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Abstract Coupled map models with variable connection weights between the units
are studied. A generally observed feature in this type of model is the appearance of
the units with massive outgoing connections. Such structure formation is the conse-
quence of the feedback between unit and connection dynamics.

1 Introduction

Unveiling network structure is often important in studying biological and social
systems. Universal topological properties of network structure have been found in
a variety of natural and artificial networks[1, 2, 3]. Some of those properties such
as scale-free or small-world structures have been shown to emerge from simple
construction rules or by evolution of networks to achieve some function[4, 5]. Since
the main interest in these early studies of complex networks was in the structure of
networks, the dynamics of the constituent units were largely ignored.

Recently, more and more studies on complex networks have taken into account
the activity of nodes and/or the flow through links, since they are often primary
determinants of network growth or structure formation. For example, the relation-
ship between abundances of chemicals on nodes in a chemical-reaction network has
been studied from the viewpoint of the optimization of metabolic flow through the
network[6, 7]. In these studies, each unit (i.e., chemical concentration) on a node is
in a stationary state and therefore the interplay between the dynamics of the units
and the network structure is not considered. This aspect is sought in another line of
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studies where behaviors of coupled dynamical systems in a network of units with
non-trivial dynamics are extensively investigated. Some of those studies searched
for the synchronization condition for oscillatory elements in a network and exam-
ined how it depends on network topology[5, 8, 9, 10], while others focused on dy-
namical systems of chaotic elements on a network interacting through links, which
show synchronization, clustering, and chaotic itinerancy[11, 12, 13, 14, 15]. In these
studies, though the units on the network showed rich dynamics, the network struc-
ture itself was not dynamic: once initially given, it did not change in time. Following
these previous studies, the next step should be to seek common principles in systems
with an interplay between the network structure formation and dynamical systems
on the network[16, 17, 18, 19, 20, 21].

Adaptive networkis the term given to the types of network whose structure varies
depending on the dynamics of the units on the nodes[22]. The aim of the present
study is to discover the generic features in the dynamics and the structure of adaptive
networks. We adopt the system of coupled maps with variable connection weights
as our tool to explore a class of models for adaptive networks, as coupled map
dynamics have been thoroughly investigated for cases with various forms of fixed
regular couplings[23, 24, 25, 26, 27]. We mainly focus on how non-trivial dynamic
structure emerges from homogeneous populations of units and connections, and try
to extract the underlying mechanisms of such structure formation.

We review three types of coupled map models, following our earlier studies[16,
17, 18]: the first one is coupled logistic maps, the second one is coupled circle
maps, and the last one is coupled circle maps with external input. For all these
three models, coupling strengths between nodes change according to the correlation
between the values on the nodes. For the first model, an exhaustive analysis of unit
and connection dynamics is given in Section 2. To avoid redundant description on
similar behaviors in different models, only the characteristic behaviors specific to
the latter two models are described in Section 3 and 4. The last section is a summary
and discussion on our findings.

2 Adaptive network of logistic-map units

Throughout the present review we discuss a system of coupled maps on a network.
Each node in the network is assigned with map dynamics which depend on the in-
stantaneous state of the node as well as on those of the other nodes that are linked
to it. This sort of dynamical system is known ascoupled mapsand has been exten-
sively studied over decades. In particular, coupled map lattices with nearest neigh-
bor couplings on a regular lattice[23, 24] and globally coupled maps (GCM) with
all-to-all coupling of equal weight[25] are two standard models. Here we adopt the
coupled map approach, but instead of fixed global or nearest-neighbor couplings a
time-varying connection weight is introduced in our models.

In this section, we consider the model of coupled logistic maps. Logistic map is
a nonlinear map fromxn to xn+1 with one parametera representing its nonlinearity,
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defined as:
xn+1 = axn(1−xn). (1)

Successive application of this mapping yields, depending on the value of the pa-
rametera, oscillatory dynamics with arbitrary period as well as chaotic dynamics.
Owing to this variety in dynamics, one network of logistic-map units can represent
a wide range of networks with various kinds of unit dynamics. For this reason, this
type of network is of primary and special interest in our study.

2.1 Model formulation

Our coupled map model is defined as follows. Suppose we have a network ofN
units, each of which has its own time-dependent internal state. Letxi

n denote the state
variable of thei-th unit (1≤ i ≤N) at then-th time step. Connectivity between these
units is given by the connection matrixwi j

n which represents the weight (or strength)
of the connection from unitj to unit i at then-th time step. To introduce dynamics
to the network, we install the following two functions into our model. One is the
function f that defines the mapping fromxi

n to xi
n+1, in other words, the dynamics

of the units. The other is the functiong that represents the rule of connection change.
For simplicity, we assume that the range ofg is between 0 and 1, andg depends only
on the two state variables of the units at the both ends of the connection. With this
setup, our model is described by the following set of equations:

xi
n+1 = (1−c) f (xi

n)+c∑
j

wi j
n f (x j

n), (2)

wi j
n+1 =

[1+δg(xi
n,x

j
n)]w

i j
n

∑ j [1+δg(xi
n,x

j
n)]w

i j
n

, (3)

wherec (0 ≤ c ≤ 1) is the parameter that represents the strength of the interac-
tion between units andδ (0 ≤ δ ≤ 1) is the parameter that represents the degree
of plasticity of connections. The normalization of incoming connection weights in
eqn. (3) is introduced in order to avoid the divergence of connection weights in the
case where the steady state of unit dynamics satisfies strengthening condition of the
connection change, which could lead to endless growing of the connection weights.
This normalization also imposes competition among incoming connections of a unit.
Whenδ = 0, this model reduces to the standard GCM.

By choosing appropriate functions forf andg, eqns. (2) and (3) can model var-
ious types of adaptive networks. This choice would depend on the purpose of mod-
eling. For example, connection dynamics that strengthen the connections between
units in different dynamical states would lead to global synchronization of the whole
system. This type of rewiring rule is introduced by Chen and Kurth to a coupled
phase oscillator model and described in detail in the subsequent chapter. In this
study, however, we focus on the opposite type of connection dynamics, i.e., “Heb-
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bian” type dynamics, which is characterized by the strengthening of connections
between units in a similar state. This type of dynamics is called Hebbian because it
can be considered as a natural extension of the Hebb rule, which is widely used as
a synaptic update rule in neural network studies and considered as the fundamen-
tal principle of structure formation in neural networks, to systems with continuous
state variables. The function that we use in practice for the connection dynamics
in our simulations isg(xi ,x j) = 1−2|xi −x j |, but any other function which mono-
tonically decreases with the difference between its two arguments gives essentially
identical results. For unit dynamics, as mentioned above, we adopt the logistic map:
f (xi) = axi(1− xi). Fig. 1 shows the graph of this mapping function and how the
unit dynamics depend on the value of the parametera.
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Fig. 1 The logistic map and its bifurcation diagram. (Left) The mapping functionf (x) = ax(1−x);
a= 3.97. The open circle in the graph represents the unstable fixed point of the dynamics generated
by this map. (Right) The bifurcation diagram of logistic map. Asymptotic values of x are plotted
for each value of the parametera. This map generates chaotic dynamics for values ofa larger than
about 3.57.

To this end, our model possesses three parameters:a for the nonlinearity of unit
dynamics,c for the strength of interaction between units, andδ for the plasticity
of connection. In this section,δ is set to 0.1, though a wide range ofδ values give
similar results[17].

In the following, we study the dynamics of the networks described by eqns. (2)
and (3) using numerical simulations. In most of the simulations, we use the follow-
ing initial condition. First, the initial value of self-connectionwii

0 is set to 0 for all
i. This assures that the self-connections (besides the term(1−c) f (xi

n)) are 0 at any
time stepn. Second, all the remaining connection weights are set to be identical.
This means that, at the initial step, every unit in the system uniformly connects to
all the other units. Due to the normalization of incoming connections, the initial
connection weight is determined to be 1/(N−1). Finally, xi

0 are randomly chosen
from the uniform distribution between 0 and 1.
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2.2 Unit dynamics

We start our analysis from studying the dependence of unit dynamics on the values
of the parametersa andc. It is known that the dynamics of coupled map systems
are characterized by the formation of synchronized clusters of units. In Fig. 2, the
number of clusters observed in our model is plotted against the parametersa and
c. Basically, the number of clusters increases asa gets larger orc gets smaller,
which is consistent with the previous studies of GCM[25] where the connection
weights are constant over elements and time. A novel dynamical feature induced by
the introduction of connection change is the appearance of a large regime ofN/2-
cluster state in the(a,c)-space. In this state, every unit forms a pair with another
unit and the state variables of the units in a pair are synchronized, resulting inN/2
clusters in the system. Destabilization of this pair (by increase ofa or decrease of
c) immediately results in the total absence of synchronized clusters, because all the
units in our model have the same set of parameter values, and therefore, once a pair
is destabilized, so are all the other pairs as well. This means that there is hardly any
set of parameter values that allows an intermediate number of clusters betweenN/2
andN.
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Fig. 2 The number of clusters plotted against the parameters a and c, obtained from the numerical
simulations of our model composed of 10 units. The number of clusters is counted after 5,000 steps
of transient period and averaged over 100 simulations starting from random initial conditions.

In the following, we give a more detailed description for the three representative
states of unit dynamics observed in our model.

(1) Synchronized state: For smalla and largec values, all the units in the system
are synchronized. The dynamics of the units are either periodic or chaotic, depend-
ing on the value ofa (Fig. 3a). The connection weights do not change in this state,
because in our model, connection dynamics are driven by the difference between the
state variables, and all the state variables have an identical value in the synchronized
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state. Due to this lack of connection dynamics, the system is essentially identical to
the standard GCM. The stability of the synchronized state in the standard GCM can
be estimated using the tangential Lyapunov exponent, or split exponent[25], defined
as follows for our model:

λspl(a,c) = ln

(
1− N

N−1
c

)
+λ0(a), (4)

whereλ0 represents the Lyapnov exponent of, in our case, the logistic map with
parameter valuea. With this quantity, the stability condition for the synchronized
state is written asλspl(a,c) < 0, and hence the boundary of the region (in(a,c)-
space) where a synchronized state is allowed is given by:

ln

(
1− N

N−1
c

)
+λ0(a) = 0. (5)

Desynchronized state: For largea and smallc values, unit dynamics are not syn-
chronized between any pair of units. Each unit shows chaotic dynamics (Fig. 3d).
Due to the difference between the state variables, connection weights show tempo-
ral change, which can lead to self-organization of network structure. The interaction
between unit and connection dynamics will be discussed later in detail.

Clustered state: For intermediate values ofa and c, units spontaneously form
clusters, within which units oscillate synchronously. The dynamics of the units are
either periodic or chaotic, depending on the value ofa (Fig. 3b,c). The connection
weights between the units in the same cluster do not vary in time, while the connec-
tion between units in different clusters can have temporal change. The number of the
clusters is 2 near the boundary with the synchronized state region. Asa gets larger
or c gets smaller, the number increases to reach the maximum numberN/2 at the
boundary against the desynchronized state. As mentioned above, in anN/2-cluster
state, every unit forms a pair and the two units in a pair synchronize to each other.
The stability of theN/2-cluster state can be evaluated again with the split exponent
according to the following argument. Due to the increase in connection strength be-
tween the units forming a pair (and the normalization of incoming connections), the
connection between the units in different pairs vanishes. In this state, a unit in a pair
interacts only with its partner and therefore the system can be regarded as a collec-
tion of GCM of 2 units. Hence, the estimation of the stability of this state is reduced
to that of a small GCM system. The split exponent of GCM of 2 units is obtained by
substituting 2 toN in eqn. (4), resulting inλspl(a,c) = ln(1−2c)+λ0(a). Thus, the
boundary between the region of theN/2-cluster state and that of the desynchronized
state is given by:

ln(1−2c)+λ0(a) = 0. (6)

According to eqns. (5) and (6), we define in the(a,c)-space the following three
phases, named after those in GCM system[25]: (I)coherent phase, which is above
eqn. (5), (II)ordered phase, which is between eqns. (5) and (6), and (III)desynchro-
nized phase, which is below eqn. (6).
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Fig. 3 Time series ofxi
n (1≤ i ≤ N, N = 50). Traces for all state variables are superimposed. (a)

coherent state.a = 3.6,c = 0.3. (b) ordered state with two clusters.a = 3.6,c = 0.2. (c) ordered
state with N/2 clusters.a = 3.97,c = 0.3. (d) desynchronized state.a = 3.97,c = 0.125.

2.3 Connection dynamics

We proceed to study connection dynamics, which are largely influenced by the unit
dynamics discussed above. It is intuitively expected that connection weights would
be kept constant in the coherent and ordered phases and that they would show active
dynamics in the desynchronized phase. To confirm this in a quantitative manner, we
define a measure of the network activity, which represents the intensity of temporal
change in connection weights, as follows:
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A =
1

(N−1)2 ∑
i ̸= j

⟨|wi j
n −wi j

n−1|⟩, (7)

where⟨·⟩ stands for temporal average taken after an appropriate transient period.
This is the connection change in one time step averaged over time and over connec-
tions. Fig. 4a is the plot ofA against the parametersa andc. As expected, It can be
seen thatA is zero in the coherent and the ordered phases and that finite values of
A are observed only within the desynchronized phase. An interesting point is that
there are regions in the desynchronized phase whereA takes extremely small values,
and that the region of largeA values forms a complex structure in (a,c)-space.
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Fig. 4 Plot of the activityA (top panel) and the instabilityI (bottom panel) of the network against
the parametersa and c, obtained from the numerical simulation of our model composed of 10
units. The values ofA and I are calculated fromwi j

n values during the 1,000 steps after 100,000
steps of transient period. The network activityA represents the intensity of connection change and
the network instabilityI represents the fragility of network structure. See the main text for their
definitions.

Vanishing values ofA reflect diminishing connection change, which means the
appearance of long-lasting structure in the network. From Fig. 4a, it is expected
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that such network structures are present in the coherent and the ordered phases,
and also in a part of the desynchronized phase whereA shows extremely small
values. On the other hand, large values ofA reflect active connection dynamics.
Under such situation, it seems impossible for a stable structure to survive in the
network. However, there is a possibility that the change in connection weights is
due to fluctuations around some fixed values, which are kept stable over time. In
such a case, the network activityA takes a non-zero value but some stable structure
is preserved in the network. To check for this possibility, we define a measure for
the instability of network structure using the temporal variance of connection weight
around its mean as follows:

I =
1

(N−1)2 ∑
i ̸= j

(
⟨wi j

n
2⟩−⟨wi j

n ⟩2
)

, (8)

where⟨·⟩ is the temporal average as in eqn. (7). LargeI values reflect that connec-
tion weights have large fluctuations and are not fixed in time so that the network
structure is unstable. Fig. 4b is the plot ofI against the parametersa andc. By def-
inition, I = 0 in the area whereA = 0, which corresponds to the trivial fact that if
there is no connection change, network structure is maximally stable. An interesting
observation is that the high activity region in Fig. 4a seems to be separated into two
subregions; one with largeI values and the other with moderate, namely∼ 0.01, I
values. For example, ata = 3.8, the intervals 0.03< c < 0.07 and 0.07< c < 0.13
seem to belong to the moderateI and the largeI subregions, respectively. This im-
plies the possibility that dynamic but structured networks are allowed to exist in
certain parts of the desynchronized phase.

Based on these observations, we separate the desynchronized phase into three
regions (Fig. 5): (i) static region, characterized by extremely smallA values, (ii) dy-
namic region I, characterized by largeA values and largeI values, and (iii) dynamic
region II, characterized by largeA values and moderateI values.

2.4 Network structure

As mentioned above, in the beginning of the numerical simulations, connection in
the network is uniform and all-to-all. From this initial condition, the system develops
to various kinds of structured network, depending on the type of unit dynamics. Here
we run through the phases and the regions and see what type of network structure is
formed in each of the phases (regions) by examining the connection matrixwi j .

(I) Coherent phase: A snapshot of the connection matrix in this phase is shown
in Fig. 6a. In this phase, all-to-all connection is preserved as in the initial state. Con-
nection weights are, however, distributed around the initial values due to the con-
nection change during the transient to the asymptotic state, i.e., synchrony among
all the units. Once the synchronization is achieved, no further connection change
occurs.
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Fig. 5 A rough phase diagram illustrating the regions in the desynchronized phase. Letters in the
panel stand for static region (S), where static networks are observed, dynamic region I (D1), where
dynamic and unstable networks are observed, and dynamic region II (D2), where dynamic and
stable networks are observed. See the main text for the definition of the regions.

(II) Ordered phase: Snapshots of the connection matrix in this phase are shown
in Fig. 6b and c. In this phase, network structure depends on the clustering of units.
Once the clusters are formed, connections within a cluster are strengthened and
ones across clusters are weakened, resulting in vanishing connection weights be-
tween clusters. In the case of a 2-cluster state, the network separates into two almost
independent sub-networks, within which units are connected in all-to-all fashion
(Fig. 6b). As mentioned above, the maximum number of clusters isN/2. In anN/2-
cluster state, units form pairs and have connections only within the pairs (Fig. 6c).

(III) Desynchronized phase: This phase is separated into three regions.
(i) Static region: A snapshot of the connection matrix in this region is shown in

Fig. 6d. This region is characterized by low network activityA. In this region, most
units make pairs and each unit is connected only with its partner. Although their
connection strengths hardly change over time, decomposition and recomposition of
pairs occasionally occurs. Besides those units forming pairs, a few units that do not
form pairs remain. Their connection weights show rapid changes over time. The
dynamics of units forming a pair are not synchronized, but highly correlated, while
there is almost no correlation between units that belong to different pairs.

(ii) Dynamic region I: A snapshot of the connection matrix in this region is shown
in Fig. 6e. This region is characterized by high network activityA and high structural
instability I . There is no synchronization between any two units, and the correlation
between units is very weak for any pair of units. Due to these disordered unit dy-
namics, connection weights change intensely, and the network structure seems to be
random.
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(iii) Dynamic region II: A snapshot of the connection matrix in this region is
shown in Fig. 6f. This region is characterized by high network activityA and mod-
erate structural instabilityI . Similarly to the dynamic region I, there is neither syn-
chronization nor a significant correlation between any two units. Here the network
seems to possess a certain structure which is characterized by the concentration of
outgoing connection weights to a small fraction of units, although the connection
weights change as intensely as in dynamic region I.

Fig. 6 Snapshots of the connection matrixwi j in different phases/regions. The value ofwi j is
indicated by the size of the filled square at thei-th row and thej-th column. (a) Coherent phase.
a = 3.6,c = 0.3. (b) Ordered state with two clusters.a = 3.6,c = 0.2. (c) Ordered state with N/2
clusters.a= 3.97,c= 0.3. (d) Static region in desynchronized state.a= 3.97,c= 0.2 (e) Dynamic
region I in desynchronized state.a= 3.97,c= 0.15. (f) Dynamic region II in desynchronized state.
a = 3.97,c = 0.125.

In the rest of this section, we focus on the dynamic networks observed in the
desynchronized phase and study their structure and dynamics in detail.

2.5 Dynamic networks in the desynchronized phase

In this part, we focus on the networks observed in dynamic regions I and II, and
study the difference between the two networks in both structural and dynamical
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aspects. Here, we use the parameter values(a,c) = (3.97,0.15) for dynamic region
I and(a,c) = (3.97,0.125) for dynamic region II.

2.5.1 Network structure and its stability

To compare the structural properties of the networks in a quantitative manner, we
characterize their structure from the values ofwi j . First, we look at the distribution of
wi j values. Fig. 7a shows the distributions calculated for the networks from dynamic
region I and II. Though larger values are observed slightly more often in dynamic
region II, the distribution ofwi j values has quite similar shape in both of the regions,
meaning that the apparent difference in the network structure seen in Fig. 6d and
f is not due to the difference in the connection weights but based solely on the
manner in which they connect the units. Next, to assess how the distribution of the
connections differs across units, we look at the distribution of the sum of outgoing
connection weightsWout

i
n = ∑ j w

ji
n . Fig. 7b shows the distribution ofWout

i values for
the networks from dynamic region I and II. The distributions are clearly different.
In dynamic region I, the distribution is unimodal with the peak at around 0.7 and
shows exponential (or even faster) decay for large values. In dynamic region II, there
are two peaks in the distribution: the main peak is at 0 and the distribution shows
exponential (or slower) decay, while the other peak is at around 6, suggesting the
existence of a small group of units that have very largeWout

i values.

0 0.2 0.4 0.6 0.8 1

w

Dynamic Region I
Dynamic region II

F
re

qu
en

cy

100

10-1

10-2

10-3

10-4

ij

(a)

0 2 4 6 8 10 12 14 16

F
re

qu
en

cy

W

Dynamic Region I
Dynamic region II

100

10-1

10-2

10-3

10-4

out
i

(b)

Fig. 7 Distributions of the values of connection matrixwi j and those of the total weight of outgoing
connection weightsWout

i in dynamic region I and II. (a) Distribution ofwi j in dynamic region I and
II. Values ofwi j at the 500,000th step are collected from 10 simulations. (b) Distribution ofWout

i in
dynamic region I and II. Values ofWout

i at the 500,000th step are collected from 100 simulations.

As these distributions are calculated from the instantaneous values ofwi j , they
tell us nothing about how the network changes its structure in time. To illustrate
the temporal evolution of network structure, time series ofWout

i for the network
in dynamic region II is plotted for alli in Fig. 8. In this plot, units are separated
into two groups according to theWout

i value at the 107th step: units that haveWout
i
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values larger than 2 are plotted in gray, and the others are plotted in black. By ret-
rospectively tracing theWout

i values of each of the groups, it is confirmed that the
separation of units into the two groups is already evident at a very early stage of
the temporal evolution, namely at the 2.0×106th step or even earlier. The moderate
value of the network instabilityI in dynamic region II reflects this stable separation
of units into large and smallWout

i groups.
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Fig. 8 Temporal evolution ofWout
i in a network observed in dynamic region II. The values ofWout

i

at each 104 steps are plotted. Traces for all units are superimposed. The colors indicate the value
of Wout

i at the 107th step: units with aWout
i value larger than 2 are plotted in gray, and the others

in black.N = 100.

To assess this separation in a quantitative manner, we define an autocorrelation
function regarding the separation of units in the following way. First, as a prepara-
tion step, we define a membership functionµ as follows:

µ(Wout
i) =

{
1 (Wout

i ≥ 1.0)
−1 (Wout

i < 1.0)
(9)

This function indicates whether uniti belongs to the large or smallWout
i group. The

threshold value 1.0 used here is the average of the total outgoing connection weight
of a unit. With this function, we define the temporal autocorrelationCsep regarding
the separation as follows:

Csep(τl ) =
1
N ∑

i
⟨µ(Wout

i
n)µ(Wout

i
n+τl

)⟩, (10)

where⟨·⟩ is the temporal average as in eqn. (7). We measure the stability of the
separation by computing the decay ofCsep with the increasxe ofτl . A plot of Csep



14 Junji Ito and Kunihiko Kaneko

for different values ofτl is shown in Fig. 9. In dynamic region II, the correlation
decays very slowly and remains as large as 0.84 even for a lag of 107 steps, while in
dynamic region I, the correlation decays to almost zero within 106 steps. This shows
that the separation of the units into the high and lowWout

i groups is highly stable
in dynamic region II, while the separation is unstable, or never appears, in dynamic
region I.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000 100000 1e+06 1e+07

co
rr

el
at

io
n

time lag

c=0.15 (dynamic region 1)
c=0.125 (dynamic region 2)

Fig. 9 The temporal autocorrelationCsep(τl ) regarding the separation of units, plotted for different
values ofτl . See the main text for the definition ofCsep(τl ).

2.5.2 Mechanism of structure formation

In this section, we study the relationship between unit dynamics and the change in
network structure to reveal the mechanism of the structure formation.

In the dynamic regions, each unit is connected to many other units in a complex
manner. To gain an intuition about how the units interact with each other during the
course of structure formation, we examine the dynamics of the correlations between
a given unit and the others, by calculating the correlations during a short time period,
namely ten steps, and observing their temporal evolution.

In Fig. 10(bottom), the time series ofx1 in a simulation of a network in dynamic
region I and the correlations betweenx1 and the otherxis are shown. The temporal
dynamics of the correlations have the following characteristics: (1) strong positive
or negative correlation lasts for a certain number of steps, followed by a short pe-
riod with weak correlation; (2) after this period, the sign of the correlation reverses
in most cases. The unit dynamics in dynamic region II also show the same char-
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acteristics, though the interval between the succeeding weak correlation periods is
much longer than in dynamic region I.

Fig. 10 Time series ofx1 in a simulation (top) and temporal evolution of the instantaneous cor-
relations (for 10 steps) between unit 1 and the others (bottom), obtained from a simulation of the
network in dynamic region I. The correlations are plotted in a color scale, where green or red rep-
resents positive or negative correlation, respectively, and the brightness of the colors indicates the
magnitude of correlation.

The period of weak correlation sometimes appears simultaneously for all units.
Note that this simultaneous appearance of the weak correlation period coincides
with the approach ofx1 to the unstable fixed point (x= 0.748. . . ), which is typically
accompanied by a reduced oscillation amplitude (Fig. 10(top)). The dynamics of the
logistic map here is dominated by the oscillation around the unstable fixed point:
the state variables take values larger or smaller than this fixed point alternately.
According to the phase of this oscillation, units are naturally separated into two
groups: when the units of one group take large values, the others take small values,
and vice versa. This separation is not fixed over time. Indeed, each unit sometimes
fails to jump over the fixed point, which reverses the phase of the oscillation. As a
unit moves across the groups, the sign of the correlations to the other units changes
at once, because the phase relationships to the other units are flipped to the opposite
simultaneously. The periods with weak correlation seen in Fig. 10 correspond to
the occurrences of this movement of units from one group to the other. We call this
motion across the groups trans-group hopping (TGH). TGH is closely related to the
temporal change in correlations between units. Hence, the dynamics of TGH are
expected to have a strong influence on the formation of network structures.

To uncover the interaction between the dynamics of TGH and structure forma-
tion in the network, we study how the interval between two succeeding TGHs is
related to the process of the network structure formation. The TGH interval is mea-
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sured with the following method. After a transient period ofτ f steps, we fix the
connection weights and only allow for the evolution of the state variables. Then we
measure the TGH intervals for a certain time period and compute the average in-
terval, separately for each of the units. In this way we estimate the expected TGH
interval at an arbitrary stage in the process of the structure formation.

In Fig. 11, we plot the average TGH intervals of units againstWout
i for several

different values ofτ f , i.e., at several different stages of network structure formation.
Initially, TGH intervals are almost same for all units (Fig. 11a). Then, the intervals
become diverse among units (Figs. 11b-d). During these stages, TGH intervals are
positively correlated toWout

i , meaning that a unit with a largerWout
i value has a

long TGH interval. Finally, at later stages, the correlation between TGH interval and
Wout

i gets weaker (Figs. 11e, f), but the separation of units into the large and small
Wout

i groups remains. This observation tells us that during the process of network
structure formation, variety in the values ofWout

i among units is positively reflected
in TGH interval of the units: a unit with a largeWout

i value has a long TGH interval
(or a low TGH rate).
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Fig. 11 Average TGH interval of units plotted againstWout
i values. The intervals are calculated

with connection weights fixed afterτ f steps of connection dynamics. (a)τ f = 100. (b)τ f = 1,000.
(c) τ f = 5,000. (d)τ f = 10,000. (e)τ f = 50,000. (f)τ f = 100,000.

Next, we consider the opposite relationship, i.e., the influence of unit dynamics
on the formation of the network structure. Here we study how the TGH interval is
related to the correlation between units, which is directly reflected in the strength-
ening or weakening of connections. We measure the average correlationCi of unit i
to all the other units, defined as follows:



Self-organization of network structure in coupled-map systems 17

Ci =
1

N−1 ∑
j ̸=i

|⟨xi
nx j

n⟩−⟨xi
n⟩⟨x

j
n⟩|√

⟨xi
n

2⟩−⟨xi
n⟩

2
√
⟨x j

n
2
⟩−⟨x j

n⟩
2
. (11)

In Fig. 12, the average correlationCi , calculated in the network structure at the
10,000th step, is plotted against the average interval of TGH. A simple relationship
can be recognized betweenCi and TGH interval. A unit with a longer TGH interval
has a stronger average correlation. SinceCi gives a measure of the degree of the
increase in connections between uniti and the other units, this result suggests that a
unit with a longer TGH interval is more likely to strengthen its connections.
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Fig. 12 The average correlationCi of units plotted against the average TGH interval. The correla-
tions are calculated with connection weights fixed after 10,000 steps of connection dynamics. See
the main text for the definition ofCi

Combining the influences from unit to connection dynamics and the other way
around, the mechanism of network structure formation can now be understood as
follows. A unit with a lower TGH rate grows its connections more rapidly than the
others, and a unit with stronger outgoing connections decreases its rate of TGH. This
mutual enhancement amplifies the difference in the outgoing connection weights
among units. The consequence of this amplification is the separation of units into
the large and the smallWout

i groups observed in dynamic region II.
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3 Adaptive network of bursting units

In the dynamics of the logistic map, oscillation around the unstable fixed point is
dominant. Indeed, the mechanism of the network structure formation revealed in
the previous section is closely related to this type of oscillatory dynamics. Hence,
in order to infer the generality of such self-organization of network structure, it
is necessary to check whether a similar kind of structure formation is observed in
models with other unit dynamics. For this purpose, in this section, we consider a
coupled-map model which is composed of circle-map units.

3.1 Model formulation

The circle map, which is obtained by the discretization of a nonlinear phase oscilla-
tor, is defined as follows:

xn+1 = xn +ω +
K
2π

sin2πxn mod 1, (12)

whereω is the characteristic angular velocity andK represents the nonlinearity of
the map. As the parameterK gets larger, this map yields more complex dynamics
and finally gains the property of excitability, characterized by highly nonlinear re-
sponses to external perturbations due to the closely located stable and unstable fixed
points, as shown in Fig. 13. Here we use the parameter values corresponding to Fig.
13, so that each unit is an excitable system from a stable fixed point. We consider a
network of circle-map units, defined as follows:

xi
n+1 = f (xi

n +c∑
i ̸= j

wi j
n x j

n) (13)

wheref is the mapping function of circle map, i.e.,f (x) = x+ω + K
2π sin2πx mod 1

and c represents the strength of the interaction between units as in the previous
model. The dynamics of connection weightswi j

n are the same as in the previous
model (eqn. (3)).

Besides showing synchronization/desynchronization and clustering as in the pre-
vious model, this model exhibits a novel kind of collective dynamics, i.e. syn-
chronized intermittent bursting. In this section, we focus on the structure forma-
tion related to this type of dynamics; parameter values are set to(ω,k,c,δ ) =
(0.4,2.9392,0.1,0.01). The initial conditions in simulations are same as in the pre-
vious section: uniform, all-to-all coupling and random state variables.
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Fig. 13 The mapping function of the circle map.f (x) = x+ω + K
2π sin2πx mod 1.ω = 0.4,K =

2.9392. The filled and the open circles in the graph represent the stable and the unstable fixed
points of the dynamics generated by this map.

3.2 Unit dynamics

As mentioned above, our model shows synchronized bursting for the parameter val-
ues we use here. Fig. 14(top) shows the temporal evolution of state variables around
the beginning of a simulation. For most of the time, units stay near the stable fixed
point, the value of which is represented by the brightest color in the gray scale. From
time to time, units simultaneously show excursions from the fixed point, indicated
by the simultaneous appearance of darker colors for all the units. This excursion
does not last so long: most of the units return to the position near the fixed point
within a few steps.

We refer to the state where most of the units stay around the fixed point as the
resting state, and the state where most of the units show excursion dynamics as the
bursting state. The transition between the resting and bursting states is captured by
computing the dynamics of the mean of the state variables, or the mean fieldXn

defined asXn = 1
N ∑i x

i
n. The time series of the mean field corresponding to the unit

dynamics shown in Fig. 14(top) is plotted in Fig. 14(bottom). The resting state is
represented by periods of almost constant mean field, while the bursting state is
characterized by fluctuating mean field dynamics with a large amplitude.

This amplitude gets smaller as simulation time elapses. Fig. 15a is the time series
of the mean field during 37,000-38,000 steps. The resting and bursting states cannot
be clearly distinguished as in the early stage. This seems to indicate that the bursts of
units get less synchronized. However, although system-wide synchronized bursting
no longer exists, synchrony within subgroups of units is still preserved. Figs. 15b-d
are the mean fields of three subgroups of units. Transition between the resting and
bursting states can be observed in these mean fields, indicating synchronous bursting



20 Junji Ito and Kunihiko Kaneko

Fig. 14 Synchronized intermittent bursting of units in the model of coupled circle maps, observed
at the beginning of a simulation. (top) Time series of the state variablesxi

n. Values ofxi
n are plotted

in a gray scale, where the brightest color is assigned to the stable fixed point of unit dynamics. The
color gets darker asxi

n takes more distant values from the fixed point. (bottom) Time series of the
corresponding mean field.

of units within each of the subgroups. These subgroups show bursting with different
timings, which leads to the diminished fluctuation in the grand mean field shown
in Fig. 15a. Such separation of units into synchronizing subgroups is achieved via
the interaction between unit and connection dynamics. Indeed, the synchronized
subgroups can easily be identified by looking at the connection matrix.

3.3 Connection dynamics

Fig. 16 is the connection matrix at the 37,000-th step of the simulation shown in
Fig. 15. Units are clearly partitioned into three groups, each of which having a sin-
gle unit with massive outgoing connections. We call such units pacemakers, because



Self-organization of network structure in coupled-map systems 21

0

0.2

0.4

0.6

0.8

1

37000 37200 37400 37600 37800 38000
m

ea
n

time steps

0

0.2

0.4

0.6

0.8

1

37000 37200 37400 37600 37800 38000

m
ea

n 
of

 g
ro

up
 1

time steps

0

0.2

0.4

0.6

0.8

1

37000 37200 37400 37600 37800 38000

m
ea

n 
of

 g
ro

up
 2

time steps

0

0.2

0.4

0.6

0.8

1

37000 37200 37400 37600 37800 38000

m
ea

n 
of

 g
ro

up
 3

time steps

Fig. 15 Time series of the mean field, observed after 37,000 steps of temporal evolution. (a) The
mean field of the whole system. (b-d) The mean fields of three subgroups in the system. These
subgroups are identified from the connection matrix shown in Fig. 16. The groups shown in (b),
(c) and (d) are the ones driven by the pacemakers 1, 2 and 3 shown in Fig. 16, respectively.

the synchronized bursting of the units within a group is achieved in the form that
the group’s pacemaker drives the other units to burst. Note that the synchronized
bursting in the early time steps is mediated by uniform, all-to-all connection, mean-
ing that the mechanism of the synchronized bursting is different in the early and the
later stage of temporal evolution.

To illustrate the process of the formation of pacemakers, we plot the time series of
Wout

i values in Fig. 17. As mentioned above, there is no pacemaker at the beginning
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Fig. 16 Connection matrix at the 37,000th step of the simulation trial shown in Fig. 15. Pacemakers
are indicated by the arrows. The range of the units driven by each of the pacemakers are indicated
by the square. Note that, in the group of pacemaker 1, a new pacemaker (the 6th unit) which is still
mutually coupled with pacemaker 1 is being formed.

of the simulation. As time elapses, the distribution ofWout
i values starts to show

a bias. By the 20,000th step of the simulation shown in Fig. 17, a few units have
gained extremely largeWout

i values compared to the others. These units work as the
pacemakers. The separation of units into pacemakers and the rest is not stable over
time. Indeed, births and deaths of pacemakers can be seen in Fig.17, and this process
is accompanied by the reorganization of the groups of synchronously bursting units.

3.4 Mechanism of structure formation

In this model, the formation of network structure is closely related to the transition
between the resting and the bursting states. Noting that connection change hardly
occurs during the resting state, where all the state variables take similar values, we
can focus our attention on the connection change during the bursting state. As seen
in Fig. 14, the onset of bursts is highly synchronized among units in the early time
steps. However, the timing of the burst offsets is quite diverse among units: some
units take much longer time steps to return to the resting state. It is highly likely
that such units rapidly lose their outgoing connection weights to most of the other
units, which are already in the resting state and whose state variables have quite
similar values. This can be stated in the opposite way: the units that return to the
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Fig. 17 Time series ofWout
i . The length of vertical tics represent the values ofWout

i . This is the
same simulation trial as shown in Fig. 15.

resting state earlier than the other units are likely to grow their outgoing connection
weights.

Based on this consideration, the mechanism of structure formation in this model
can be summarized as follows. At the beginning, all units have the same amount
of outgoing connection weights. Through the temporal evolution, more and more
units lose their outgoing connection weight by failing to return quickly to the resting
state after each burst. This process leads to the concentration of outgoing connection
weights to a small fraction of units. Such units work as pacemakers and drive the
other units to burst synchronously. Once a group of synchronously bursting units is
formed, the connection between the units in different groups is weakened, because
they burst with different timings. Thus, groups are separated and gain a certain de-
gree of stability.

4 Formation of hierarchical network structure triggered by
external input

So far, we have considered the models composed of identical units and studied how
heterogeneous network structure emerges from the homogeneous condition. How-
ever, it would also be of general interest to study how externally induced hetero-
geneity influences the formation of network structure. Here we briefly review the
study of a model where the application of external input to a part of the system
triggers the self-organization of a nontrivial network structure[18].

The model is formulated as follows:

xi
n+1 = xi

n +ω +
K
2π

sin2πxi
n +

c
2π ∑

j
wi j

n sin2πx j
n + I i , (14)
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whereI i is the external input to uniti. This model is essentially same as the one in
the previous section, except for the slight difference in the manner of coupling. The
dynamics of connection weightswi j

n are same as in the previous models (eqn. (3)).
For appropriate sets of parameter values (for example, (ω , K, c, δ )=(0,4.1,1.0,0.1),

which is used in the simulations shown below) in the desynchronized phase, this sys-
tem shows self-organization into a nontrivial network structure upon the application
of a constant external input to an arbitrary unit in the system. In this study, network
structure is examined after mapping the network to a graph using digitization of con-
nections, i.e. considering only the connections having a large weight, namely larger
than 1.0, and ignoring weak ones. In order to examine the network structure using
the obtained graph, a proper measure that extracts a salient network structure is nec-
essary. By examining the connection matrix, we found that the generated network
structure is characterized by “layers” of nodes. Layers in the network are defined as
follows: first, we define the root node, which is the only node that belongs to the first
layer, and then, define the subsequent layers as the group of the units that receives
direct link from a unit in the previous layer.

In Fig. 18, the graph of the network generated under the application of an external
input to a single unit (unit 00 in the figure) is illustrated by using this digitization,
where layers are organized with the input unit at the root. Five layers are recognized
in this case. A surprising finding about the networks self-organized in this model
is that the most of connections are between neighbouring layers or within a layer,
and that only little fraction of connections are between distant layers. Indeed, in
Fig. 18, all the connections but one, which is drawn with dashed line, are between
neighbouring layers or within a layer.

Fig. 18 The graph obtained from the connection matrix by digitalizing connections with a certain
threshold. Circles represent units and the numbers inside are the unit IDs. Only unit 00 is supplied
with external input, and this unit is the only constituent of the 1st layer. The arc of the units next
to unit 00 is the 2nd layer, and the arc next to it is the 3rd layer, . . . and so forth. The lines between
circles are the links of the graph. Thin lines are the links directed from left to right and thick lines
are bidirectional links. Dashed lines represent NLSC, i.e., the links between distant layers.
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Here, we denote the connections between neighbouring layer or within a layer
as layer structural connections (LSC) and the connections between distant layers as
non-layer structural connections (NLSC). In Fig. 19, the numbers of LSC and NLSC
are plotted in time. Note that the external input is applied only between 10,000th and
30,000th steps. After the application of input at 10,000th step, the number of NLSC
shows a substantial decrease. Moreover, immediately after the cut-off of the input,
the number of NLSC recovers to the same level as before the application of the input.
This result clearly shows that the formation of the layered structure is dependent on
the application of external input.
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Fig. 19 Time series of the numbers of LSC and NLSC. The onset and the offset of external input
are indicated by the arrows in the graph. See the main text for the definitions of LSC and NLSC.

Some interesting dynamical properties such as a power law distribution of the
lifetime of unit in a layer have been observed in this model, but the mechanism for
this type of structure formation has not yet been uncovered.

5 Summary and discussion

To summarize, we have introduced three types of coupled map models in order
to study the self-organization of network structure in adaptive networks. First we
have shown the result of a coupled logistic-map system with Hebbian connection
dynamics. In this system, we found spontaneous separation of units into two groups,
one consisting of units with strong outgoing connections and the other consisting of
units with weak outgoing connections. Only a small fraction of units belongs to the
former group, and the rest of the units belonging to the latter are just driven by the
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dynamics of the former. Thus, the units with strong outgoing connections have more
influence on the dynamics of the other units. In this sense, the emergence of a group
of units with strong outgoing connections can be interpreted as the emergence of
leadership in a population.

A similar self-organized network structure was observed in the second type of
model, i.e., a coupled circle-map system. In this model, units self-organize into some
synchronously bursting groups, and each group has a pacemaker unit which has
strong outgoing connections and drives the dynamics of the other units. Though this
model shows quite different unit dynamics from the logistic map model, its self-
organized network structure is similar to that of the logistic map model in the point
that only a small fraction of units attain the influential positions. This suggests that
the emergence of leadership may be a general phenomenon in some class of adaptive
networks.

It should be stressed that in these models all units are identical and the initial net-
work structure is uniform, all-to-all connection. This means that the leaders emerge
spontaneously from a homogeneous population, without any individual differences
among units. In the third model, where external input is applied to only one unit in
the system, units are not homogeneous. The self-organized structure in this system
is more complex than in the other models: units self-organize into a hierarchical
structure, where the unit with external input is located at the root and the other unit
form several layers with decreasing centricity from the root node. There is a rule
in the connectivity between the units in different layers, i.e. connections between
distant layers are avoided. Thus, application of input to only one unit causes global
reorganization of connection structure. This might be regarded as another example
of the emergence of a leader which has strong influence on the behavior of the whole
system.

We studied the mechanism of structure formation for the first model in detail,
and extracted the steps of the process. First, variability among units is created by
unit dynamics (the variability in the TGH interval is created by the chaotic dynam-
ics). Then, in the next step, this variability is imprinted in connection weights (there
is a simple relationship between TGH interval and the average correlation of units,
which is directly reflected in the connection change). Finally, the connection struc-
ture influences the unit dynamics (we confirmed that units with strong outgoing
connections have long TGH interval, resulting in the amplification of the variability
in TGH interval). Thus, a closed loop of the interaction between unit dynamics and
connection changes is formed. This results in a stable growth of network structure.

Such a feedback process is not properly at work in the second model, which
might be the reason for the weaker stability of the structure in this model. There, the
timing of returning to the resting state after bursts is distributed, and this variation
is reflected in the outgoing connection strength. Up to here, the process is quite
similar to that in the first model. However, the last step is missing in the second
model, and hence the feedback loop is not closed. If there were a process that makes
pacemakers return quickly to the resting state, the network structure in this model
should be stable. Instead, this model has a process such that a stronger outgoing
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connection enhances the burst synchrony within a group, which only weakens the
connections between units in different groups.

We expect that the mechanism of the structure formation we have found here is
rather general in adaptive networks with mutual feedback between chaotic dynam-
ics and coupling with Hebbian-type dynamics. These three steps for the structure
formation clarified above will be discovered in other class of models of adaptive
networks where the emergence of leadership (or strong heterogeneity) is observed,
or, conversely, it will be possible to design a system to form leaders spontaneously
from a homogeneous population by implementing these three steps in the system’s
dynamics.
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