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Fractal Basin Structure
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The basin structure of a class of one-dimensional mappings is studied. In a model proposed by the
present authors, the basin of attraction is separated into uncountable pieces of open intervals and has a
kind of self-similarity. Symbolic sequences are used to elucidate the structure. The way of breakdown
of the structure due to a noise is studied on the ba51s of the analysis using symbolic sequences. The effect
of noise on a crisis is discussed. :

§ 1. Introduction

Revealing novel and essential aspects in nonlinear physics is one of the most impor-
tant problems in our age. The recent advance in this field has thrown light on various
phenomena, such as the period-doubling, intermittency and collapse of tori. There
remains, however, a fundamental problem, characteristic of nonlinear phenomena. That
is the analysis of basin structure in multibasin systems.”~'?

More than one attractors can coexist in a lot of nonlinear systems. Typical and
simple examples appear in certain one-dimensional mappings®~*"* and in two-dimensional
mappings.”~'" Mandelbrot” has shown that the basin boundary of a certain analytic
map on the complex plane is fractal, which has attracted many authors and has been »
investigated.®'®” On the other hand, one of the present authors (K. K.)'¥ has found the .
“self-similar basin structure” in a two-dimensional map and has related it to the stretching
at the periodic saddle. ‘

In the present paper, we focus our attention mainly on the basin structure itself, not
on the basin boundary. g

In §2, “fractal basin structures” are revealed by using a class of one-dimensional
mappings. The structure is caused by a topological chaos'® present between coexisting
attractors. It has infinitesimal structures and has a kind of scaling property.  We
analyze the structure utilizing symbolic sequences, i.e., so-called “itineraries”.'® Each
-unit of the basin structure. corresponds. to a symbolic sequence and the characteristic
features of the fractal basin structures are understood by the itineraries.

In §3, the effect of noise on the structure is analyzed. We introduce the notion of
probability into the basin of attraction. The probability to go to one attractor is calculat-
ed on the basis of the itinerary analysis. The small structure is destroyed by a small
noise, while the large one survives. . The scaling between the size of the structure and the-
strength of the noise is represented by a “stability number”, which is given through the
above analysis. In that section we make use of some properties of linear stochatic
difference-equations, shown in the Appendix.

Section 4 is devoted to the critical behavior near the crisis.!
the lifetime of the chaotic transient'® is calculated.

Y The effect of noise on

*) Multibasin can appear in a one- dlmensmnal map on an interval with multi-humps or positive Schwarzian
derivative.
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Discussion and a summary are given in §5.°
§ 2. Fractal basin structure

In this section we present a typical example of the one-dimensional iterated mappings
which exhibit a fractal basin structure. Evidently our model must have at least two
attractors. For simplicity, one of the attractors denoted by (+) is assumed to be in the
region (1, o), and the other (—)in (—co, —1). It is also assumed that each of these semi-
infinite intervals is a part of the basin of attraction of the attractor contained init. Under
these approximations it is necessary for the fractal basin structure to occur that a
topological chaos and a set of points mapped into the outer regions (1, ) and (—o, —1)
exist in the remaining interval [—1, 1]. One of the simplest models of such mappmgs in
the interval is the following piecewise linear one:

xn+1=f(xn), o “ - (2-1)

filr)=—148"z+1) for —1=xr=—a(l—B)/ (a+h),
f(x)=y felx)=—a""x for [x|<a(1-8)/(a+8), o (2-2)

frlx)=1+8"Yz—1) for a(1—-8)/ (e+B)=x =1,

where 0<2<1 and 0< B<1/2. For later convenience, we give here also the inverse
functions of (2-2).

£ )= —1+8(z +1),  (@23a)

fex)=—arx , - (2-3b)
fr x)=1+8(x —1). (23c)

When @ +28>1, this model has a chaotic attractor [—(1—28)/(a+R8), (1—8)/ (a+8)]
and its basin of attraction is the whole open interval (—1, 1). As @+28 decreases, the
chaotic attractor extends its domain, and at @+28=1, it touches the unstable fixed points
*1. Such an event is called a crisis and extensively studied by Grebogi et al.*¥ For
@+28<1, the chaotic attractor disappears but the topological chaos remains to exist . The
graph of the function f(x) in this case is deplcted in Fig. 1. Here, if a point comes into
X the region (26—1, —a) after a number of
1 : , iterates of the mapping, it escapes from the
interval [—1, 1] to enter the right outer
region (1, ) after one more iterate. On the
other hand, once a point enters the interval
_ o 128 : (@, 1—28), it jumps into the left outer region
| T B o 1 Xn (—oo, —1) at the next. step. Namely, the
preimages of points in the “gate” (28—1,
—a) belong to the basin of attraction of the
attractor (+), and the preimages of points in
the other gate (@, 1—28) belong to that of
the attractor (—). These two types of
Fig. 1. The piecewise linear mapping r»+1=f(z,) Points make an infinite number of open inter-

when o+28<1. : vals which are pieces of the basins of attrac-

-1
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Fig. 2. The fractal basin structure exhibited by the mapping f in the intervals (a) [0, 1] and
(b) [0,0.15]. Here the parameters are chosen to be #=8/11 and B=2/21. Five hundred points
were chosen in_each interval to examine to which basin they belong. In the shaded region the
-orbits from the representative points hit the gate to the attractor (+ ) (28—1, —a). The large
scale structure is identical in both figures. Though the fine structure is seen apparently different,
the appearance of it depends on the representative points, because the structures smaller than
the coarse graining length are present.

- tion individually. Moreover, there are infinitely many such intervals between any two of
them. The structure has a self-similarity, that is, if we magnify a region containing an
infinite number of the pieces of the basins by an appropriate scale, the identical structure
to the original one appears. This is the fractal basin structure which is the center of our
interest. In fact, the boundary of the basins makes a fractal set or a Fatou dust whose
dimension D is determined by the relation 2”+28°=1." An example of the fractal basin
structure is shown in Fig. 2.

Now we introduce the itinerary according to the book of Collet and Eckmann as
follows. The itinerary I(x)=1Io(x )i(x ) is either an infinite sequence of symbols L’s,
R’s and C’s or a finite sequence of L’s, M’s and C’s followed by G* or G~. The jth
character Ii(x) or I(x) is defined by the following rule.

L if f/(x)el—1, 26— 1],

G* if fx)e(28—1, —a),
Ii(x)=1 C if fi(x)e[—a, a], ©(2-4)
' G~ if f(x)e(a, 1-28),

R if fA(x)e[1—24, 1],

where f7(x) denotes the jth iterate of the mapping f.

We define here also some notions concerning itineraries for the later use. A symbolic
sequence [ is called admissible if a number x € [—1, 1] exists such that I(x)=1. Thusall
of the infinite sequences of L’s, R’s and C’s and all of the finite ones followed by G* or G~
are admissible in our model (2-2). The cardinality of a symbolic sequence I is denoted
by |I|. Furthermore, the set of points indicated by I (it is not necessary to be admissible)
is represented by J (I), that is,

IJI)={x| Lx)=1I for 0§]'<|I|}. (2+5)

For example, J(G*)=(28—1, —a) and J(R)=[1—28, 1]. Especially the set J(I) is
empty unless I is either an admissible sequence or a finite one of R’s, L’s and C’s which
we call a cylinder. The measure of J(I) is denoted by |I(I). The ordering “<”
between different admissible sequences can be defined also in the same manner as in the
case of unimodal mappings.'® At first, we define the symbols’ order that L< G*< C< G~
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<R. Then we say A<B for different admissible sequences A and B if either fhere afe'

an even number of C in AoA:-*A:i-1=BoBi---B;—: and A;<B: or there are an odd number
of C in AvAiA:1=BeB1-B:-1 and B:<A.. This ordering is clearly complete and
_leads to the following relations: ’

If x<zx’, then I(x)<I(x’)

and if I(x)<I(x’), then x<x' .

The points in the interval [—1, 1] can be classified according to their itineraries.
Particularly, the following two statements hold:

(i) For an admissible sequence I of an infinite length (i.e., |[I|=c0), the point x € I (I) is
unique and the orbit initialized at x either is chaotic in the sense of Li and Yorke,'® or
eventually falls onto an unstable fixed point or cycle. Such points make a Cantor set.
(ii) For an admissible sequence I with a finite length [I|=m+1, the set J(I) is an open
interval which is a piece of the basin of attraction for the attractor (+) or (—) correspon-
ding to the last character of the sequence I» being G or G, respectively.

In fact the statement (i) does not always hold for the models exhibiting the fractal
basin structure. Some more conditions are needed for the mapping function f in (2-1), e.g.,
it is necessary that there is no stable point or cycle in [—1, 1] and it is sufficient that
f is piecewise monotone with its derivative |df/dx|>1 in the region such that [f|<1.
When the latter condition holds, we can construct the sequence of closed intervals Jo, I,
5 defined by I »= Y (Loi--I.) for the infinite admissible sequence I =1L L to satisfy
|9 nial/ |9 ol=(max |df/dx|)"*<1. Consequently this sequence converges to & point as »
goes to infinity.

Now, the self-similar structure of basin is evident from that of the symbolic sequences
and the statement (ii). The former means that the set of all finite admissible sequences
is transformed onto itself by the shift operation, where the shift operator % is defined by
F(LLL#*)=L1. Thus the statement (ii) indicates that the set of the pieces of basins
{I(I): I € X} generated by the set of finite admissible sequences X such that the set of all
the finite admissible sequences is obtained by a number of the shift operation, contains the
identical structure to the .set of all the pieces of basins. In other words, the interval
corresponding to a cylinder has the same basin structure as the whole interval [—1, 1]
except for its scale. : , .

In fact we can construct a linear homeomorphism f,: J(s)—-[—1, 1] for the cylinder
s with the length |s|=m in the following form:

‘ fs:fSM—xome—zo'”ofSo: ‘ | : (2'6)

where fog(x) means f(g(x)). Its inverse is given by

Fo = falofateo fak, . | @

This allows us to obtain the interval J(I) for the finite admissible sequence I given by
Ii=s; for 0=j<m—1 and In=G(=G" or G7). It is written as

IID=£, (I (G (2-8)

Afterwards we also write f; in place of f, when the above relation exists between
I and s. '
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If a function g is linear, the nth iterate of ¢ isv easily obtained, that is,

1A"

if g{x)=Ax+B, then g”(x) A"r+——=— 1= A

(2-9)

Thus if the admissible sequence has the repeated structure of a shorter sequence, the
interval for it is easily obtained. For example, if I=C"G*=C--CG", the 1nverse
homeomorphism (2-7) is

A x)=fc™x)=(—a)"x. (2-10)
By using Eq. (2-8), we have
J(CmGH)=((—a)y™2B—1)(—a)™"). (2-11)

The length of the interval |9 (I)| is more easily derived. If the length of sequence II |
=m+1 and the number of C’s contalned in I is [, it is given by
|9 (D)= a'8™ " (1—a—28). S (2:12)

This reflects the scale invariance of the fractal basin structure having two scales @ and 8.
If we make one of the scales vanish, it appears a self-similar structure with a single scale.
The graph of the mapping f in each case is shown in Figs. 3(a) and (b). Here the
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Fig. 3. The graphs of the mapping functlon J in the various 11m1ts (a)a—0, (b)3—-0, (¢c) -0 in fi
only and (d) 80 in fr only.

—
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continuity of f is lost. In Fig. 3(a), we have shown the case =0, in which J (G*) comes
into contact with J(G~). The topological chaos remains to exist in this case. Thus the
fractal basin structure also survives. On the contrary, in Fig. 3(b) we have shown the
case =0, in which the topological chaos disappears. Then, the fractal basin structure
also vanishes. Instead, the stripe structure of basin'” appears. Here a self-similarity
can be seen only about the origin, which results from the fact that there remains only a
- type of cylinder C”. We can also consider the case that £ in the left or right domain only
becomes zero. The graph of f in each case is shown in Figs. 3(c) and (d) respectively.
Remark also that the continuity is lost at a boundary of [—1, 1]. In these cases, the
fractal basin structure remains to exist as in the case Fig. 3(a). Besides the scale
invariance, it can also be easily shown by using (2:12) that the sum of the length of the
intervals corresponding to the finite admissible sequences equals the length of the whole
interval [—1, 1]. :
, Our above analysis has been based upon the piecewise linear model defined by (2- 2)
However, it can be applied with a little modification to models with the mapping function
piecewise monotone in the region where the value of the function is in the interval
[—1,1]. An example is the following model:" :

fx)=Ax*+(1—-A)x . | (2-13)

For A>4, this model shows the fractal basin structure with many scales.
§3. Noise effect on the fractal basin structure

In this section we study how the fractal basin structure described in the last section
is destroyed by a noise added to our model. Therefore the mapping (2-1) is modified into
the following stochastic process:

Xnon=f(xn)+7n, / (31)

where the noise {7} is assumed to be gaussian white and stationary for simplicity, that
is, '

<7n>=O, <77n77n'>=€6nn’. . (3'2)

The present basin should become stochastic conceptually. Therefore, we will treat
the probability p.(x) that the orbit started from the point x enters the right outer region
(1, o) when it leaves the interval [—1, 1] for the first tlme We evaluate this quantity
approximately in the following.

If the point x lies in the open interval J (I') corresponding to the admissible sequence
I with the cardinality [I| =m+1<co, most of the sample paths of the stochastic process
(3-1) should trace such trajectories that /7 (x)€ J(I;) for j<m in the case of small . If
it is the case, we may replace Eq. (3-1) by the following linear stochastic process:

Xnir=fn( Xn)+ B (33)

within a fairly good approximation. Here the domains of the functions f;, are extended
to the entire real number (—oo, o), This type of equations will be discussed in the
Appendix and the results obtained there are used here. Namely, for the initial distribu-
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tion Ps(X)=08(X —x), the distribution after the xth iterate of the mapping (3-3) is given
by

(X_xn)z

P”(X):/Z}r—onexp{——%n__}’ (3-4)
where the parameters are defined by »
xn:fln_1°ﬁn_2°"'°ﬁo(x )7 (3'5)

On= EG112Gim-2" 0 1(0)
= €G220 gre(1), (3-6)
together with the functions‘ g defined by
| gelo)=a?o+1, ,
gr(0)=gi(0)=B"c+1. (3+7)

Our next approximation is that the sample paths entering J (I) after the mth iterate
should go to the same attractor as in the noiseless case and that other sample paths are
expected to go to each attractor with probability 1/2. Under these approximations, the
probability p+(x) can be written as

pe(x) =31 [, Um)Pm(X)dX},_ XS

‘where the sign * corresponds to that of the symbol I,=G* or G".

Since the distribution Pr(X') is gaussian having the center at X =x» in the interval
J (I») and the variance on, the integral on the right-hand side of (3-8) gives almost unity
if the distance between x» and the nearby endpoint of J(I) is much greater than the
standard deviation von. As von is increased, the value of the integral gradually
decreases and changes largely when the two quantities become comparable. Finally the
integral becomes nearly zero for vo= much larger than the distance. Our approximate
result (3-8) becomes wrong in the latter case, because then the effect of the paths that
escape from the interval [—1, 1] before arriving at J (I») cannot be neglected. Thus, in
that case, the integral in (3-8) is replaced by

2 [ o P XVIX ~ [ PAX)aX]. | (3-9)

Here, we have neglected the influence of escapes upon the later distribution, because it is
expected to be small. : ‘

Figure 4 shows the change of the value of p.+(x) as a function of the strength of noise
V€. Asisshown in this figure, it is possible that a point originally in a basin of attraction
of one attractor is apt to:prefer going to the other due to the noise. It is nothing but the
reflection of a nearby large structure, which is comprehended through (3-9).

When the integral in (3-8) becomes negligible even for the center of the interval g ),
the structure of I cannot be seen in the function p+(x ). The condition for it is expressed

as



42 S. Takesue and K. Kaneko
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By using (3-7) and setting 6;=g1m_,°g1m ,° "

°gn(0), it is rewritten into the following
form:

05 ’
/E>>1_“T‘2B. C(3-11)

The right-hand side of the above inequality
in expressed only by the nature of I. There-
fore, it represents the stability of the struc-
103 10! ture I against the noise. The meaning of it
3 is as follows. If the standard deviation of
Fig. 4. ’Ijhe probability p.(x) for x=—0.592509 as a noise ve is much less than this stability
function of vVe. Dots represent the results of the . .
numerical simulation in which a thousand trials number, t_he structl.lre of I'is essentlally. th.e
per point were exeéuted. The solid line was ~S&Mme as in the noiseless Case’ that is, it is
obtained from (3-9). decided almost deterministically to which
attractor the points in the interval J (I') should go. If Ve is of the same degree as the
stability of I, the structure I remains to exist but becomes stochastic. On the other hand,
when the condition (3-11) is satisfied, the structure of I is destructed and p.(x) varies
slowly and in the interval J(I). :

The stability number is indépendent of the first character of the symbolic sequence
because ¢1,(0) is always unity. Thus for example, the structures CRCLG* and RRCLG*
have the same stability. It is also independent of the last character G* or G- owing to
the symmetry in our piecewise linear model. Between sequences with a common first
character, the stability numbers are approximately in proportion to the length of intervals
indicated by the sequences. In fact, the stability becomes exactly proportional to the
length of the interval, if the constant terms on the right-hand sides of (3-7) are omitted.

We have carried out the numerical simulation in order to see the behavior above
described. Figures 5 show how the fractal basin structure in the interval [—0.7085,
—0.6985] is destructed as the strength of noise ¢ is changed.  Here the parameters are
chosen to be @=8/11 and #=2/21, at which this interval contains J (CRCL)
=[—0.7083825266- -, —0.698787504--]. The most stable structures in it are CRCLG* and
CRCLG™, and the1r stability number is 2.6942:- X107, The standard deviations of the
noise ve are 5X107°, 1X107* 2X10™* 4X10~* and 8 X 10~* respectively. We have chosen
five hundred points equally separated in the interval and have executed a thousand trials
a point. The ratio of the trials in which the trajectories have gone to the right outer
regions (1, o) is shown in these figures.

As a is relatlvely large, the series of the structures CRCLC "G(n=0,1, 2, --) is
dominated in J(CRCL). In Fig. 5(a) the series is observed up to %#=9 and some other -
structures are also seen between them. In Fig. 5(b), however, every other structure has
almost vanished, Though the series keeps existing up to #=7. Figures 5(a)~(e) show
that the number of the observed structures in the series decreases by about two as the-
standard deviation of noise is doubled.. This is consistent with our analytical results,
because the stability defined in (3-11) is roughly halved by the increase of # by two.

0

10 10°
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Fig. 5. The probability p+(x) in the interval
[—0.7085, —0.6985] for the variety of ve: (a) ve
=5x%107%, (b) Ve =1x107%, (c) Ve =2x107%, (d)

The in-

and (e) vVe=8x10""
J(CRCL)=(—0.7083825266-"*,

Ve=4x10""

terval contains
—0.698787504 -+~ ) which is between the arrows on
the upper horizontal axis.
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These figures also show that the height of the top (or the depth of the bottom) in a

structure decreases and the width of it is widened to absorb the nearby fine structures with
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the increase of ve.

The self-similar structure of p.(x ) is evident from Figs. 6(a) and (b). These are the
magnified pictures of Fig. 5(a) around the center of the interval. These figures are very
analogous to those in the original scale and having larger ve. In fact, every interval
corresponding to a cylinder has this kind of similarity, that is, p:(x )’s for given two such
intervals show similar graphs if the ratios of v& to the stability. of the most stable
structure in each interval are the same. This has been ascertained by the numerical
simulation. :

The same kind of similarity is also observed in the escape time #* from the interval
[—1, 1]. Figures 7(a) and (b) show the behavior of #* as a function of initial value.

In general models other than the piecewise linear ones, the stability of a structure is
hardly written down. However, it is still independent of the first character of sequence
and should be approximately proportional to the width of the interval.
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Fig. 6. Enlargements of the intervals (a) [—0.7055, —0.7015] and (b) [—0. 7045, —0.7025] in Fig. 5(a).
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Fig. 7. Escape time »" vs initial value in the mterval [—0.7085, —0.6985] for the noise. amphtudes

(a) /e =107°

and (b) Ve =10"*,
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§4. Noise effect on the transition

In this section we discuss the effect of noise near a crisis in a general one-dimensional
mapping, because this type of transition from chaos to transient chaos can be ac-
companied by the appearance of the fractal basin structure.

For simplicity we restrict our problem to the case that a chaotic attractor exists in a
region and that its basin of attraction is separated by an unstable fixed point. When the
chaotic attractor collides with the unstable fixed point, the transition to a transient chaos
occurs. Moreover, the noise is assumed to be stationary, gaussian and white. Thus, the
stochastic process treated in this section is represented by (3-1) (where f(x) is general)
and the probablhty density o of the noise 7 is given by

- o(n)= /—exp( g:) (4-1)

In the following, the mean escape rate from the chaotic region (i.e., the basin of the
chaotic attractor) is asymptotically estimated for small € when the bifurcation parameter
is on the chaos side.

Without loss of generality, we can put the unstable fixed point at the origin and the
chaotic region to be the negative part of the real number. The distance between the
origin and the zth order maximum of f at X =x* in the chaotic region is denoted by 4.
Thus, the function f is approximated by

AX)=~h—alX—2*F (4-2)

near X =x*. Because of the mixing property of f in the chaotic region, the quasi-
stationary distribution which is almost the same as the invariant measure P(x) in the
noiseless case is realized in a few iterations. Then the mean escape rate » is given by

r=[" av fax P()ely—/(x)). (4-3)

If P(x)is sldwly varying near x*, (4-3) is evaluated as
P(x*) htalx—x*F B »
LA [ar Bric( A=) (48)

by using Egs. (4 1) and (4-2), where Erfc(x) JZe vdt. The integral in (4-4) is evaluated
for the following two cases (i) 2>+v2¢ and (ii) #<+/2¢. Then we have

1z ’
re~z P( *)F( )( hsa )1 e ¥?¢  for Case (i), (4-5a)
* 1/z
z%(—.vff ) r(E+3) for Case (ii). (4-5b)
Thus we have obtained the e-dependence of » (i) roce!/#*V2g=72¢ and (ii) rocel/?,
respectively.

If there are more than one pomts at Wthh f(x) touches the unstable fixed pomt 7 is
obtamed by adding the results by (4-5) at respective points. However, when the points
have some correlations, the invariant measure cannot be used for P(x ) and the effect of
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Fig. 8. The mean escape time from [—1, 1] vs strength of the gaussian noise vz. The parameters
in f are @=1/10 and 8=9/20. ‘As the distribution of the escape time is Poyissonian, the mean
escape time is written as ™! by using the mean escape rate . The dots represent the results of
the simulation. The solid line follows from (46). They agree very well with each other.

the correlation should be taken into account. ~This applies to our piecewise linear model
(2:2). When e+28=1, f(x) touches the unstable fixed points +1 at xr==+1 and z =a.
As f(£a)=7F1, the invariant measure P(x) cannot be used for r==+1. In this case, we
transform P(x) by using the Perron-Frobenius operator and substltute the result. into
(4-3) in place of P(x). Thus we obtain

=/ e BB~ 1+8)"). (4-6)

Equations (4-5) and (4-6) agree well with our numerical simulation. See Fig. 8.
§5. Discussion

In this paper we have investigated the fractal basin structure, which appears in a
simple one-dimensional mapping. When this structure appears, the notion of basin
boundary has to be changed. "The boundary consists of the points in a Cantor set. The
Cantor set reflects on the topological chaos. Thus, we can detect the topological chaos,
which itself is not observable, through the fractal basin structure.

The complicated behavior of basin has already been noticed in Ref. 11) as a self-
similar stripe structure. In that case, the boundary is not Cantor-like. Thus, the fractal
basin structure is 4 more complex notion than the stripe structure. The one-dimensional
version of the stripe structure is realized only if #=0 in the model (2-1).

The model we investigate in the present paper is mainly a piecewise-linear map with
two gradients ¢”! and 87'. The fractal basin structure, however, is a rather general
property which appears in a system with more than one basins separated by transient
chaos. It may also appear in a noninvertible circle map if two stable cycles coexist. In
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the general case, a fractal basin structure is charcterized by infinite number of scales in
contrast to two scales (¢ and 8) in the model (2-1). - In this case, however, our symbolic
approach is still valid and the essential feature of the structure can be understood through
the present theory. ,

In a system with differential equations or a higher dimensional mapping, fractal basin
structure is also expected. If the number of the direction of the stretching is only one, its
basin structure will be explained by the present theory. If the number exceeds one, its
basin structure can become more complicated, though the analysis of it will be left to the
future. \

In §3, we have studied the effect of noise. In experiments, the noise is inevitable. It
will be of importance to perform the experiments by changing the initial condition of the
system and to measure the probability that the state is attracted to. one attractor, if the
system has more than one attractors. Our results in §3 predict that
i) the probability p.(x) as a function of initial condition x has a self-similar structure
with many scales, up to some magnitude, which is determined by the strength of noise (see
Figs. 5 and 6), and
ii) if the strength of noise ¢an be controled, the probability p. for some initial condition
shows an oscillatory decay towards p+=1/2 as the strength is increased (see Fig. 4).

In §4, the mean lifetime of the transient chaos near the crisis is calculated in the
presence of noise. Depending on the ratio of the strength of noise against the distance
from the critical point, two types of behavior and the crossover are obtained for the
expression of the mean lifetime. It will be of importance to check these results exper-
imentally.
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Appendix _
—— Linear Mapping with Gaussian White Noise ——
We consider the folloWing discrete time linear stochastic process:
Xni1=fu(Xn)+ 02, (A-1)
where
flX)=72X+0n, (A-2)
and the noise {7~} is assumed to be gaussian white but non-stationary, that is,
n>=0, D> =endmmr, (A-3)
In other words, the probability density at 7.=7 denoted by e.(7) is given by |

__n

__1 ’ ‘
0= ey el ) e
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Then we can rewrite the Langevin type equation (A-1) into the Fokker-Planck type
equation. Writing the probability density at X,=X as P.(X), we have

» Pn+1(X)=fdxp(X—fn(x))Pn(x)

. ‘ 2 .
T Pl {AXETE =8 (A-5)
As the equation (A-1) is linear, a gaussian distribution is mapped into another gaussian
by this stochastic process. Even if an initial distribution is not gaussian, it is always
represented by a sum or an integral of gaussian. Thus we may put

e s I e

Substituting this form into Eq. (A-5), we obtain

1 _ (X_fn(xn))z}. (A-7)

Pn+1(X)= /Zﬂ(6n+0n7n2) exp{ 2(€n+(7n?’n2)

This leads to the following mappings of the parameters r» and o, ,
xn+1:fn(xn), ‘ (A8)
0n4;1:0n7n2+§n59n(0n)- (Ag)

Consequently if the initial distribution Po(X)=8(X —x,), the distribution after the nth
iterate P.(X) is given by (A-6) and its parameters are written as

Zn=fn-1°fa-2°"° fo(Xo), o (A-10)
On=gn-1°gn-2°"""°go(0)
. = Gn+2°gn-2°""-°g1(€o). (A-11)
Especially when the model is stationary, i.e., yn—y, 8»=8 and e,=c¢, we have

1—7

Tn=7o c‘>‘+7 Zo, . (A-12)
_ 1_7271 . . .
On= 1_72 €. (A 13)
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