whose offsprings remain the same type. Thus, the determination is pre-
served, and the memory in the inherited initial conditions is robust against
the change of cell interactions. The undifferentiated cells, on the other
hand, start to differentiatc to form many types of cells, as scen in Fig. 21a.

This robustness of cell memory is kept as long as the ratio of initial
determined cells to undifferentiated cells is not too much. (see 7.3 for the
casc otherwise).
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Figure 21. (Continued).

7.2. Starting from the mixture of different determined cells. Again, the ccll
memory is preserved, and daughters of a cell keep the same characteristics.
In Fig. 21b, two types of determined cells are initially taken, seven cells for
one type (with the index from 1 to 7), and one cell (the 8th cell in the
figure) of another type, obtained from section 3 at #=691. Figure 21b
shows the average chemical pattern after two divisions. The 16th, 31st, and
32nd cells, which arc offsprings of the 8th cell, keep the characteristics,
while other cells remain as the other type. Some other simulations also
show that cellular memory is preserved as long as initial distribution of cells
is not dominated by only one type of cells (see 7.3 for the case otherwise).

7.3. Starting only from a few differentiated cells of the same type. Some
cells start to de-differentiate again to generate different types of cells.
Some of them keep their character while others (and their offsprings)
become a different type. If initial distribution of cells is dominated by onc
type of determined cells in cases 7.1 and 7.2, again some of them start to
de-differentiate and become a different type of cell. In Fig. 21c, the average
chemical pattern is plotted starting from 20 cells of one type of determined
cell of section 3 at ¢=691. Cells with the index from 1 to 16 and 19
preserve their character, while cells 17 and 18 become a different type, and
cell 20 is trans-differentiated to another type. Here, their offsprings again
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keep their characteristics: cells 22 and 23 are daughters of 17 and 18, while
cell 21 is a daughter of 20, and cells 41-42 are those of 20 and 21. Thus,
determination again occurs after the process of de—differentiation.

In an example with a different chemical network (with a larger number
(4) of connections), we have found thc formation of “tumor” cells with
ongoing simple chemical rcaction paths. Again, these cells losc the variety
of chemicals and destroy the ordered use of resources.

Summing up 7.1-3, we can conclude that cell memory is preserved
mainly in cach cell, but cellular interactions are also important to sustain it.
The recursivity achieved in scction 4 is understood as the choice of internal
dynamics through cellular intcractions.

Thus, cellular interactions play the rolec not only of the trigger to
differentiation, but also of the maintenance of diversity of cells. Internal
cellular memory is maintained as long as the diversity is sustained. The
relevance of interactions to diversification is a key concept in our isologous
diversification.

’

7.4. Differentiation of “tumor” cells. Another interesting initial condi-
tion is the use of “‘tumor” cells. Starting only from tumor cells, their
offsprings remain the same typc initially. As the divisions are repeated,
some of the cells’ activities get weaker and start to be differentiated. This is
a consequcence of our theory that is strongly based on cellular interactions.

Such differentiation of “tumor” cells is promoted by adding undifferen-
tiated cells initially. As an extreme case of “tumor” cell, let us consider a
cell with ¥ large and x\ =0 for / # m. Such a cell can divide faster if
therc arc paths from the source to m and from m to the division factor.
When there are a large number of autocatalytic paths, x' remains zero for
the cell, whose offsprings keep the same type. In this cxtreme case, the
cellular society continues to consist only of “tumor” cells. Even in this case,
it is found that “tumor” cells are differentiated by adding undifferentiated
cells (taken at the initial stage of the simulation of our model).

8. Discussions.

8.1. Summary and biological relevance. To sum up, we have proposed an
isologous diversification theory on cell differentiation, by introducing a
model based on the interacting cclls with chemical oscillations and the
clustering of coupled oscillator systems. From the simulation of the model,
we have observed successive spontancous differentiations and their transfer
to daughter cclls, without any external mechanism.

Let us summarize the conseqences of our simulations.
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e Cell diffcrentiation occurs through the interplay between intra-ccllular

chemical reaction dynamics and the interaction among cells through
chemical media.

Cell differentiation is initiated by the clustering of chemical oscilla-
tions, appearing at some cell number, which is explained by general
features of coupled non-lincar oscillators.

Chemicals with tiny amounts in cells are relevant to trigger differenti-
ations.

With further divisions, cells lose totipotency, and offsprings preserve
the same characteristics. This recursive division of cells appears only
after some stage of cell division.

Distinct and memorized cell types are formed by the clustering of the
amplitude, rather than the phase, of oscillations, which leads to the
emergence of digital changes in chemical concentrations.

Determined cell changes arc characterized by the cell activity and
chemical compositions.

Inherent time scales, given by the oscillation period, differentiate by
cells. Generally active cells oscillate faster, and divide faster. This
scparation of time scale brings about the separation of growth spced of
cells, and leads to the disparily between rapidly growing and inactive
cells.

Generally speaking, cells whose chemicals are concentrated on a few
species are stronger in activities and divide faster. Cells keeping a
variety of chemicals divide slower. There is a negative correlation
between the growth speed and the chemical variety within a cell.
Successive differentiation appcars at a later stage, which leads to cells
that bring about only a small range of cell types successively.
Determined cell types formed at the later stage are preserved by their
transplantation to other parts of cell society as long as there are not
too many cells of the same type.

It is possible to de-differentiate cells by putting them in conditions
such as overcrowded cells of an identical type.

Spontaneous multiple deaths appear through the interaction of cells,
after cells are differentiated.

A type of tumor-like cell is formed, depending on the cellular interac-
tion. These cells destroy the ordered use of rcsources attained in the
cell society. For example, formation is enhanced by the cell density or
the diffusion coupling. Transplantation of cells of the same type may
enhance tumor formation.

Such type of tumor cells can be differentiated to normal cells through
the interaction with other cells. The differentiation can be enhanced
by adding undifferentiated cells.
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It is interesting to note that the above picture is consistent with a variety
of expcrimental results, such as loss of totipotency, origin of stem cells,
hierarchical organization of differentiation, separation of growth speeds by
differentiation, tumor formation, importance of tiny amounts of chemicals
for triggering differentiation and so on. It should be mentioned that thesc
results naturally appear as a general consequence of our isologous diversi-
fication theory without pre-programmed implementation, and are indepen-
dent of detailed modeling. We should also mention that our theory is
compatible with the genetic switching mechanism for differentiation. Here,
such a switching-type expression appears naturally through cellular inter-
actions.

As described in section 6.2, once cell differentiation in our model reaches
the fifth stage, in which the cells are successively differentiated, the variety
of components in each cell is negatively correlated to the growth rate or
activity. That is, a cell with a higher division rate tends to have a lower
varicty of metabolites, or simply stated, these cells have a simpler metabolic
nctwork. This proposition can possibly be examined by cell biologists. For
instance, in the process of development of the organism, one can sample
existing various types of cells in scveral stages of successive differentiation.
Then, it is possible to determine the variety of components, including
macromolecules, and the growth rate for each cell type and check the
correlation between the two. Thus, the authenticity of the isologous diversi-
fication theory can easily be tested on the laboratory scale.

Furthermore, the theory can be extended for medical application. As
mentioned in section 6.4, the tumor cells in our model are in the extreme
case of loss of variety, where cells losec some metabolites, or start to have a
simpler network, to achieve the faster growth rate. One way to bring a
tumor cell back to normal is to supply the metabolitcs which they lost
through a development. The cell will then recover its normal network and,
hence, will grow harmoniously with the surrounding cells. Similarly, in
order for cancer cells to regain the normal physiological state, even with
some mutations on their DNA, they arc fused with the liposomes encapsu-
lating the cytosol of normal cells or undifferentiated cells, which are
cxpected to include some of the metabolites or macromolecules that the
cancers lack.

8.2. Isologous diversification. 1t should be noted that the introduction of
tiny differences at thc division is not cssential to our differentiation
scenario. A system composed of identical cell states is unstable when the
interaction is strong. On the other hand, even if paramectcrs or initial
conditions of a cell arc different, they may not be cssential to the differen-
tiation. Indced, in the clustering of coupled dynamical systems, it is known
that an element with a different paramecter can oscillate almost coherently
with others, while elements with identical parameters split to two (or more)
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groups (Kaneko, 1994a). Here, the parameter variation of elements is not
essential to thc grouping of them. Thus, it can happen that a cell with
rather different parameters or initial conditions remains the same type with
other cells, while somc cells with identical paramcters or close initial
conditions become a different type. From this perspective, it is expected
that most somatic mutations are irrelevant to differentiation, unless it
brings about a drastic change in the parameter for thc interaction and
intra-cellular dynamics.

Our proposal here is that the differentiation and diversification are not
duc to variations by reproducing errors but by dynamical instability. This is
the reason why we have called our theory “isologous diversification”, to
stress the inherent tendency of differentiation of identical elecments.

Indeed, we believe this “isologous diversification™ can be generally ap-
plicd to a variety of biological systems, because it is based on our study of
coupled dynamical systems, which is expected to be universal in a class of
interacting, reproducing and oscillatory units. In particular, we have suc-
ceeded in showing a mechanism of division of labors through differentia-
tion and scgregation into active and inactive groups. Since the picture is
based on couplcd dynamical systcms theory, it is expecied to be applied to
cconomics and sociology, which enables us to discuss the origin of differen-
tiation, diversity and complexity there.

In biology, the origin of multi-cellular organism is directly related to the
abovc picture and our result here. For its origin, some mechanism of
differentiation of identical cells is necessary, which leads to divisions of
labor, while differentiation reaches the stage that only one group of cells
brings about its offsprings. According to our results, this feature of a
multi-cellular organism spontaneously emerges as a consequence of strongly
coupled reproducing units. It is not a product of chance, but of nccessity in
the course of evolution, sincc reproducing units should reach a strong
coupling regimc by their growth. It should be noted that our study explains
not only the origin, but also the maintenance, of diversity (see also Kancko
and Tkegami, 1992, for the relevance of weak chaos to the maintenance).

“8.3. Some future problems. Our theory of differentiation raises some
basic problems. To closc the paper, we discuss five of them, the first two of
which are related to the cxtension of our modeling, while the laticr three
arc of a more fundamental issue.

8.3.1. Universality and simpler models. Our results are rather universally
observed as long as individual dynamics allow for some oscillations. Sincc
globally coupled dynamical systems are known to show spontaneous differ-
cntiation as clustering (Kancko, 1989, 1990), we may expect that our
ditferentiation is universally observed in a large class of coupled system
non-linear reproducing units.

L

B s
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To search for a simpler model, we have also checked a model only with a
phase variable (Kancko, 1994a). So far, this model shows the stage of phase
clustering and can explain its relevance to time-sharing for resources, but
cannot show the stage of disparity and fixed differentiation. For this stage, a
model with amplitude clustering is required, as in ours.

Note that the clusterings in our model occur in a dual space, that is, in
chemical species and in the cell index. Indeed, one can construct a coupled
map model with dual space, which shows clustering in the cell index and /or
chemical species. Here, the clusterings between cell indices and chemical
species compete with each other. Construction of minimal modcls with the
differentiation process will be an interesting problem for the dynamical
systems thcory.

8.3.2. Introduction of spatially local interaction and development. In the
paper, we have assumed that the chemical medium is well stirred, and all
cells interact with all others uniformly through the medium. In the develop-
mental process of a multi-cellular organism, spatially local interactions
among cells are, of course, important, as development proceeds.

We have made some preliminary simulations, including spatial inhomog-
cnization of the medium. So far, the result shows that the diffcrentiation
process starts in the same manner as that presented here. First, thc phase
of oscillation is diffcrentiated according to its division. At a later stage, cells
close to each other start to be differentiated following the scenario in the
present paper. Then a cell’s character is fixed, depending also on the
locality in space. At a later stage, due to local interaction, spatial organiza-
tion of differentiated cells occurs, leading to pattern formation, as in the
pioncering study by Turing (1952).

Our proposal in the present paper is that the temporal organization of
cells occurs first, lcading to ccll differentiation, and later, pattern formation
follows. Hence we have focused on the global interaction casc here,
although, of course, spatial organization is the next important issuc, as will
be studied in the future.

Since distant cells do not intcract directly with each other, differentiation
as well as its determination is often enhanced. Another consequence of
spatial scparation is the suppression of competition for chemical resources,
which makes the simultaneous cell deaths smaller in number, and localized
in space.

It will bc of interest to include the ccll motality following an inter-
cellular force to study cellular rearrangements lcading to pattern forma-
tion. This, for example, may result in a simple model for the differentiation
process of Dictyostellum discoideum.

Another extension of our model is the use of a “batch-type” simulation
whcere chemical resources do not flow into the media but are kept constant.
Indced. there is no flow of chemical resources from the outside during the
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carly developmental process of an egg such as the sea urchin. Our model
can be directly extended to this “batch”-type simulation, by cutting the flow
from the outside, i.e. by setting D, =f =0 and taking a higher density of
nutrition initially. Since non-linear dynamics and the interaction are still
included., it is expected that the differentiation process follows the stages of
the present theory, as long as the initial nutrition is sufficient. Here, the
final number of cells depends on the initial amount of nutrition, while the
distribution of cell types should be almost independent of it, as long as it is
not too small. This robustness may give a prototype of the developmental
stability found in Driesch’s experiment on the sca urchin.

8.3.3. Cellular memory. The emergence of cell memory, found in our
sysicm, raiscs an important issuc in coupled dynamical systems. Is the
memory stored in each cell or in an cnsemble of interacting cclls? Our
proposal here is that it is preserved through intra—inter-dynamics, that is,
partly within cach ccll, and partly distributed in the cell society. The
existence of multiple cellular types can be related to co-existing attractors
corresponding to diffcrent basins for initial conditions, whilc the stability of
differentiation is sustaincd by the interaction. Indeed, with the interaction,
the distribution of cell types is almost independent of initial conditions, and
is also robust against perturbations such as removal of some cells, or other
possible environmental changes.

This is a novel form of memory in dynamical systems. Due to the
interplay between intra-cellular dynamics and interactions, the fixation of
memory and diversification are compatible. It is important to clarify thc
condition of the emergence of cell memory, as well as to search for
applications of this type of memory to other biological systems such as the
immune system or neural networks.

8.3.4. Recursivity through choice of initial conditions. The next problem
is the initial condition selection with recursivity. As scveral divisions pro-
ceed, each cell enters into the stage whose daughter keep the same
characteristics. It is recursive in the sense that the initial condition of a
cellular state after a given division lcads to the next initial condition after
the division so that it has the same cellular character. With this scquence of
initial conditions, some condition must bc satisficd to keep the same
character. For this, some chemicals should remain at some range. although
not necessarily completely identical. We note that the initial condition itself
after each division does not fall onto a fixed point. The phasc of oscillations
at each division is rather arbitrary. The recursivity is achieved as a fixed
point of the average motion, as given in Fig. 12.

A novel framcwork is required to discuss the stability at the average
level, and the selection mechanism of initial conditions, so that the system
is recursive. To be recursive, a set of initial chemicals should be determined
rather preciscly, while others are loosely detcrmined. In our problem, this

3]
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choice is also dependent on the environment (medium), which depends on
other cells’ states. The formation of tumor cells is understood as the loss of
recursivity, in this context. Dectailed discussions on this initial condition
problem will be discussed elsewhere where the problem of separation of the
roles of egg (DNA) and chicken (protein) will be reconsidered along this
line.

8.3.5. Open chaos. Besides this viewpoint of coupled dynamical systems,
it should bc noted that our system is “open-ended” in the sense that the
degrees of freedom incrcase with ccll division, where the notion of “open
chaos” (Kaneko, 1994b) will be useful to analyze the mechanism of cell
differentiation problems.

The last, but important, question is the cvolution of the metabolic
network. In the present paper, we have chosen randomly connected auto-
catalytic networks. Even among the random networks, the dynamic behav-
ior depends on the topology of the network, as well as the number of
autocatalytic paths, which is most relevant. The metabolic network in a ccll
is constructed through evolution, and differs from that constructed as a
random graph. The network is history dependent, and is constrained by the
survivability within a cell society. Evolution of metabolic pathways within
the cellular interactions and intra-cellular dynamics should be studied in
the future.

The authors are grateful to T. Ikegami, S. Sasa, N. Nakagawa, T. Yamamoto
and I. Urabe for stimulating discussions. The work is partially supported by
Grant-in-Aids for Scientific Research from the Ministry of Education,
Science, and Culture of Japan. The authors would like to thank Chris
Langton for his hospitality during their stay at Santa Fe Institute.

APPENDIX A

Winner-Takes-All Mechanism in Chemical Reaction Dynamics. In this appendix, we
briefly discuss the chemical reaction dynamics of our model, for a single cell.

When there is a two-way connection between chemical specics, the winner-takes-all
mcchanism can be expected. This can be understood by taking a simple example with two
chemical species:

dxM/dr =x@xO /(1 +x@) — xDx® /(1 4 x D),

dx® /di = xOxD /(1 4 x0) = xDxD /(1 4 xD),

As is casily scen from this equation, the difference x"? —x© is amplified with time, and
goces to a state with either x =0 or x® = 0. Thus, the bi-directional connection tends to
Icad to competition of chemical species in the present modcel. Indeed, selection of few
chemicals is seen when there are many bi-directional pathways.

As an extreme, let us consider a casc with full conncctions of paths. In this casc we have
observed that, as an attractor, only one chemical species has a finite value, and others vanish
in a strong non-linearity regime (i.c. with large e|). Here, the dynamical process is just the
selection of one chemical species through competition for resources.
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APPENDIX B

Choice of Internal Chemical Dynamics. When the number of autocatalytic paths is large,
the mechanism mentioned in Appendix A works, and only onc or a few chemicals are
activated. When the number of autocatalytic paths is small, on the other hand, many
chemicals are gencrated, but the dynamics are stabilized and go to a fixed-point state. With
a medium number of autocatalytic paths, non-trivial metabolic reactions appear, as men-
tioned in section 2'Y, Periodic alternations of dominating chemical species are observed.
Depending on the nature of connections, we have scen several types of oscillations, although
chaotic ones arc not found so often. When the number of chemicals is larger, the
alternations are more complicated, as in Fig. 22 a and b, where the dynamics are possibly
aperiodic.

If there are a few non-autocatalytic (i.e., Con(sm. j, 1) with j =+ 1) paths, fixed-point states
are stabilized, and oscillations arc hardly observed. We adopt the intra-cellular dynamics
consisting only of the autocatalytic paths whose number is medium per chemicals (from 2 (o
4), since they provide cxamples with ongoing non-trivial metabolic reactions.

There is indeed a reason for this choice from an cvolutionary point of view. In the
evolutionary process of metabolic reactions, novel chemicals are successively included in the
network. Let us consider the inclusion process of a new chemical J. Its chemical concentra-
tion must be amplified through the chemical network process, otherwise it is diluted and
disappears through divisions. Since the new chemical J did not cxist before, dx?/dr =0 if
x? = (. On the other hand, for the growth of the concentration of chemical J in its presence,
dx’/dt>0 must hold for x/>0. Hence the condition ¢/4x”(dx?/d)> 0. Thus, it is
expected that (dx?/dr) o () with @ > 0. Thus, some kind of autocatalytic processes for
the chemical J must exist. In this way, it is expected that chemicals with autocatalytic
processes are adopted successively through the evolution of metabolic process.

As mentioned in section 2, the term “autocatalytic path™ is not necessarily taken strictly,
but may be assumed to represent chemicals autocatalytic “as a set” (sce Fig. 23 schematic).
In such a case, one may approximalely represent the set of chemicals by one variable v,
and adopt an autocatalytic rcaction for x'". Thus, our chemical reaction may be interpreted
to represent the network composed of a set of autocatalytic networks, cxpected from the
evolutionary process.

10 : : : I
Besides the number of autocatalytic connections. there is further dependence on each pathway of

the network. We have examined several random networks of two autocatalytic paths per chemical for
k =8. Some of the networks lead to oscillatory dynamics. while others show fixed-point dynamics with
few chemicals of high concentrations, although the number of autocatalytic paths is identical. So far. we
have not fund a simple criterion for the oscillatory behavior.

Figurc 23. Schematic representation of evolutionary process of metabolic net-
works. Network (b) is added to (a). Note that part (b) is autocatalytic as a sct.
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