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Isologous diversification, proposed for cell differentiation, is shown to be stable against
molecular and other external fluctuations, where amplification of noise-induced slight differ-
ence between cells leads to a noise-tolerant society with differentiated cell types. It is a general
consequence of interacting cells with biochemical networks and cell divisions, as is confirmed
by several model simulations. According to the theory, differentiation proceeds first by loss of
synchrony of intracellular oscillations as the number of cells increases. Then the chemical
composition of the cells is differentiated. The differentiated compositions become inherited by
the next generation, and lead to determined cell types. As a result of successive occurrence of
the cell differentiation, the cell society will be composed of different cell types. The whole
developmental process is robust not only against molecular fluctuations but also against the
removal of a cluster of cells. This robustness is a remarkable feature of isologous diversifica-
tion, in contrast to the conventional threshold-type mechanism for development. As a testable
consequence of the theory, we also discuss interaction-dependent tumor formation and

negative correlation between growth speed and chemical diversity.

1. Introduction

The developmental process still fascinates many
biologists. How can a single fertilized egg give
rise to a body consisting of many diflerent cell
types and showing distinctive patterns? At early
stages of development, a gradient of morphogens
in a fertilized egg brings about asymmetric cell
divisions, which in turn lead to spatial pattern
such as anteroposterior and dorsoventral axes
(Alberts et al., 1994). The spatial asymmetries
formed by cells then lead to creation of further
asymmetry. As development proceeds in con-
structing more detailed structures, neighbouring
similar cells should be able to recognize small
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differences among them in order to differentiate.
For instance, cells in an equivalence group,
though their physiological conditions are
almost the same, take different developmental
paths (Greenwald & Rubin, 1992) as they some-
how recognize a small difference in their sur-
roundings.

In general, small differences among cells
brought about by their surroundings or by
physiological conditions can be amplified if a
given threshold of some biochemical is within the
range of the difference. That is, if, within one cell,
the concentration of a certain chemical (for in-
stance a morphogen) exceeds a threshold value,
the corresponding gene is switched on. Converse-
ly, if a neighbouring cell has a bit lower concen-
tration of the biochemical, it turns off the gene.
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Kaufimann, in his Boolecan network of genes, has
actually demonstrated that such differences in
switching of the gene between neighbouring cells
lead to ccll differentiation (Kauffman, 1969).

ITowever, does this threshold mechanism hold
true in all cases of development processes? One of
the authors and his colleagues (Ko et al., 1994)
showed that Escherichia coli arising from a single
cell resulted in some distinct cell types upon
growth under a homogeneous condition. Al-
though the E. coli cells were successively culti-
vated in a well-stirred liquid culture where spatial
bias is minimized, the cells showed different char-
acters and the fraction of each cell type exhibited
a complex oscillation. The amplitude of oscilla-
tion was higher than expected, compared with
the fluctuation of a certain chemical around
a threshold. These results imply that the thre-
shold mechanism may not be the main factor for
cell differentiation and that cell differentiation is
not due to a special mechanism only in higher
organisms, but rather is a natural property of cell
aggregates, be it simple or not. Moreover, Rubin,
in a series of papers has shown that a cell line
(NTH3T3) from a mouse transforms to some dif-
ferent types of foci in size under the same condi-
tion (Chow et al, 1994; Rubin, 1994a,b). The
frequency of the transformation and the types to
which the cells are transformed depend on the
cell density and the history of the cell culture
before the transformation. This implies that some
cell differentiations are governed not by a fixed
threshold of certain chemicals but rather by dy-
namical intercellular interaction.

The above-mentioned experimental results
challenge the threshold mechanism when it
comes to the robustness of development pro-
cesses. In the traditional threshold mechanism, it
1s generally believed that genes switch on and off
depending on the concentrations of signal mol-
ecules. Indeed, several researches have done good
justice in showing how cells interact with each
other through signals, and how such received
signals are amplified to change the state of a cell.
However, since each signal involves stochastic
error due to molecular fluctuations, the issue
then basically concerns how the matured body
comes to have a well-developed form with all the
accumulated uncertainties involved in the whole
development.

Let us assume that there are M genes, each of
which is turned on or off in accordance to a signal
with the threshold of N molecules. Each on/off
pattern of M genes corresponds to a cell type.
Here, we note that there exists fluctuation in the
order of \/N for “N” molecules as a result of
Brownian motion. This stochasticity is due to
a general consequence of probability and
thermodynamics, and cannot be avoided. With
this fluctuation, the probability that a gene is not

switched on or off as designed is 1 /\/I_V . Then the
probability that a “correct” cell type is formed as
designed is (1 — 1/./N)" ~ exp(— M/,/N). This
probability is so small (for example, 0.04 for
N = 1000 and M = 100) that the developmental
process will scarcely proceed constitutively. Same
thing happens when the threshold numbers N,
of signal molecules are not equal, where the
probability to have a correct cell type is given

by (1 — 1/\/N1) (1 = 1//N2) ..(1 = 1/ Ny) =

exp(— Z;“:I l/\/ﬁj), In this case, the existence of
a signal molecule with a small N; gives a prob-
ability too low to allow correct developmental
process.§

One might expect that the error in develop-
ment process would be overcome by the interplay
among the genes (Kauffman, 1969). For example,
let us assume that a certain cell type is reached
starting from several different gene expression
patterns. Even though errors occurred and
changed the gene expression within the available
patterns that give rise to the same cell types, the
error would not affect the developmental process
of the cell. However, if the error occurred during
the differentiation of a cell to another cell type
with the threshold of N molecules, the gene ex-
pression patterns will then be affected. The fluc-

tuation of l/ﬁ order then exists for each cell
differentiation to a new type. Hence, the prob-
ability to have a correct set of k cell types is
exp(— k/\/ﬁ).

Still one might argue that the error could be
eliminated by proofreading mechanisms existing
in a cell, to support the threshold mechanism.
However, such proofreading mechanisms will

§If the threshold is not sharp, another source of fluctu-
ations will be introduced. The problem of robustness cannot
be resolved with the use of smooth threshold.
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only be triggered when a certain condition is
satisfied. Since the required condition is also er-
ror prone, then another molecular fluctuation
sets in. In short, different mechanisms to correct
errors in a cell give rise to a chain of fluctuations.
Hence, there will always be fluctuations even if
we consider all possible fine tunings of the thre-
shold value through evolution.

Each cell differentiation comprising the
whole development is inevitably accompanied by
stochastic errors, since it is triggered by stochasti-
cally fluctuating events like diffusion of a molecu-
le or binding to a certain receptor, which are no
other than the so-called signals in most of the
researches. Assuming that the embryo is a ma-
chine like a parallel processor, then all cell differ-
entiations occurring in the development have to
follow a strictly organized course. However, this
does not hold true due to the uncertainty of each
cell differentiation. Therefore, the whole develop-
ment cannot proceed in a machine-like manner
via only the threshold mechanism.

Previously (Kaneko & Yomo, 1994, 1997), we
have presented a simple model for cell differenti-
ation.§ The model encompasses the basic fea-
tures of a cell, namely, an intracellular reaction
network, cellular interactions through chemicals
which serve as signals, and cell divisions. Simula-
tion of the model has shown that cells amplify
small intercellular differences through cell-cell
interactions, resulting in differentiation into some
distinct cell types. The phenotypes of -the cells,
together with the interactions among them,
continue to change until the same cell types
and interactions appear recursively through the
development.

In this paper, we will first present an overview
of the observed events in the simulation of several
simple models and clarify the concept of iso-
logous diversification. The concept states that the

€ There are related studies on the stability in metabolic
networks, based on the concept of an attractor (Newman,
1972). Kaufiman’s model (Kauffman, 1969) also adopts the
attractor concept in the genetic network, but it cannot
support the stability in the differentiation process as men-
tioned. Stability of determined cell types, as will be seen at
the fourth stage of our scenario, is related to that of an
attracting state, but not exactly an attractor. To consider the
stability of dynamic developmental process, we need some
concept beyond that of an attractor, since a cellular state
cannot stay at one attractor to differentiate to a new type.

intracellular reaction network and intercellular
interaction bring forth cell differentiations. Here
a threshold mechanism is not implemented in
advance, but a behaviour like the threshold
emerges as an outcome, accompanied with ro-
bustness in the development process.

Then, we demonstrate how this isologous di-
versification leads to such robustness against ex-
ternal noises. In fact, the diversity of cell types as
well as their number distribution is stable in spite
of the stochastic errors included in the model.
Consequently, the development process is ex-
pected to be robust even under external noise.
Here, each intracellular dynamics can be unsta-
ble initially. With the increase in the number of
cells, the network of signals brought by cell-cell
interactions 1s selected so that the instability is
removed. Robustness of the whole development
is a consequence of such dynamical interaction
among cells. Note that the concept that interac-
tion is important for developmental robustness is
also discussed as the community effect (Gurdon
et al., 1993; Monk, 1997) from experimental ob-
servations, as well as from theoretical consider-
ations (Newman & Comper, 1990).

The concept of isologous diversification can be
applied not only to cell differentiation but also to
any systems consisting of replicating units such
as the human society and an ecological system. In
addition, application of the isologous diversifica-
tion theory to other scientific fields, such as medi-
cal treatment, is discussed. . ’

2. Some Basic Features of Cell in the Models

What type of a model is best suited for a cell for
investigating cell differentiation? With all the cur-
rent biochemical knowledge, we can say that one
could write down several types of intended model
for cell differentiation. Due to the complexity of
a cell, there is a tendency of building a complic-
ated model in trying to capture the essence of
a cell. However, doing so only makes it difficult
for one to extract new concepts, although simula-
tion of the model may produce similar phe-
nomena to those in living cells. Therefore, to
avoid such failures, it may be more appropriate
to start with a simple model that encompases
only the essential factors of living cells. Simple
models may not produce all the observed natural
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phenomena, but arc comprehensive enough to
bring us new thoughts on the course of events
that have taken place in nature.

To investigate cell differentiation, we have ad-
opted some simplc models consisting only of
basic features of cells (Kaneko & Yomo, 1997).
Some common features are extracted from
the results of computer simulations of several
models, although, of course, there remain spe-
cific phenomena depending on each model and
the parameter values adopted. A run-through
on the common characteristics brings us essen-
tial features and mechanisms in cell differen-
tiation.

The environment of a cell is always taken as
one of the essential factors for cell differentiation.
If there is spatial bias among the cells, for
example, a gradient of an activator protein,
the cells may easily undergo differentiation.
However, experimental studies on some bacterial
cultures (Ko et al., 1994) showed that even in a
homogeneous environment, cells can differentiate
in due time. In other words, spatial bias is, in fact,
not required for cell differentiation. Hence, the
cells in our models are grown in a homogeneous
environment where there is no spatial bias in
chemical concentration. (In fact, by further allow-
ing for spatial bias in our model, we have also
confirmed that the cells in our model show the
expected cell differentiation.)

Our model consists of intracellular bio-
chemical reaction dynamics, cell-cell interaction
through medium, molecular fluctuation, and cell
division (see Fig. 1 for schematic diagram). Let us
describe each process.

2.1. INTERNAL BIOCHEMICAL REACTION NETWORK

The reaction network in a cell consists of
numerous biochemicals. A protein activates a
certain gene, whose product (e.g. enzymes) cat-
lyses a certain metabolic reaction. The product of
metabolic reaction plays the role of an activator
to the previous activator protein or to an enzyme
in the intermediate reaction. Thesc chain reac-
tions or autocatalytic reactions in a cell (or
simply the nature of catalytic reaction with
activation or inhibition) constitute a nonlinear
recaction network.

To be specific, we choose the concentration
xi(¢) of the chemical I of the cell i as dynamic

Active o)
transport

\

N

Diffusion

\
Reaction (1— &)
catalysed by
chemical m

Cell division

Interaction
through

metabolites

F1G. 1. Schematic representation of our model. See the
appendix for the specific cquation of each process.

variable, and study its evolution. With the inter-
nal reaction dynamics from the chemical m to
I catalysed by the chemical j, dx(t)/dt includes
the Michaelis-Menten term e, x(t)x"(1)/(ay +

x"(t)). The total intracellular dynamics consists
of a network of reactions. This network is chosen
randomly and fixed throughout the simulation.
When the reaction is autocatalytic, j is the same
as m, in the above term. Such autocatalytic
reaction often leads to oscillatory behaviour in
chemical concentrations.

As shown by Hess & Boiteux (1971), concen-
trations of metabolites involved in glycolysis
oscillate due to the nonlinear reactions catalysed
by some enzymes involved in the reaction net-
work. In general, the biochemical reaction net-
work of a cell is composed of highly complex
nonlinear reactions. Hence, we choose such reac-
tion network allowing for oscillatory dynam-
ics.** The concentrations of the biochemicals

** Indeed, the proposed scenario may work, without os-
cillatory dynamics, as long as some instability is included.
Also, in some models, oscillation that existed in initial stage
of cells disappears for some cell types determined later.
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may be regarded as that of metabolites or expres-
sion level of a gene or of a gene network.

2.2. INTERACTION AMONG THE CELLS

There are many types of cellular interaction
ranging from the diffusion of a morphogen to
simple resource competition among cells. How-
ever, before trying to identifly all ccllular interac-
tions, it may be more worthwhile to know the
most fundamental type of intercellular inter-
action. Let us consider somc of the simplest
organisms like Anabaena, a cyanobacterium or
Escherichia coli. Under ammonia or nitrate
deprivation, cells of Anabaena differentiate into
two types, one specialized for nitrogen fixation,
and the other for photosynthesis (Golden et al.,
(1985). To our knowledge, no reports, to date,
except one,tt have suggested any special mecha-
nism that governs its cell differentiation. In the
case of E. coli, one of the authors (Ko et al., 1994)
has shown that E. coli cells can differentiate even

in a homogeneous environment. Simple as they

are, the most probable fundamental factor to be
considered is then the interactions among the
cells through the biochemicals in the reaction
network of the cells.

Our models, therefore, include a simple diffu-
sion process of biochemicals in and out of each
cell. By denoting the concentration of the chem-
ical m in the medium by X", the diffusion term
~ from the medium to the cell i is given just by
D™(X™(t) — x(t)), while the chemical in the me-
dium is reduced by — D"y (X" (t) — x{"(t)) Ve,
where V., is the ratio of the volume of each cell to
that of the medium.

In some models, besides the simple diffusion
process, we have also included active transport
from the medium to the cell, which keeps the
cellular state out of equilibrium. This gives
a transport term X" x F, with some activity F,
which generally depends on the concentrations of
biochemicals in the cell. For example, the activity
F is given by sum of chemicals in the cell (sce also
the appendix). Again, this term leads to global
cell-cell interaction through the medium.

11 Intercellular mechanism for pattern formation in Ana-
buena is recently studied experimentally (Yoon & Golden,
1998). It may provide an example of the isologous diversifi-
cation mechanism, presented here.

2.3. CELL DIVISION

To proliferate, a single cell undergoes cell divis-
ion and is consecutively maintained in the so-
ciety. In our models, cell divisions occur when the
sum of concentrations of some chemicals reaches
a given threshold value. In one class of models
(adopted in the present paper), the concentration
of a “final” product dectermines the next divis-
ion.11 It is to be noted that two cells arising from
a single cell contain almost identical chemical
compositions with a shight deviation (0.1% in
most of the simulations). Differentiation occurs
among the cells, although a cell in our model
divides into nearly identical ones.

Cell division and intracellular dynamics are
mutually related. It will be shown below that the
intracellular dynamics show oscillation in an en-
semble of cells. This oscillation is maintained by
cell—cell interaction. If one of the cells divides, the
balance that maintained a certain type of oscilla-
tion is disturbed, because the new cell introduces
new interactions into the system. As a result,
the dynamics of the individual cells will continue
to change unless cell division is inhibited. Cell
division is one of the factors that gives rise to
different oscillation dynamics of the cells in
a population. In fact, in an “open chaos” system,
where the number of variables grows as in a cell
culture system, several types of different dynam-
ics appear successively, even if each element
alone has simple oscillating patterns (Kaneko,
1994a, b). '

24. MOLECULAR FLUCTUATION

So far we have adopted the model given in the
earlier paper (Kaneko & Yomo, 1997), based on
the intracellular rate equation of chemical reac-
tion and cell-cell interaction, and cell division.
Here, the rate equations of chemical concentra-
tions are obtained by neglecting molecular
fluctuation, which is validated if the number of
molecules is large enough. Then, “continuous”
variables x{'(r), concentrations of chemicals, are
adopted instead of “integer” numbers of molecu-
les. In reality, the number of molecules for each

11 In another model (see Furusawa & Kaneko, 1998), the
sum of all chemical amounts, giving a cell volume, deter-
mines the division. The scenario to be presented holds in this
case also.
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chemical is not necessarily huge, and the number
of each signal molecule is typically of the order of
1000 or so (Alberts et al., 1994). Thus, a noisec
term should be included to take into (thermal)
fluctuations arising from finiteness in the number
of molecules. Considering fluctuations of \/N for
the reaction of N molecules, we have added
a noise term proportional to /x}"(t)n(t), with
a random force #(t), represented by a Langevin
equation. The amplitude of the noise is denoted
by o (see the appendix for the specific formulation
of our model equation).

@ ®)

@

3. Five Stages of Isologous Diversification

Here we present a scenario for the develop-
ment of cell society, extracted from sevcral
simulations (sec Fig. 2). Indeed, the scenario,
originally extracted from simulations without
molecular fluctuations, works completely well up
to some noisc threshold, as will be discussed in
Section 5. The scenario is summarized as follows:

(1) Synchronous oscillations of the chemicals in
the cells. Only up to a certain number of cells (for
example, eight cells) can the dividing cells from

FIG. 2. Schematic representation of the five stages in isologous diversification. Locus indicates the change of chemical
concentrations in each cell, plotted in the phase space xi(f), while each circle represents the chemical state
of each cell at some instant. (a) Synchronous oscillation (b) clustering in the phases of oscillations (c) differentiation in the
composition (d) determination (recursive orbits) (e) hierarchical differentiation. These results are supported by numerical

simulations of several models.
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a single cell have the same characteristics.
Though each cell division is not exactly symmet-
rical due to the accompanying noise-level of per-
turbation in the biochemical composition, the
phase of oscillations in the concentrations is syn-
chronized. Consequently, cells divide almost at
the same time. Such synchronous cell division is
also observed with the cells in the embryogenesis
of mammals up to eight cells. In our model, the
synchronous division is kept until small differ-
ences due to molecular fluctuations or slightly
unequal distribution of metabolites in each cell
division are amplified.

(2) Clustering in the phases of oscillations. As
slight differences among cells are amplified, the
synchronous oscillation breaks and hence, cells
start to show different phases of oscillations.
Cells split into few clusters where the cells be-
longing to each cluster are identical in phase.
However, this diversification in the phases is not
to be mistaken as cell differentiation, since taking
the average concentration of biochemicals in
time reveals that all the cells are almost identical.
Hence, in the second stage of isologous diversifi-
cation, the cells are only different in their phase of
oscillation, brought by the difference in the con-
centration of biochemicals.

The time course of changes in the concentra-
tions of biochemicals, since it is governed by
nonlinear reaction network, is sensitive to slight
differences brought by molecular fluctuations or
cell division..Once these small differences -are
amplified, the newly divided cells will produce
different phases of oscillations. For instance, if
two cells from a single cell have slightly different
compositions, the reaction rates of biochemical
reaction network are affected by the difference in
the phase of metabolic oscillations between the
cells, since the reactions involved are autocata-
lytic. Hence, the phases of metabolic oscillations
start to be different between the cells.

Sensitivity of the time course (of chemical con-
centrations) to tiny perturbation has widely been
studied in the field of nonlinear dynamics, in
particular in chaos (Lorenz, 1963). Though,
according to the nonlinear dynamics theory,
perturbations caused by cell division would be
amplified so that all the cells would have their
own different phases of oscillation, our models
show that the cells are not completely diversified

in their phases but rather tend to resolve into an
ordered clustering.

This clustering of phases is due to cell-cell
interaction. In our model, the state with identical
cells [i.e. x}*(t) = x7'(t) for different cells i and j] is
unstable at the second stage. With this orbital
instability, small differences between cells are am-
plified. However, by forming clusters with differ-
ent phases, such instability is smeared out. Due to
the cell-cell coupling, the dynamics in each group
retains stability. Now, small differences in each
group are no longer amplified. Chemical observ-
ables such as the average concentrations and
their oscillatory dynamics are not affected by
the stochastic division of the cell, external per-
turbation from the environment, or molecular
fluctuations.

Indeed, the mechanism governing the cluster-
ing of the phases is already reported (Kaneko,
1990), where such robustness is mathematically
clarified. Small differences among the almost
identical cells with nonlinear dynamics are ampli-
fied but the phase of oscillations is not completely
scattered. Differences in the metabolite concen-
trations between the clusters are being balanced
by the biochemicals secreted from all the cells.
The sensitivity to small change is smeared out by
this balance. This event in turn leads the cells to
stay at a certain phase of oscillation, resulting in
the clustering. In other words, it is the transport
of biochemicals from one cell to another or cellu-
lar interactions (regarded-as--cell -signals) that
gives rise to the different clusters in phase.

(3) Differentiation in metabolite composition.
As the cells with different phases continue to
undergo cell division, the average concentrations
of the biochemicals over a cell cycle become dif-
ferent between clusters of cells. That is, the com-
position of biochemicals as well as the rates of
catalytic reactions and transport of biochemicals
across membrane become different between the
clusters.

The temporal difference in the phases leads to
the difference in chemical concentrations be-
tween cells. The difference of each biochemical
activates its transport by a simple diffusion pro-
cess and makes a small difference in its composi-
tion among the cells. The small difference is then
amplified through the nonlinear nature of reac-
tion network, leading to clusters of the cells
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with different intracellular dynamics. It should
be noted that if active transport is applied to the
model, the differences in the composition can
be observed earlier. That is, a cluster with more
biochemicals imports the biochemicals from
the medium at a faster rate, thereby hastening the
change in the chemical composition between
the clusters. Conscquently, the cells belonging to
each cluster start to possess different average
composition over their cell cycle.

The composition of biochemicals of each cell is
not an inherent property, since the intracellular
dynamics governed by the nonlinear reaction
network, generally, if not in all cases, can vary in
time. Hence, the composition of a newly divided
cell can be different from that of the parent cell.
Therefore, each newly divided cell has a different
rate of biochemical reactions depending on the
composition. In short, cells are at the intermedi-
ate stage of the differentiation process.

(4) Determination of the differentiated cells. As
the cells continuously undergo cell division fur-
ther, they start to have their own inherent com-
position that is preserved by the next generation
of cells. That is, the cells come to a stage where
the reaction dynamics and the chemical composi-
tion are not much influenced by the environment
and other cells. Hence, the biochemical proper-
ties of a cell are inherited to its progeny, or
in other words, the properties of differentiated
cells are stable, fixed or determined over the
generations. This is the fourth stage of isologous
diversification.

The balance between the clusetrs, each having
its own compositions in the third stage, is at-
tained through cellular interactions in the same
way as in the dynamical clustering of the oscilla-
tion phase at the second stage. Although the
metabolite composition of the cells tends to
change over the generations, this tendency is
compensated by the intake of biochemicals se-
creted from the cells belonging to the other clus-
ters. Therefore, this cellular interaction through
the biochemicals between the different clusters
allows the recurrence in the events of the change
in concentrations of the biochemicals over the
generations, leading to the determination of
the features of the differentiated cells.

As soon as the features of the cells are inherit-
able, a cell lineage map can be drawn, to show

where the cell types branch out from their origin.
As shown in Fig. 3, emergence of certain cell
types at dilferent branches is observed in the
model, similarly in the devclopment process
in nature (Alberts et al., 1994; Kenyon, 1985). In
Fig. 3, cells of a certain phenotype (e.g. given by
“dark blue”) arise in isolation individually at
different points in a lineage. Therefore, not only
the history of each cell lineage accounts for the
maintenance of different cell types over the gen-
erations. Instead, the global interaction among
cells is important. In short, the emergence of
certain cell types at different branches is but one
of the features of the interaction-driven society.

The obtained cell lineage is not changed even if
some fluctuations are included in chemical reac-
tion process and at the cell division process. If the
noise term mentioned in Section 2 is applied, the
same cell types and the same differentiation pro-
cess are observed up to a certain noise strength,
as will be discussed in Section 5. The cellular
states given by chemical compositions are dy-
namically selected throughout the celi-cell inter-
action, which cancels out the instability in the
intracellular dynamics of each cell. Hence, the
determined states and the number distribution of
cell types are robust against perturbations due to
molecular fluctuations.

(5) Hierarchical organization of cell types. By
means of global cellular interaction among the
clusters of different cell types, the cellular pheno-
types are stable at stage 4-of the isclogous diversi-
fication. However, as the cells continuously pro-
liferate, cellular interaction within each cluster
can result in further differentiation of the cells.
Subgroups, undergoing the cycle of stages 1-4,
are formed within a cluster. This formation of
subgroups within clusters is not to be mistaken as
disturbance of the stability of the clusters that
was attained in stage 4. The difference in the
chemical composition among the subgroups is
smaller than the difference between the clusters.
Moreover, the average composition over the cells
in each cluster hardly changes. The interaction
between the clusters maintains the stability that
was attained in stage 4. In short, the subdivision
of each cluster occurs with such small changes
that the interaction among the clusters is main-
tained to give rise to the stability of the clusters in
future. Various levels of differences among and
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F1G. 3. Cell lineage diagram obtained from a simulation. The colours correspond to the cell’s character defined as the
average chemical composition of the cell. The red colour corresponds to undifferentiated type (i.e. the particular composition

of this cell type may change from division to division). The other colours correspond to determined cell types with different
chemical compositions, that do not change after the cell division.
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FIG. 5. The average concentrations of [x7(t), x?(t)], at the time step 2000. Plotted are the temporal averages, taken from
the latest division to the time step 2000. The noise amplitudes ¢ are 0.0001 (red), 0.0003 (green), 0.001 (blue), 0.005 (light blue),
0.02 (brown) and 0.05 (orange). For each colour, there are a number of points corresponding to each cell existing at the time
step 2000 (64 up to ¢ = 0.005, 62 for ¢ = 0.02, 53 for ¢ = 0.05), although for ¢ < 0.001, some of the points are overlaid and
may be invisible since the plotted concentrations of the cells are rather close to each other.
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within clusters lead to a hierarchical organization
of cell types (see also Kaneko & Furusawa, 1998).

4. Level of Differentiation

The hierarchical differentiation of the cell types
relates various levels of differentiation. In devel-
opmental biology, transplant experiments give
information on the level of differentiation and
the timing of determination. To know how stable
the differentiated features of our model cells are
against changes in the environment or in cellular
interaction, some of the differentiated cells are
mixed and cultivated. This artificial transplant
experiment on the model has shown (Kaneko
& Yomo, 1997) that a cell tends to keep its
differentiated state after mixing with other types
of cells. The simpler composition a differentiated
cell has, the more the cell tends to keep its own
features. In other words, features of the cells
having simpler chemical compositions are highly
determined. From these computed results of
the transplant experiment, we predict that the
strength of the determination is negatively corre-
lated to the number of biochemical species in
a cell. This prediction can be tested experi-
mentally with biological cells.

Why is a cell with a simpler composition of
metabolites highly determined in transplant ex-
periment? Since cells with simpler composition
have biased concentrations to fewer biochemical
species, they have a higher concentration. of each
of the biochemicals. As the concentration of each
biochemical in the cells is high, influence by inter-
actions with the surrounding cells is weaker and
is not sufficient to change the state of their meta-
bolic activity significantly. Hence, simpler com-
position gives robustness to the cell type.

An extreme example of the above relationship
is what could be called a cancer cell in our model
simulation (Kaneko & Yomo, 1997). The cancer
cells we have found have a very simple composi-
tion and grow faster than the other cells, by
excluding them from the system. This antisocial
feature is apparently due to the simplicity of its
metabolic composition. To reverse the cancer
cells to a normal state in our model, the diversity
in the metabolic composition should be re-
covered. Indeed, if the cancer cells in the model
are mixed with the undifferentiated cells contain-

ing various biochemicals, most of them regain
a diverse biochemical composition and revert to
a normal state. In sumilar way, by introducing
cytosol from undifferentiated cells or egg, into
some human cancer cells, through liposomes,
their malignancy may be cured.

5. Robustness of Developmental Process

In our model, the robustness of the cell society
is shown in different stages of developmental pro-
cess. When the system is perturbed externally by
changing the concentrations of the metabolites,
still a similar developmental path is taken by
the cells in the society. As a result, similar cell
lineages are obtained.

To demonstrate this robustness, we have intro-
duced noise in our simulations to represent the
molecular fluctuation (given by the Langevin
equation in Section 2). In Fig. 4, we have plotted
the growth of total cell numbers with time. Up to
the noise strength o,,, the growth curve is not
modified.

To check the robustness of the biochemi-
cal compositions, we have plotted the average
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F1G. 4. Increase of the number of cells with time. The
time courses for ¢ = 0.0001, 0.0003, 0.001, 0.008, 0.01, 0.03
and 0.05 are plotted. For Figs 4 and 5, simulation is carried
out by adopting a model given in the appendix with the
network given in Kaneko & Yomo (1997), with p = 10,
e, =1,V =1000, y=0.2, and D = 0.02, while the flux for
X© is given by the term D, (S — X°) with D,,, = 0.005 and
S = 40.
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concentrations of two chemicals [x2(i), x*(i)] in
Fig. 5, at time step 2000. Plotted are the temporal
average from the latest division to the time step
2000, when 64 cells split into two distinct clusters
with different biochemical compositions, in
a simulation without molecular fluctuations.
Each point corresponds to cach cell existing at
time step 2000, while some of the points are
overlaid. As shown in the figure, the formation of
two distinct clusters is invariant, while their bio-
chemical compositions are hardly modified, as
long as the noise strength ¢ is less than
Oy = 0.008. The number distribution of cells at
the two clusters lies within the range from 25+ 1
to 39F 1, independent of the noise strength less
than ay,.

As discussed earlier, the final cell types are
dynamically selected by cell-cell interaction,
overcoming the instability brought about by the
intracellular dynamics. If the chemical composi-
tion or the number of each cell type deviated
from that of the selected cell society, the instabil-
ity would reappear, which would enforce the sys-
tem to revert to the original composition and
distribution. Hence, robustness against molecu-
lar fluctuations is a logical consequence of our
scenario.

It may also be interesting to study how the
differentiation pattern is destroyed when the
molecular fluctuation is too large. As shown in
Fig. 5 the two types start to merge at ¢ = a,,,,
and for larger o, no distinct iypes are observed
any more. In this case, the biochemical character-
istics of each cell are continuously distributed as
in Fig. 5. Hence, cells divide continuously, instead
of the stepwise increase of cell numbers that is
observed for ¢ < 6y, (see Fig. 4).

If the cells cannot form different types exploit-
ing different chemical “niches”, the competition
between cells for resources is higher. In fact, with
the increase of noise amplitude ¢ > g,,, the cell
replication is suppressed. With the further in-
crease of g, some cells lose their chemical activity,
and come to a “dead” state. Indeed, in a simula-
tion with ¢ > 0.06, a certain (raction of cells loses
the ability to grow. For such cells, the amount of
chemicals starts to decrease towards zero with
time. In other words, if the noise becomes too
large, a developmental process with the increase
in the cell number no longer occurs.

From the threshold noise gy, it may be poss -~
ible to estimate minimal number of molecules in
a cell required for a robust development process.
Note that the concentration variable x{'(t) is the
number of molecule N7'(¢) divided by the cell
volume V [x}'(t) = N"(t)/V ]. Assuming a fluctu-
ation of the order of /N for a system with N
molecules, the noise strength o for the concentra-
tion equation (see the appendix) is estimated as
+/ 1/V. Then the number of moleccules necessary
to have robustness is given by N =Vx
x/a},. In our simulation, the concentration x for
typical biochemicals is of the order of 0.01-0.1.
Hence, the threshold number of molecules in our
model is estimated as 100-1000. Of course, we
have to admit that this is a rough estimate and
that the present model is too simple to claim the
number as a value comparable to the number of
signal molecules in a real cell. Still, it should be
stressed that a huge number of molecules is not
required to have robustness, according to our
scenario. Here, robust development is possible
even with the number of molecules of the order
of 103, which is consistent with observations in
molecular biology.

Our cell society is not just robust against
molecular fluctuations. It is even robust against
“macroscopic” perturbations, for example, the
removal of some cells. Here, the relevance of
cellular interactions to robustness is again
confirmed. For example, in some of the simu-
lations, we observed the appearance~of ‘stem -
cells (Furusawa & Kaneko, 1998) that pro-
duce various cell types. The rate of differen-
tiation from a stem cell to other cell types
is found to be dependent on the cell-type dis-
tribution. When the number of cells of a
certain type is decreased, the stem cells increase
the rate of producing the reduced cell type. As
a result, the ratio of the cell type in question in
the society is restored, thereby recovering the
original state of the society. Thus, the cellular
interactions do not only trigger differentiation
but they also make a society with diversified cell
types robust.

Even though the model disregards space as
a factor, a society of diversified cell types exists. [t
indicates that spatial bias, like a morphogen
gradient, is not necessary for cell differentiation.
It is to be noted that this statement does not deny
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F1G. 6. Instability of the differentiation due to the threshold mechanism. The curved line indicates the morphogen
concentration. Cells, if located at the site where the morphogen concentration is above the threshold, differentiate into
a certain type (shaded circle), otherwise they keep their original type (white circle). The differentiation succeeds only if the
morphogen concentration crosses the threshold at a position between the two cells, as shown on the left.

that in the developmental process, the gradients
of morphogens are imperative for constructing
the body in space (Nellen et al., 1996). Under
a certain threshold of the morphogen concentra-
tion shown in Fig. 6, cells differentiate. If the
concentration difference of the morphogen be-
tween two adjacent cells exceeds the threshold,
the cells differentiate. However, if a differenti-
ation process would simply rely on gradients
created and maintained by a diffusion process,
a developmental process with successive differen-
tiations would not succeed because the diffusion
of a small number of molecules is stochastic.
Since the diffusion process itself is stochastic, the
gradient changes its absolute value so that two
adjacent cells may come to have the same fea-
tures, and fail to be differentiated into two types.
Therefore, the threshold mechanism based on the
gradient cannot by itself overcome the stochastic
effect of diffusion, regarding cell differentiation.

On the other hand, in our isologous diversifi-
cation, there is no uncertainty in cell differenti-
ation process. Even though the gradient of mor-
phogen around the adjacent cells is perturbed,
the concentration difference is amplified and
gives rise to cell differentiation. In addition, some
experimental studies on equivalent groups of
cells proved that cellular interaction is necessary
for cell differentiation (Greenwald & Rubin,
1982), as proposed in the isologous diversifica-
tion theory.

In the same way as each of the cell differenti-
ations, the final (“adult™) cell-type distribution is
reproducible. If the development process works
like a programmed machine, then the signals
and switches that trigger each cell-differentiation

event must work as programmed. Nevertheless,
since only a small number of biochemical mol-
ecules trigger each cell differentiation, stochastic
errors due to molecular fluctuation are inevi-
table. Hence, the machine-like mechanism for
development cannot cope with the successively
and parallelly occurring errors in each cell differ-
entiation. In our model,. even without a “fixed”
mechanism for controlling cell differentiation, the
system shows a reproducible distribution in cell
types during the development. Moreover, the
transplant experiments show that the whole de-
velopment is robust against any perturbation
such as removing and adding some cells. The
robustness of our model cells indicates that the
embryo is not necessarily a programmed ma-
chine that requires strict control. Rather, it has
a certain flexibility to develop a precise cell-type
distribution.

Another question here is why the whole devel-
opment is robust, although each cell differenti-
ation in our model is triggered by amplification
of small difference (by stochastic errors). As ex-
plained in Section 3, cells have a tendency to
change their phenotype until a balance is
achieved between the tendency and the global
interaction between the cells. Once the balance is
established, the cell-type distribution is robust. In
other words, the distribution of cell types is pro-
tected from perturbations, and is maintained
over a certain period. Thus, developmental pro-
cess selects the global interaction that ensures
a reproducible cell-type distribution. Moreover,
this self-induced robustness can explain why the
devclopment into an elaborate body proceeds
coherently even under fluctuating conditions.
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6. Generality of Isologous Diversification

In the model presented, the isologous diversifi-
cation occurs even in cells with simple metabolic
or genctic nctworks that interact with each other
through the diffusion of biochemicals. This does
not deny that more complicated machinery
1s involved in cell differentiation. Rather,
our theory statcs that cell differentiation is a
consequence of dynamic instability due to the
metabolic and/or genetic network in a cell, and
inevitable cellular interactions no matter what
complicated processes are involved. Moreover,
since isologous diversification does not require
more than what a single cell organism has, it
renders some knowledge about the emergence of
multi-cellular organisms with differentiated cell
types. We also stress that robustness in develop-
ment is a natural consequence of dynamical
instability and cell-cell interaction. For this
robustness neither a large number of signalling
molecules nor a highly tuned machinery is
necessary.

Although chemical compositions are differenti-
ated by cells in our model, one may still wonder if
they are really differentiated at a functional level,
since any specific functional role of each chemical
process is not prescribed in our model. It is to be
noted that this paper has not attempted to ex-
plain how each biological function develops from
undifferentiated cells. Isologous diversification
deals with the issue of understanding how almost
identical cells are differentiated under stochastic
uncertainty. It is necessary, but may not be suffi-
cient to have functional differentiation. However,
isologous diversification can be extended to func-
tional differentiation, because the resultant differ-
ences in biochemical composition among cells
may be amplified by the gene network, hereby
leading to new function for each cell. Therefore,
from this point of view§§, isologous diversifica-

§§To discuss the problem of function, we need to consider
seriously what it really means. Function should be neither
chemical composition nor some shape of cell, but some
relationship among cells, or tissues, in the context of the
whole organism. When some chemical, mechanical, or other
action of one unit {cell) is used by other units (cells), for the
survival of the whole organism, one tends to assign a func-
tion to the action.

In our model, chemical reaction process of one cell-type
leads to a specific chemical composition different from the
other type. This specialized chemical composition, diffusing

tion may contribute to the development of a bio-
logical function. To answer the questions as to
how and to what cxtent present organisms utilize
the isologous differentiation, however, evolution-
ary process together with the present differenti-
ation has to be further studied [see Kaneko
& Yomo (1999) for this direction].

Due to the simplicity of isologous diversifica-
tion, it can be applied not only to a cell society
but to any society, universally. For instance, in
the ant or in the human society, with internal
complex dynamics interactions between the
individuals, the proposed isologous diversifica-
tion theory may explain the origin of hierarchical
structure of the society. There, in spite of inevi-
table, internal and external fluctuations to each
individual, robust development is generally ob-
served, as, for example, in the development of
a colony from a single queen ant. The proposed
logic for robustness in our scenario may explain
the robustness of any society in general. In short,
isologous diversification is applicable to any sys-
tem with internal complexity of entities which
grow and interact with each other.
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APPENDIX
Our Model Equation

Here we give the explicit model equations used
in the simulations in Section 5. The dynamics of
the I-th biochemical concentration x{(t), in cell
i consists of an internal reaction term React, an
active transport Transp, a diffusion term Diff, and

molecular fluctuations Fluct, as
dx{(t)/dt = React!"(t) + Transp!"(t)
+ Diff () + Fluct(t). (A.1)

In this paper, the reaction term React consists
of autocatalytic reaction network with a set of
reaction paths from j to /, written as

React(t)
= S(eox{”(t)x{" (1)

+ Y Con(l, esxP(@)xP)/(1 + x(t) /xu)
Y. Con(j, DexxPe)x @)/ (1 +x87(6) xu)

— PP @), (A.2)
where Con(l,j) =1 if there is a reaction path
from the chemical j to I, and Con(l, j) = 0 other-
wise. Here we assume that there is a source
chemical 0, from which other chemicals are for-
med by the term S(l)eox{®(t)x"(¢). There is
a flow to a product required for cell division,
given by the term yP(I)x{"(t). Again, S(!) or P(l)
1s 1 if such a path exists and 0 otherwise. [The
equation form for x{°(z) is obtained straight-
forwardly.]

With the flow at the rate of yP(I)x¥(t). the
product initiating cell division is accumu-
lated. Hence, cell i divides if the condition
jdtyy, P(1)x{"(t) > Threshold is satisfied. After
the division, the two cells have the same chemical
composition as the mother cell i, with some tiny
fluctuation [0.1% for each chemical x{"(¢)].

The transport term expresses active transport
from the medium to each cell. The rate of trans-
port in general depends on intracellular chemical
concentrations. As a simple model, we choose
that the activity is given by 3, _ | x®(t). Then, the
term is given by

Transp{™(t) = p( Y x}“(z)) X(), (A.3)

=1

where X "(t) denotes concentration of chem-
ical m in the medium. Apart from the active
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transport, chemicals diffuse through the mem-
branc as

Diff (1) = DX ™(1) — x{™).  (A4)
Since the active transport and diffusion processes
are just the transportation of chemicals to and
from the medium, equations for the chemicals
X ™(t) in the medium are equal to the sum of
Transp™(t) and Diff "(t) over cells i (divided by
the volume ratio of the medium to a cell). [For
the source chemical X?(t), we assume a flux from
the outside, so that the consumed resources are
supplied.]

So far we have adopted thc model given in the
carlier paper (Kaneko & Yomo, 1997) in details.
In the present paper, we add a molecular fluctu-
ation term, given by the Langevin equation

Fluct{™(t) = " (1)/x"(0) (A.5)
with Gaussian white noise satisfying {n"\(¢)
() = a?6(t — t').

Note that the model choice in this paper is just
a specific example. In other models such as the
model given in Furusawa & Kaneko (1998), the
same scenario for the developmental process is
confirmed.



