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Unified Description of Regeneration by
Coupled Dynamical Systems Theory:
Intercalary/Segmented Regeneration in Insect
Legs
Hiroshi Yoshida1* and Kunihiko Kaneko2

Regeneration phenomena are ubiquitous in nature and are studied in a variety of experiments. Positional
information and feedback-loop hierarchy are theories that have been proposed to explain ordering rules in
regeneration; however, some regeneration phenomena violate the rules derived from them. In particular,
grafted junction stumps with the same value/hierarchy sometimes lead to one extra segmented portion,
termed segmented regeneration. To present a unified description of all insect leg regeneration phenomena,
we propose a theoretical mechanism for regeneration without postulating positional information, by using
a model that consists of intracellular reaction dynamics of chemical concentrations, cell-to-cell
interactions, and an increase in cell number. As a normal developmental process, successive differentiation
from pluripotent cells appears, as described by transition from cells with intracellular chaotic dynamics to
those with oscillatory or fixed-point dynamics. By assigning chaotic and nonchaotic cell types to
corresponding positions instead of positional information, intercalary, segmented, and tarsus regeneration
are explained coherently. With this assignment of pluripotency to chaotic dynamics, a unified description
of regeneration is obtained with some predictive value for new experiments. Developmental Dynamics 238:
1974–1983, 2009. © 2009 Wiley-Liss, Inc.
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INTRODUCTION

Development in multicellular organ-
isms is a marvelous phenomenon con-
sisting of several steps with a spatio-
temporal order. Despite their
complexity, they have robustness
against perturbations. A demonstra-
tion of such robustness is seen in the
regeneration of developed tissues. Af-
ter macroscopic damage to tissues
with the loss of some cells, the original
spatial pattern of differentiated cell

types is recovered. As a token of plas-
ticity and robustness in development,
regeneration phenomena have gath-
ered interest from biologists over sev-
eral decades (Hay, 1966; Meinhardt
and Gierer, 1980; Forgács and New-
man, 2005; Brockes and Kumar,
2008). To explain regeneration, posi-
tional information is often assumed.
Positional information is defined as
instructions, which are interpreted by
cells to decide their differentiation

with respect to their position relative
to other parts. According to the posi-
tional information assumption, regen-
eration is explained as a process of cell
division and differentiation so that
noncontiguous positional values dis-
appear through the increase in cell
number (Gilbert, 2006). Indeed, sev-
eral experimental results involving
regeneration are well explained by
this assumption of positional values:
for instance, when nonadjacent por-
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tions within a leg of the newt, cray-
fish, or cockroach are grafted together,
localized cell division and differentia-
tion occur to interpolate positional
values of intermediate regions. This is
known as intercalary regeneration
(Bryant et al., 1977; Mittenthal and
Trevarrow, 1983; Nakamura et al.,
2008).

In this positional information the-
ory, how positional information can be
generated is not clear. In contrast,
Hans Meinhardt proposed as one pos-
sible mechanism of positional infor-
mation a chemical concentration gra-
dient generated by a source at one end
and a sink at the other end of the
segment (Meinhardt and Gierer, 1980;
Meinhardt, 1982). For the generation
of positional information, he assumed
chemical reactions consisting of two
(or more) autocatalytic feedback loops,
which suppress each other locally, but
which activate each other by means of
a diffusing substance. With this reac-
tion and diffusion process, a chemical
concentration pattern is generated
without requiring external positional
information to initiate the pattern (se-
quence). Intercalary regeneration is
achieved by a hierarchy among the
feedback loops, so that the original
concentration pattern is restored.

However, some experiments are
hard to explain by the positional infor-
mation or Meinhardt’s theory. When
congruent grafting was performed be-
tween junction stumps (French, 1976),
some of the graft/host junctions pro-
duced an extra portion. Although the
adjacent cells take the same positional
value, an extra portion of leg with a
cell type that differs from that of the
adjacent cells is generated. This pro-
cess is termed segmented regenera-
tion. According to the positional infor-
mation, such differentiation of novel
cell types between the same cell type
cannot be explained.

To explain such a regeneration phe-
nomenon, a dynamic process of differ-
entiation from identical cell types is
required. Indeed, one of the authors
(K.K.) and Yomo proposed isologous
diversification (Kaneko and Yomo,
1997, 1999; Furusawa and Kaneko,
1998, 2001) by considering interacting
cells with intracellular reaction dy-
namics, where identical cells start to
differentiate through cell division pro-
cesses and cell-to-cell interactions.

Based on this isologous diversifica-
tion, the authors demonstrated that
morphogenetic diversity and recursive
production of patterns are compatible
(Yoshida et al., 2005). Now, from this
recursive production, regeneration of
the original will be expected, while the
diversity may allow for the generation
of a novel part. Hence, it will be prom-
ising to apply the isologous diversifi-
cation theory to the description of re-
generation. In the present study, by
using a simple model of interacting
cells with coupled dynamics of a few
chemicals, we demonstrate that this
model can indeed explain both inter-
calary and segmented regeneration.

The present study is organized as
follows. First, in Section 2, we survey
regeneration experiments, with em-
phasis on regeneration of a cock-
roach’s leg. Both the experiments
obeying and violating the conven-
tional models—the positional infor-
mation and feedback-loop hierarchy—
are described. In Section 3, we
introduce a model for differentiation
of cells aligned like a chain, by revis-
ing our earlier model (Yoshida et al.,
2005) to adapt to the experimental sit-
uation. These cells have intracellular
reaction dynamics of several chemi-
cals, and they interact through such
diffusing chemicals. Through succes-
sive cell divisions, the cells differenti-
ate into five types to form an ordered
pattern. In Section 4, we perform sev-
eral types of numerical regeneration
experiments adopting this model, and
we find that both intercalary and seg-
mented regeneration appear natu-
rally. The mechanism for such regen-
eration is discussed in the Discussion
section, to present a unified descrip-
tion.

SURVEY OF
REGENERATION
EXPERIMENTS

In this section, we briefly survey ex-
periments on regeneration. Both in-
tercalary and segment regeneration
are described, and we show how posi-
tional information and feedback-loop
hierarchies among cells explain the
former type of regeneration but not
the latter.

Experiments Obeying the
Conventional Model

One of the clear experiments on regen-
eration was performed using the cock-
roach leg. In particular, the interca-
lary regeneration discovered in this
model was a classic example of a de-
scription based on positional informa-
tion values. Figure 1 depicts the re-
generation experiment explained by
positional values. Letters 1 to 13 de-
note physical levels of the leg seg-
ments corresponding to positional val-
ues 1 to 13. The figure shows the graft
combination and its result after two
moults. Intercalation occurs between
noncontiguous positional values in the
proximal–distal sequence when the
grafts are between different tibiae.
This regeneration is explained by the
“shortest intercalation rule,” which
says that removal of a narrow, longi-
tudinal strip of integument from any
location results in stump healing,
thereby confronting cells that are not
normally adjacent. This leads to local-
ized growth and intercalation. In sub-
sequent larval stages, the leg regains
its constituent cells with contiguous
positional values by inserting the few-
est possible cells. As illustrated in Fig-
ure 1, when normally nonadjacent
cells 8 and 4 are put side by side, the
gap will be filled by cells with the
shortest possible sequence, 765, and
not by a longer sequence such as
76545. The intercalary regeneration
process is explained as a process that

Fig. 1. The typical regeneration experiment of
intercalary regeneration in the cockroach leg
(Alberts et al., 2008). When mismatched por-
tions of the growing legs are grafted together,
new tissue is intercalated to fill in the gap so
that the noncontiguous positional values disap-
pear.
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interpolates the information values
with a minimal cell sequence.

In this theory, what the values of
positional information 1,2,3,4,. . .
specify are not answered. To overcome
such criticism, Hans Meinhardt intro-
duced a model of feedback-loop hierar-
chy among cells (Meinhardt and
Gierer, 1980; Meinhardt, 1982), in
which each cell state has a feedback
loop of its own, caused by an autocat-
alytic process that activates gene ex-
pression. In addition, the expression is
suppressed by an inhibitor with long-
range coupling as illustrated in Figure
2. These activator–inhibitor dynamics
are expressed by:

� �gi/�t � cigi
2/h � �gi

� Dgi�
2gi/� x2,

�h/�t � �cigi
2 � �h,

(1)

where gi is the concentration of the ith
activator, with an autocatalytic ex-
pression, with � and Dgi as its decay
and diffusion constants, respectively,
and h is the inhibitor synthesized
through the activator and damped
with the decay constant �. Distinct
cell types are characterized by which
of the gi is expressed. As a hierarchy of
the feedback loops, ci � ci�1 is as-
sumed in Eq. [1]. Now, the operation
of grafting amputated legs is given by
putting adjacent cells with the expres-
sion of different gi, say 4 and 8. At the
mismatching junction, g4 and g8 mol-
ecules are exchanged between the
cells. Then, according to the hierarchy
ci � ci�1, g4 dominates, leading to a
decrease in the production of g8 at the
junction. If the expression of g4 is suf-
ficiently extended, then the expres-
sion of g5 is induced between the two.
In the same manner, g6 is expressed
between the cells expressing g5 and g8.
By repeating such a process, the orig-
inal sequence of 45678 is regenerated.
Hence, intercalary regeneration is ex-

plained in terms of a hierarchy of feed-
back loops, ci � ci�1. This theory
can explain what the values of posi-
tional information 1,2,3,4,. . . specify,
whereas the validity of the hierarchy
assumption (which is a bit demand-
ing) still required examination.

Segmented Regeneration and
Number of Tarsomeres in
Cockroach Legs

In addition to the intercalary experi-
ment, there are also classic experi-
ments on regeneration that, indeed,
are hard to explain by “positional in-
formation” or “feedback-loop hierar-
chy.”

One experiment concerns the com-
bined series of congruent grafts made
between mid tibiae (French, 1976).
Figure 3 illustrates that the graft
junction sometimes produces seg-
mented structures. By following the
conventional viewpoint, the junction
is, of course, composed of cells with
the same positional values or the
same expressed gene in the feedback-

loop hierarchy. However, this grafting
produces an extra portion (segment) of
leg. This formation of inhomogeneity
from homogeneous positional values
cannot be derived from the conven-
tional models in which the regenera-
tion results from noncontiguity of po-
sitional values or expressed genes at
the junction.

Another experiment is on the num-
ber of tarsomeres in the regenerated
cockroach leg (tarsus) (Tanaka et al.,
1992). There are five tarsomeres in
the normal cockroach tarsus, as illus-
trated in Figure 4a, but the number of
tarsomeres is often reduced in regen-
erated tarsi. Actually, when a tarsus
is amputated at or proximal to the
third tarsomere, only a four-seg-
mented tarsus is regenerated (Fig.
4b), whereas when a tarsus is ampu-
tated distal to the third tarsomere, the
regenerated tarsus has five segments
(Fig. 4c). Some experiments on four-
segmented regeneration also sug-
gested that the missing tarsomere in
regenerated tarsi corresponds to the
third tarsomere of the normal five-
segmented tarsus. To explain the dis-
appearance of the third tarsomere in
terms of positional values or feedback-
loop hierarchy, the third tarsomere
must have the same positional value
as the second or the fourth tarsomere.

Fig. 2. Molecular interactions that enable the self-stabilizing structure (Meinhardt, 1982). Each
state has a feedback loop on its own, denoting the autocatalytic gene activator. In addition, there
is long range activation of its neighbors (�) and locally exclusive repression (�).

Fig. 3. a,b: Segmented regeneration: when
the mid-tibia levels are grafted together, they
sometimes lead to no segmented regeneration
(a) or to segmented regeneration (b).

Fig. 4. Levels of amputation in the cockroach
tarsus (Tanaka et al., 1992). a: Standard points
of measurement in the adult. s1 to s5 denote the
first to the fifth tarsomeres, respectively. b:
When a tarsus is amputated at level l1 or more
proximally, the regenerated tarsus tends to
have four tarsomeres. c: By contrast, when a
tarsus is amputated at level l2 or more distally,
the regenerated tarsus tends to have five tar-
someres.
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However, a positional information or
feedback-loop hierarchy model needs
to assign distinct values of informa-
tion for different positions by the as-
sumption. Therefore, it is difficult to
explain the above regeneration phe-
nomenon.

In the present study, we adopt a
model with isologous diversification.
With this model, we explain both the
intercalary and segmented regenera-
tions, without any assumption of a hi-
erarchy in gene expression levels.

MODEL: COUPLED
CHAOTIC AND
NONCHAOTIC CELLS

Before demonstrating regeneration of
the cockroach leg, we first introduce
our model, which outlines spontane-
ous cell differentiation and the gener-
ation of a spatial pattern. The model is
represented schematically in Figure 5.
In each cell, there are catalytic chem-
ical reactions, including autocatalytic
ones, which regulate the cell state and
synthesize some chemicals for cell
growth (membrane).

The concentration of the lst chemi-
cal inside the ith cell at time t is de-
noted by xi

l. Here, a nutrient chemical
“0” diffuses into cells from the most
proximal portion of the tibia. The nu-
trient chemical merely means a repre-
sentative chemical which exists out-
side the cells and diffuses into the cell.
This chemical is not a catalyst but is
necessary for growth in our model.
The concentration of the nutrient is
set to X0 at the most proximal portion.
At the i th cell, the concentration of
the nutrient is assumed to be X0/ri,

where ri denotes the damping rate of
X0and depends only on the distance
from the proximal end of leg. This nu-
trient diffuses into the cell with a
diffusion coefficient Din, while the cor-
responding concentration of the chem-
ical within a cell is denoted by xi

0. This
nutrient is transformed successively
to other chemicals through the cata-
lytic reaction to produce other chemi-
cals. These reaction dynamics are gov-
erned by a set of catalytic chemical
reactions of Michaelis-Menten form as
follows:

Meti
l�t� � e�

m, j

Con�m,l, j�
xi

l�t� xi
m�t�

1 � xi
m�t�/xM

� e�
m, j

Con�l,m, j�
xi

l�t� xi
j�t�

1 � xi
l�t�/xM

, (2)

where xM is a parameter for the
Michaelis-Menten form and e is the
coefficient of the reaction. The reac-
tion network is denoted by Con�l,m, j�,
which is 1 when there is a path from
chemical m to l catalyzed by chemical
j, and 0 otherwise. It should be noted
that Con�m,0,0� is always 0 because
the source material xi

0 is not autocat-
alytic.

Now, Vi�t� denotes the volume of the
ith cell at time t. We assume that
some chemicals produce the cell mem-
brane materials, and that the chemi-
cals decay linearly with a coefficient �.
This term is expressed as �P�l �xi

l�t�,
where P�l � � 1 when xi

l produces the
membrane, otherwise P�l � � 0. To
sum up, Vi�t� grows as follows:

dVi�t�/dt � Vi�t�km��
l	1

P�l �xi
l�t�, (3)

where km denotes the coefficient of the
membrane material’s contribution to
the growth of Vi�t�. The ith cell divides
into two when:

Vi�t� � 2V0 (4)

is satisfied, where V0 is the initial vol-
ume. After the division, the daughter
cell (numbered i � 1 here) has much
the same concentration of chemicals
as the mother cell i, i.e., xi

l, and xi�1
l ,

after a division, take �1 � ε�xi
l�t� and

�1 � ε�xi
l, respectively, where ε repre-

sents a small fluctuation caused by
the cell division. In the present study,
ε is taken as a random number over

�10�4, �10�4], but this magnitude it-
self is not important for cell differen-

tiation, provided it is not exactly zero.
After a division, the two cells have the
same volume, namely V0. They remain
connected with each other by forming
a cell bridge (plasmodesma). Through
this cell bridge, the chemicals of the
two cells diffuse with the diffusion co-
efficient Dpd. After cell divisions, cells
are interconnected to form a one-di-
mensional chain.

Only xi
0 is supplied by a flow from

the bath of source material X0 with a
normal diffusion coefficient Din, while
the other chemicals spread out slowly
into the bath with a smaller diffusion
coefficient Dout. This diffusion of each
chemical is assumed to be propor-
tional to the volume of the cell. Sum-
ming up all these processes, we have
the following model equation:

dxi
l�t�/dt � Meti

l�t� � Dpd/Vi�t�

� �
NN	Nearest neighbour

�xNN
l �t� � xi

l�t��

�
� Din�X0/ri � xi

0�t��
�l � 0� 
the source material�

� Doutxi
l�t� � �P�l �xi

l�t�
�l � 0� 
the others�

� xi
l�t��dVi�t�/dt�/Vi�t�, (5)

where ri describes the damping rate of
X0. It may be worth noting that the
employment of ri is not essential to
isologous diversification, indeed, it oc-
curs without ri (Yoshida et al., 2005).

Isologous Diversification:
Dynamical Systems,
Attractors, Chaos, and
Multistability

In this subsection, we briefly explain
the dynamical systems approach to
cell differentiation, in particular isol-
ogous diversification. We first intro-
duce notions of dynamical systems, at-
tractors, and chaos. Then, we explain
isologous diversification together with
multistability.

A dynamical system is a mathemat-
ical description of the deterministic
evolution of the state of a system
(Hirsch et al., 2004). A typical exam-
ple of a dynamical system is described
by a system of ordinary differential
equations:

Fig. 5. Schematic representation of the
model. The nutrient is supplied to the cell from
the most proximal portion (end) of the tibia. Its
concentration is X0 at the most proximal por-
tion. After a division, cells are interconnected,
forming a cell bridge. By such cell divisions,
cells are connected with one another as a one-
dimensional chain.
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�
dx1/dt � F1�x1,x2,. . .,xn�,
dx2/dt � F2�x1,x2,. . .,xn�,

�

dxn/dt � Fn�x1,x2,. . .,xn�,

where Fi�1 � i � n� is a function of
x1, x2,. . .,xn.

The space �x1, x2,. . . , xn� is referred
to as the phase space. For example, it
can represent a set of concentrations
of chemicals within a cell. The path in
phase space is referred to as the orbit
or trajectory. An attractor is a bounded
set to which regions of initial condi-
tions asymptote as a dynamical sys-
tem evolves. An attractor can be a
fixed-point, a periodic, or a quasi-peri-
odic motion. However, there is also a
chaotic attractor that is neither peri-
odic nor describable as a combination
of several periodic motions. Chaos is
an attractor with irregular oscillation,
where small differences in initial con-
ditions are amplified exponentially,
even though it has asymptotic stabil-
ity as an attractor. (See also the Ap-
pendix of Furusawa and Kaneko,
2001).

The notion of isologous diversifica-
tion was proposed by Kaneko and
Yomo (1997, 1999) to simulate stable
cell differentiation against molecular
and other fluctuations. Consider a cell
with internal dynamical systems (in
terms of gene expression levels) and
cell-to-cell interactions. The cells that
have divided from a single cell have
the same dynamics of chemicals, so
that they maintain synchronization of
oscillation of their intracellular state
up to cell number. However, such ho-
mogeneity among cells becomes desta-
bilized as the number increases. Any
small difference between cells caused
by noise or by cell division is ampli-
fied, so that the phase of synchrony of
oscillations is lost. With further in-
creases in numbers, the cells start to
take different chemical compositions,
which are stable attracting states. A
few attracting cellular states appear,
maintained by intracellular dynamics
and cell-to-cell interactions. In other
words, the interaction between the
states maintains their stability: this is
the phenomenon of multistability.

The theory of such “spontaneous cell
differentiation” was pioneered by
Alan Turing, who showed that a reac-
tion–diffusion system can produce an
inhomogeneous, stable pattern (Tur-

ing, 1952). Independently of initial
conditions, concentrations of chemi-
cals can form a stripe or wave pattern,
and this pattern formation has robust-
ness against perturbations. However,
neither sufficiently complex intracel-
lular dynamics nor an increase in cell
number was introduced. As mentioned
above, by taking account of intracellu-
lar dynamics, together with an in-
crease in cell number, isologous diver-
sification was proposed (Kaneko and
Yomo, 1997, 1999). An important dif-
ference between Turing’s model and
that of isologous diversification lies in
the interpretation of cell types. In the
latter, different cell types belong to
different attracting states in the
phase space. By contrast, in the Tur-
ing model, different types correspond
to mere different phases in the wave
either in space or in time. Further-
more, in isologous diversification, cells
with chaotic dynamics are shown to
function as stem cells, as slight differ-
ence in concentrations within a cell is
amplified, leading to a differentiated
cell type (Furusawa and Kaneko,
1998, 2001). Thus, by extending the
system to include spatial interaction,
positional information is generated
spontaneously (Furusawa and Kaneko,
2000), and this is essential to the capac-
ity for regeneration.

RESULTS

We have performed simulation exper-
iments for a variety of randomly cho-
sen reaction networks: Con of Eq. [2]
and parameters in the Eq. [3] and [5].
For some networks, the reaction dy-
namics fall onto fixed points, and cells
do not differentiate, and simple homo-
geneous patterns are formed. For
some other networks, however, cells
differentiate into several types, which
have distinct chemical compositions
as the cell number increases. In this
case, chemical concentrations of the
initial cell type show irregular oscilla-
tory dynamics as known as chaos. By
cell division, another cell type ap-
pears, from which another cell type
differentiates later. In this study, we
adopt networks that exhibit such cell
differentiation, to examine the possi-
bility of regeneration. To be specific,
we adopt the same network topology
as used in (Yoshida et al., 2005),
where the network consists of 20

chemical species with four autocata-
lytic and three nonautocatalytic paths
from each, on average. For detailed of
the adopted network, see Appendix A.
We examine 180 randomly generated
networks, 22% of which exhibit fixed-
point behavior, 30% exhibit (quasi)p-
eriodic behavior, 37% and 11% exhibit
chaotic and isologous diversification
behaviors, respectively.

Furthermore, we investigate also
catalytic chemical reactions of Hill
form: xyn/�1 � yn/xM� corresponding to
the existence of cooperative behavior
of chemicals.

Among randomly generated 143 sam-
ples of n � 2, 83% exhibit fixed-point
behavior, 14% exhibit (quasi)periodic
behavior, 2.1% and 1.4% exhibit chaotic
and isologous diversification behav-
iors, respectively. Likewise, among
randomly generated 190 samples of
n � 3, 94% exhibit fixed-point behav-
ior, 4.2% exhibit (quasi)periodic be-
havior, 1.1% and 0.53% exhibit cha-
otic and isologous diversification
behaviors, respectively. As long as we
use a network that allows for isolo-
gous diversification behaviors, the re-
generation process to be discussed is
as follows. Note also that the fraction
of networks showing oscillatory dy-
namics is not major, but they are se-
lected through evolution as they have
higher growth speed as an ensemble of
cells (Furusawa and Kaneko, 2000).

First, we describe differentiation
starting from a single cell, without
any external operation. Here, five cell
types appear successively, as shown in
the cell lineage diagram in Figure 6a,
where each cell type T1,T2,T3,T4 and
T5 (in order of appearance) is repre-
sented by a color: red, green, blue, ma-
genta, and cyan, respectively. The dif-
ferentiation from T1 to T2, then from
T2 to T3, from T3 to T4, from T4 to T5

occurs successively, i.e., with the cell
lineage T1fT2fT3fT4fT5. Each cell
type has a distinct chemical composi-
tion of 20 chemical species. The orbit
is plotted for two chemical compo-
nents in Figure 7a, while the time
course of concentrations for T1, T2,
and T3 cells is plotted in Figure 7b.
The temporal variation is decreased
as the differentiation from T1

progresses. The attractors of each cell
type are chaotic (T1), quasi-periodic
�T2), periodic (T3), periodic (T4), and
fixed point (T5), respectively. As a spa-
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tial pattern, these cell types are aligned
in the order of these types, so that
the pattern sequence T1

n1T2
n2T3

n3T4
n4T5

n5�ni

� 1,1 � i � 5� is generated.

Simulations of Intercalary
Regeneration

Next, using the above model with the
cell lineage diagram (Fig. 6a), we per-
formed a “numerical regeneration ex-
periment.” We observed the ability for
regeneration. By starting from any
adjacent pair of cell types such as
T1 � T2, T1 � T3, T1 � T4, and
T1 � T5, the pattern generated by
“normal development”: T1

n1T2
n2T3

n3T4
n4T5

n5

�ni � 1,1 � i � 5� is always gener-
ated (See Fig. 6b) (T1 � T2 case). This
result can be interpreted as the re-
generation of a cell-chain pattern
composed of contiguous types:

T1,T2,T3,T4 and T5. Generally speak-
ing, the intermediate cell types
TiTi�1. . .Tj �1 � i � j � n� are
regenerated from the graft junction
Ti�1 � Tj�1 under the cell lineage dia-
gram T1fT2f. . .fTif. . .fTjf. . .Tn.

This result is interpreted as inter-
calary regeneration. In the experi-
ment on the cockroach leg, the regen-
eration arises by putting together two
parts with noncontiguous positional
values. Here, we can match the order-
ing of cell type Ti with i � 1,2,3,. . . to
this positional value or to the type of
gene in the hierarchy in the feedback-
loop model, as illustrated in Figure 8.
The intercalary regeneration is a nat-
ural consequence of the ordering of Ti,
as the intracellular dynamics and cell-
to-cell interaction support the appear-
ance of only the sequence of continu-
ous change of i in Ti. Note also that we
do not need any assumption of hierar-
chy in our model. The ordering of Ti

emerges as a natural consequence of
intra- and intercellular coupled dy-
namics, leading to successive decrease
in temporal variation, as given in Fig-
ure 7.

Simulations of Segmented
and Tarsus Regenerations

Next, we performed two other sets of
numerical regeneration experiments
that corresponded to “segmented re-
generation” and “tarsus regeneration”
experiments, using the same model.
In the segmented regeneration, the
graft junction, TiTi, sometimes pro-
duces an extra portion with different
cell types Tj�i � j�, while in the tarsus
regeneration, the distinct tarsomeres
must correspond to the same value as
mentioned in Section 2. These two re-
generations are puzzling, because in
conventional models, nothing is ex-
pected to occur from the same-value
junction TiTi, and the distinct portions
are assigned to distinct values.

To simulate segmented regenera-
tion, both ends of the junction have to
be of the same cell type, assumed to be
T1, a chaotic cell type. To set up the
configuration illustrated in Figure 8,
there is freedom in the assignment of
other cells. For instance, we assign
T1,T2,T3, T2,T1,T1, T2,T3,T2,T1 to the
positional-value portions 1 to 13, re-
spectively. Likewise, to consider tar-
sus regeneration, we assume that at
one end there is a T1 cell type. Here
again, there is freedom in the assign-
ment of other types, but as an in-
stance, we assign T1,T2,T3, T4, T3, T2,
T1, T2, T3, T4,T5 to the tarsomeres. In

Fig. 6. The cell lineage diagram. a: When
started from a single chaotic (red) cell (T1), a
pattern of cell types is formed on the initial
condition of chaotic intracellular dynamics. The
parameters are X0 � 1.5, ri � �1 � 0.01di

e � 0.3, xM � 5.0, km � 0.1, � � 10�3, V0

� 5.0, Din � 0.01, Dpd � 0.1, and Dout

� 10�4, where di denotes the distance from
the proximal end of leg. b: A cell lineage dia-
gram started from T1T2. In this case, two initial
cells, a chaotic attractor (red, T1) and a quasi-
periodic partial attractor (green, T2) are grafted
together. Even when starting from T1 and T3, T4,
or T5, the same pattern (T1T2T3T4

n4T5
n5,n4,n5 � 1)

eventually appears within the cell chain thus
produced.

Fig. 7. Dynamics of the cell lineage diagram.
a: The orbits of chemical concentrations are
plotted using �x0,x12�. The five colors (red,
green, blue, magenta, and cyan) denote a cha-
otic attractor (T1), a quasi-periodic partial at-
tractor (T2), a periodic partial attractor (T3), a
periodic partial attractor (T4), and a fixed point
�T5), respectively. The transition between the
dynamics is T1fT2fT3fT4fT5. b: Temporal
change of concentrations of cell types T1, T2,
and T3, using the chemical x12.

Fig. 8. Assignment of chaotic cell type T1 and
nonchaotic type T2,. . .,T5 to the cockroach
legs. We propose the assignment as illustrated
by the figure. There is a difference between our
proposed assignment and the positional infor-
mation. In the positional information or feed-
back-loop hierarchy models, the mid-tibia level
corresponds to the “middle” of the values or the
hierarchy denoted by 6 to 8. In contrast, in our
model, the mid-tibia level corresponds to the
chaotic cell-type T1. Likewise, the distal portion
of the third tarsomere level s3 corresponds to
T1.
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contrast to the conventional model,
the most distal end of the tibia is as-
signed to T1, the chaotic cell type, the
same type as in the most proximal
portion.

Note that the essence here is the use
of the T1 cell type, i.e., the assignment of
both ends and the center of the tibia to
a chaotic cell type T1 for segmented re-
generation, and the assignment of the

distal portion of the third tarsomere (s3,
in the figure) to T1 for tarsus regenera-
tion. The results to be discussed below
are also obtained as long as the inter-
val cell types between two T1 s are
T2T3. . .Tj�1TjTj�1. . .T2�n � j � 2�
under the cell-lineage diagram
T1fT2f. . .fTif. . .fTjf. . .fTn. In
fact, the assignment to T1 is in part
supported by the observation that X-ir-
radiation of this terminal zone blocks
the regeneration of an amputated tar-
sus (Bullière and Bullière, 1985, Ch.
2.3.1, Fig. 13a), i.e., without the cell
type corresponding to T1, regeneration
does not occur, as is also supported by
the simulation below.

Figure 10a shows the cell chain
pattern produced when simulations
are started with T1T1T2 for seg-
mented regeneration. In contrast to
Figure 6b (starting with T1T2), seg-
ment T1T2T3T4

4T3T2T1 sometimes
arises from T1T1 within the produced
cell chain. In fact, five and nine
among 30 trials have exhibited seg-
mentation up to time 8000 when
starting from T1T2 and T1T1T2, re-
spectively. (French [1976] reported
that actual segmented regeneration
occurred at a probability of 9/278

Fig. 9. The correspondence between the intercalary/segmented/tarsus regeneration and our
simulation experiment. a: Intercalary regeneration and our cell type assignments. b: Segmented
regeneration. c: Tarsus regeneration.

Fig. 10. Simulation experiments for seg-
mented regeneration. a: When starting with
T1T1T2, one segment T1T2T3T4

4T3T2T1 eventu-
ally appears in the cell chain. b: The pattern
when starting with T1T1.
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from the graft junction.) This indi-
cates that grafting of a T1 into a T1

cell can produce the segment: in
other words, segmented regenera-
tion, at a certain probability, occurs
from a graft junction between mid
tibiae having the same cell type T1,
the chaotic cell type. The correspon-
dence between segmented regenera-
tion and our model is given in Figure
9b.

Last, to simulate the other regener-
ation phenomenon, tarsus regenera-
tion, we started with T1T2T3T4T3T2

and T1T2T3T4T3T2T1, which corre-
spond to amputations proximal and
distal to the third tarsomere, respec-
tively. The produced cell-chain pat-
terns are illustrated in Figure 11a,b.
The former, corresponding to amputa-
tion level l1 in Figure 4, produces a
pattern T1

4T2T3T4
6T5

n5,n5 � 1, while the
latter, corresponding to amputation
level l2, produces a pattern
T1

4T2T3T4
n4T3T2T1

4,n4 � 1 at time
around 4000. In view of the composi-
tion of cell types of these two patterns,
these two regenerations correspond to
four-segmented and five-segmented

tarsi (Figs. 4b,c), respectively. The
correspondence between segmented
regeneration and our model is given in
Figure 9c.

DISCUSSION

By using a simple model with inter–
intra reaction dynamics, we have suc-
ceeded in reproducing regeneration
experiments in cockroach legs, with
which we can explain coherently those
regeneration phenomena both obeying
and violating the conventional mod-
els.

Now, let us examine differences be-
tween the two conventional models
and ours. In the former models, regen-
eration is explained as recovery from
noncontiguous values of positional in-
formation, or a feedback-loop hierar-
chy. Therefore, these models are hard
to explain segmented regeneration,
wherein noncontiguous values/hierar-
chies do not exist. By contrast, in our
model starting with T1T1 cell types,
with an increase in cell number, spon-
taneous changes in cell types arise by
means of internal chaotic reaction dy-
namics. In our model, although we
have not postulated different values
or hierarchies depending on cell posi-
tions in advance, intracellular chemi-
cal reaction dynamics that can be cha-
otic produce cell types spontaneously.

Based on this isologous diversifica-
tion, in our previous study (Yoshida et
al., 2005), we searched for conditions
compatible with cell type diversity
and recursive production. In the
present model, recursive production
has been achieved by combining a cha-
otic cell (T1) and a nonchaotic cell
�Ti,i � 2), while morphogenetic diver-
sity arises mainly from chaotic dy-
namics T1. Therefore, the balance be-
tween T1 and Ti�i � 2� plays an
important role in a compatible condi-
tion.

Now, let us scrutinize segmented re-
generation from the perspective of our
model. As illustrated in Figure 3, even
a graft junction between cells of the
same type produces segmented struc-
tures at a certain level of probability.
For better understanding, we per-
formed a simulation experiment start-
ing with T1T1, as illustrated in Figure
10b. T1T1 often produces the seg-
mented pattern T1T2T3T4

n4T3T2T1,n4

� 1. The probability of production of

this pattern was found to be higher
than that when we started with T1

only. This observation suggests that
segmented regeneration arises from
contiguous chaotic cells. Note that
chaotic dynamics produce stochastic
behavior, which explains the probabi-
listic occurrence of segmented regen-
eration observed experimentally.
Such a probabilistic occurrence of tar-
sus regeneration is also explained by
assuming the existence of T1 cell types
producing chaotic dynamics.

There has been no direct experi-
mental demonstration of chaotic oscil-
lation, but two recent experiments
suggest the existence of oscillatory
and itinerant gene expression dynam-
ics in stem cells. First, Shimojo et al.
(2008) reported the existence of oscil-
lations in gene expression in neural
stem cells. The importance of oscilla-
tory dynamics in somitogenesis is now
established (Palmeirim et al., 1997),
while such oscillation might also exist
in short-germ or intermediate band
stripe formation in insects (Fujimoto
et al., 2008). Second, slow transitory
dynamics in gene expression levels in
stem cells have also been reported re-
cently (Chang et al., 2008).

Summing up, we propose a unified
description of regeneration phenom-
ena: those obeying the conventional
models correspond to the cell chain
starting with T1Ti�i � 2�, while those
violating conventional explanations
correspond to the cell chain starting
with T1T1. It should be noted that to
date we have not found leg regenera-
tion experiments violating our model.

Prediction

Here, we have proposed an assign-
ment that both the ends and the mid-
dle of the tibia correspond to the cha-
otic cell type T1. In contrast, under
positional information or feedback-
loop hierarchy assumptions, the tibia
is assigned to contiguous numbers in
an ascending order (in the figures,
numbers 1 to 13). Based on this defi-
nite difference, one can make an ex-
perimental prediction as follows. If
one performs a regeneration experi-
ment so that the middle level of the
tibia is removed, the regenerated tibia
will become shorter. This happens in
almost the same manner as the miss-
ing tarsomere in the tarsus regenera-

Fig. 11. Simulation experiments for tarsus re-
generation. a: When starting with T1T2T3T4T3T2,
namely amputation level l1 in Figure 4, the pat-
tern T1

4T2T3T4
6T5

n5, n5 � 1 appears at time
around 4000. b: When starting with
T1T2T3T4T3T2T1, namely amputation level l2,
T1

4T2T3T4
n4T3T2T1

4, n4 � 1 appears at time
around 4000.
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tion experiment addressed in the Sur-
vey of Regeneration Experiments
section. Generally, it is predicted that
a regeneration experiment including a
chaotic cell (T1) performs segmented
regeneration with a certain probabil-
ity, whereas experiments consisting
only of nonchaotic cells produce
“shortened” regeneration.

Recently, cricket leg regeneration
was investigated using RNA interfer-
ence based on Meinhardt’s model (Na-
kamura et al., 2008). Therefore, the
cricket’s leg can be a promising candi-
date to test our theory. Furthermore,
with current visualization techniques,
it will be possible to test our chaos
hypothesis. Indeed, as with gene ex-
pression in stem cells, such experi-
ments are ongoing (Chang et al., 2008;
Shimojo et al., 2008). According to our
study, pluripotent cells exhibit chaotic
gene expression dynamics. If such
cells with chaotic dynamics can grow
and divide, proliferation or differenti-
ation of other cell types will progress
from them. Considering the capacity
for regeneration in the insect leg, it is
natural to expect the proliferation of
pluripotent cells, so that division of
chaotic cells will be expected, at least
under some condition.

SUMMARY

In the present study, we have modeled
regeneration phenomena in the cock-
roach leg by using cell chains with
chaotic and nonchaotic dynamics.
This model allows spontaneous cell
differentiation through cell-to-cell in-
teractions. Morphogenetic diversity
arises from chaotic dynamics, while
regeneration arises from a balance be-
tween chaotic and nonchaotic cells.
From this viewpoint, segmented re-
generation is regarded as a result of
imbalance between these distinct cells
or perturbation toward chaotic cells.
We have proposed a unified descrip-
tion: intercalary and segmented re-
generation phenomena correspond to
balance and imbalance between cha-
otic and nonchaotic cells, respectively.
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APPENDIX A: PARAMETERS
AND NETWORK
STRUCTURE

Here, we show the parameters and
network structure to exhibit isologous
diversification and regeneration phe-
nomena, as mentioned in the Results
section.

The parameters are X0 � 1.5,
ri � �1 � 0.01di�, e � 0.3, xM � 5.0,
km � 0.1, � � 10�3, V0 � 5.0, Din

� 0.01, Dpd � 0.1, and Dout � 10�4,
where di denotes the distance from the
proximal end of the leg. The network
structure is described as the values of
Con�m,l, j�. The pairs of (m,l, j) where
Con�m,l, j� is 1 are the following: (m,l, j)
	 (2,1,5),(0,4,11),(0,4,18),(0,8,7), (0,12,
1), (0,13,16),(0,15,7),(0,17,2),(0,19,9),
(1,4,4),(1,5,5),(1,6,6),(1,8,15),(1,16,
16),(1,17,9),(2,0,1),(2,0,3),(2,4,17),(2,
5,5),(2,7,7),(2,9,9),(3,2,18),(3,12,12),
(3,13,13),(3,14,14),(3,14,19),(3,15,4),
(4,0,8),(4,2,15),(4,6,6),(4,11,11),(4,12,
12),(4,15,18),(4,16,16),(5,11,11),(5,12,
12),(5,13,14),(5,13,15),(5,15,15),(5,18,
17),(5,18,18),(6,4,1),(6,8,8),(6,8,17),(6,
9,16),(6,10,10),(6,15,15),(6,17,17),(7,1,
5),(7,5,12),(7,6,6),(7,8,8),(7,12,12),(7,
18,4),(8,3,3),(8,5,5),(8,10,10),(8,11,3),
(8,11,11),(8,12,10),(8,16,18),(9,5,5),(9,
8,8),(9,13,10),(9,14,14),(9,17,19),(9,18,
18),(10,0,3),(10,3,16),(10,6,6),(10,7,3),
(10,13,13),(10,14,14),(10,15,15),(11,1,
1),(11,3,5),(11,6,6),(11,12,12),(11,15,
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18),(11,16,16),(12,0,11),(12,3,19),(12,
4,4),(12,7,7),(12,9,9),(12,15,11),(13,3,
3),(13,10,4),(13,16,4),(13,17,17),(13,18,
4),(13,19,19),(14,6,6),(14,11,11),(14,11,
16),(14,15,15),(14,16,16),(15,2,2),(15,
4,1),(15,6,8),(15,14,14),(15,16,16),(15,
18,4),(15,18,18),(16,3,17),(16,9,1),(16,
9,9),(16,10,10),(16,17,11),(16,17,17),
(16,18,18),(17,1,6),(17,2,2),(17,5,5),(17,
7,6),(17,8,8),(17,10,10),(17,19,1),(18,2,
2),(18,9,9),(18,9,13),(18,10,10),(18,12,
16),(18,13,8),(19,1,1),(19,2,6),(19,6,14),
(19,12,12),(19,16,16), where l � j de-
notes an autocatalytic reaction path.

The membrane-producing chemi-
cals are x4,x5,x11,x12, and x16.

We show another network struc-
ture exhibiting regeneration, where
X0 	 1.5, ri 	 (1 � 0.001di) e 	 0.3, xM

	 5.0, km � 0.1, � � 10�3, V0

� 5.0, Din � 0.01, Dpd � 0.01, and
Dout � 10�4. The pairs of (m,l, j) where
Con�m,l, j� is 1 are: (m,l, j) 	
(0,2,6),(0,2,19),(0,4,6),(0,7,9),(0,10,18),
(0,13,6),(0,14,8),(0,17,4),(0,17,14),(0,18,
18),(1,2,2),(1,4,4),(1,4,12),(1,12,9),(1,
16,9),(1,18,18),(2,6,6),(2,8,8),(2,8,9),(2,
13,15),(2,15,15),(2,18,18),(3,4,4),(3,5,5),

(3,5,15),(3,10,10),(3,11,7),(3,17,17),(4,3,
9),(4,13,13),(4,14,15),(4,15,15),(4,17,17),
(4,19,12),(5,1,1),(5,1,13),(5,3,15),(5,6,6),
(5,8,15),(5,10,10),(5,13,13),(6,1,1),(6,4,4),
(6,5,5),(6,9,16),(6,10,11),(6,14,12),(6,18,
18),(7,0,4),(7,6,3),(7,9,9),(7,11,11),(7,11,
19),(7,16,16),(7,17,17),(8,4,4),(8,6,14),
(8,7,4),(8,7,7),(8,7,11),(8,9,9),(8,11,11),
(9,1,1),(9,6,5),(9,6,6),(9,7,7),(9,11,11),
(9,18,16),(10,0,9),(10,2,2),(10,4,4),(10,5,
5),(10,12,18),(10,14,17),(10,16,16),(11,4,
18),(11,8,8),(11,12,7),(11,13,12),(11,13,
13),(11,19,19),(12,0,7),(12,2,8),(12,6,6),
(12,11,11),(12,17,8),(12,18,18),(13,1,1),
(13,3,3),(13,4,9),(13,5,11),(13,6,18),
(13,12,12),(14,1,11),(14,3,3),(14,9,18),
(14,10,10),(14,11,12),(14,13,13),(14,15,
15),(15,1,1),(15,2,4),(15,8,8),(15,11,4),
(15,11,14),(15,12,12),(15,14,14),(16,2,2),
(16,6,6),(16,7,7),(16,10,3),(16,13,14),(16,14,14),(17,3,14),(17,9,9),(17,9,19),(17,18,
18),(17,19,19),(18,1,1),(18,3,12),(18,13,
13),(18,13,19),(19,1,1),(19,1,10),(19,5,1),
(19,7,7),(19,11,11),(19,12,10). In this
case, the membrane-producing chemi-
cals are x5, x11,x13,x18, and x19. As illus-
trated in Figure A1 , differentiation and
regeneration work generally in this
model.

Fig. A1. Regeneration experiment for another
network. a: The cell-lineage diagram when
starting with T1. b: The cell-lineage diagram
when starting with T1T2. The same segment,
T3T2T1

4T2T3 is regenerated.
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