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For a coupled map lattice with a medium strength of nonlinearity, pattern selection and competition occur. Intermittent col-
lapse of the selected pattern is found as the increase of nonlinearity. The intermittency is studied through the spatial and spatio-
temporal power spectra. The latter show a flicker-like noise at low frequency only for modes of wavenumbers corresponding to
the selected patterns. The scaling analysis with the change of the wavenumber and the window size is performed.

1. Introduction and model

Turbulent phenomena can be seen in a variety of
systems, such as fluids, optics, solid-state physics,
chemical reactions, liquid crystals, plasmas, and also
in biology. One promising approach to such systems
is to regard the turbulence as spatiotemporal chaos.
For this approach the construction of a field theory
of chaos based on a simple model is essential.

One of the most remarkable successes in recent
field theory is lattice gauge theory [ 1]. Following the
spirit of the theory, we have proposed a lattice chaos
model using coupled maps [2-5].

A coupled map lattice is a dynamical system with
a discrete time, discrete space, and continuous state
[2-13]. As a simple and standard model for the spa-
tiotemporal chaos, the following diffusive coupling
model is used [2,4,6,10-15]:

Xp1 (D) = (1= €)f(x, (1))
+ e[ Ax,(i+ 1) +Ax,(i— 1], (1)

where # is a discrete time step and i is a lattice point
(i=1, 2, ..., N) with a periodic boundary condition.
The function f{x) is chosen to be the logistic map

flx)=1—ax?,

but the phenomena to be shown later can be seen in

a wide class of mappings such as the circle map
x+Asin(2rnx) +D.

As the nonlinearity a is increased, we have
encountered with the pattern competition phenom-
ena, l.e., patterns with certain wave numbers com-
pete and a complex spatiotemporal structure is
formed [14].

In the present letter, intermittency associated with
the pattern competition is investigated. First we take
the spatial power spectra S(k) for x,(i). They show
the coexistence of a peak at k;, and a broad-band noise
at k~0. Second, we take the space-time Fourier
transformation of x,(i), the power spectra P(k, w).
It is found that they show an @~ behavior at low
frequency only for the modes with k=~ k,,. The depen-
dence of the exponent o on the wavenumber k,—k
and on the nonlinearity parameter a is investigated.
Lastly, a window is introduced to study the coher-
ence in space and scaling behavior.

2. Intermittency by pattern competition
(phenomenology)

As has already been reported [2-4,7], the model
(1) shows period-doubling bifurcations of kink-
antikinks to chaos as the nonlinearity parameter 4 is
increased. If the nonlinearity is small, the kink struc-
ture itself does not move and the chaotic motion is
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Fig. 1. Space-time diagram for the model (1), with a=1.75.
€=0.3, N=100 and starting with a random initial condition. Every
64th time step is plotted from 0 to 200x 64. If x.,,({) is larger
than x*=(— 1+ /1 +4a)/2a, the corresponding space—time pixel
is painted as black, while it is left blank otherwise.

confined within each domain. As the nonlinearity is
increased further, such domain boundaries start to
move. Through the boundary motion, some spatial
structures are selected, as is seen, e.g., in fig. 1. The
statistics of the spatial pattern can be represented by
the spatial power spectra defined by

S(k)= sk, n)»
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Fig. 2. Spatial power spectra S(k) for the model (1). Random
initial condition. Calculated from 1000 time step averages after
discarding 10000 transients. (a) a=1.85. (b) a=1.89.(c) a=1.98
(e=0.1 and N=256)).
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Fig. 2. Continued. (d) a=1.73. (e) a=1.76 (¢=0.3 and N=512).

where () is the long time average after transients
have decayed out. The spatial power spectra for
e¢=0.1 are shown in fig. 2. The peak at k=1 is
remarkable at 1.75<a< 1.88. In the real space, spa-
tial zigzag patterns are self-organized. For larger
nonlinearity (1.88 <a) competition of the broad band
at k~0 (turbulent bursts) and k~k,=1/2 (zigzag
structure) can be seen. In these parameter regions,
the zigzag pattern collapses in an intermittent way.

A similar kind of intermittency by pattern com-
petition can be seen in a wide range of parameters
for our model. A competition between the patterns
with k=k,;=2/11 and kf,2= 1/6 are seen at €=0.3
for example, as can be seen in figs. 2d and 2e. In this
case, the peaks in S(k) at k=k,, and k,,#0 appear
at some nonlinearity. As g is increased, broad band
noise at k=~ 0 grows till the peaks at k= k,, disappear.
“Fully developed” turbulence is observed at larger a,
where the power spectra are roughly approximated
by S(k)cexp(—constxAk?) [9] and have no
prominent peaks at k#0.

Here, the case with €=0.1 (k,=1/2) is studied in
detail, but similar phenomenology and arguments on
the power spectra hold for other couplings ¢ with
corresponding k,’s.

3. Power spectra for time and space

It is found numerically that the time series of the
snapshot spatial power spectra s(k, n) show a tem-
porally intermittent behavior only for kx~k, at the
parameters for the pattern competition intermit-
tency. This selective intermittent behavior is quan-
titatively studied by the spatiotemporal power
spectra, i.e., the power of space~time Fourier trans-
formation of x,,(i):

P(k, w)

)

Instead of taking the summation over all lattice points
j=1, .., N, we sometimes use a window, that is, we
take a summation only over the restricted region,
j=1,2, .., M (M<N). Here, we show the case with
M=N. Change with the window size is discussed in
the next section. The results on the selective @«

= < < ’Ail f Xan(J) exp(2nikj+ 2wicwn)

j=1

27



Volume 125, number |

spectra are independent of the size of a window M.
In order to remove the period-2 band like structure,
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temporal power spectra Q(k, w) for s(k, 2n). Both
of the results for P(k, w) and Q(k, w) give essen-
same results for the

low-frequency

R

w*512

2586

Fig. 3. Log-log plot of space-time power spectra P(k, w) as a function of w for a=1.9, e=0.1: (a) k=0, (b) k=1/8, (¢) k=3/8. (d)

k=4/8. The power spectra are calculated in the same way as in tables 1 and 2. The system size N =256 and the window size M =256.
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Table 1
Low frequency exponents « as a function of bifurcation parameter a: The exponent o for P(1/2, w) ~w ~* is estimated from the 5122

time steps simulations of mode (1) with 50 ensembiles, after 10000 steps of transients. Random initial condition. The system size N=256
and the window size M =256. For a>1.91, the spectra have a plateau at very low frequency (w < 1/32) and the exponent « is estimated

from the data at 1/32<w < 1/4.

a 1.88 1.885 1.89 1.895 1.90 1.905 1.91 1.915 1.92 1.93
a 1.99 1.89 1.86 1.76 1.72 1.64 1.64 1.64 1.64 1.65
At the parameter regions with pattern competition Table 2

intermittency, our system shows the following flicker
noise for the modes with k=~ k,. In fig. 3, P(k, w) is
plotted for k=0, 2/8, 3/8, and 1/2. As k approaches
1/2, the low-frequency parts grow and P(k,, w) ~w ~*
is clearly seen for k=k, (=1/2). Note that the flicker
noise is selectively observed only for the modes k=~ k,,.
For the pattern competition of two wavenumbers &,
and k,,, we have observed the flicker noise of P(k,
w) for kx~k, and kx~k,,.

At the onset of the collapse of the zigzag pattern
(a~1.88), «a is close to 2, which means that the
relaxation time diverges. As the nonlinearity param-
eter a is increased, the power « decreases from 2. The
selective w~% behavior holds for k=1/2 at
1.88 £a<1.915. Collapse of the zigzag pattern occurs
more frequently for larger a, which leads to a faster
decay of the correlation function and small «. The
change of « with the parameter a is shown in table
1. For az 1.915, the power is roughly estimated from
the data at w=1/10, since they have plateaus at
w=0.

Next, we consider the change with wavenumber £.
As k is decreased from k=1/2, the power decreases
gradually., the exponents « are shown in table 1,
where again, plateaus at w~0 develop as k is
decreased. For smaller k, the plateaus at w~0
increases and the spectra approach the lorenzian
form.

4. Window analysis

In the phase transition problem such as spin sys-
tems on a lattice, the notions of order parameter,
scaling analysis, and renormalization group are pow-
erful. To open the study of lattice theory of spatio-
temporal chaos, it will be useful to develop these
notions. The spatial power spectra s(0, n) and s(1/2,

Low frequency exponents ¢ as a function of wavenumber &: The
exponent « is estimated in the same way as in table 1. The system
size N=256 and the window size M=256, a=1.90. For k< 15/32,
the spectra have plateaus at very low frequency (w <1/16) and
the exponents « are estimated from the data at 1/16 <w < 1/4.

k 8/32 10/32 12/32 14/32 16/32
o 1.21 1.28 1.52 1.58 1.72
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Fig. 4. The low frequency parts of P(k, w) versus the window
size M. A(k)=P(k, 1/256) +P(k, 2/256) +...+ P(k, 8/256) are
plotted versus the window size M. a=1.90and N=256. @ k=0/8,
A k=1/8,[01k=2/8, O k=3/8,and @ k=4/8. The power spectra
are calculated in the same manner as in tables 1 and 2.
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n) may be regarded as an extension of ferro and anti-
ferro order parameters in spin systems. In this sec-
tion we develop the scaling analysis for the dynamics
of the order parameter with the use of a window *'.

Let us focus on the power of some spectral mode
P(k, w). The spectral strength of such mode changes
with the window size M. The strength approaches
some constant with the increase of M, if the corre-
lation length is finite and the system attains some
local equilibrium. Near the critical point of the pat-
tern competition intermittency, the spatial correla-
tion length can be very large, and the spectral strength
can change as M** for M <M. and approaches a
constant for M> M.

The numerical results for the low-frequency spec-
tral strength A are shown in fig. 4. Here the strength
A is estimated as

3
S P(k. w,=i/1024).

[}

We note that A(k) decreases as M**) (B(k) <0) for
k=0, 1/8, and 2/8 as M is increased. The decrease
stops at Ma~M. (~64) and stays constant for
M> M.. On the other hand, A is increasing as M*~)
(B>0) for k=1/2 up to M~ M. We note that S(k)
is positive only for k=~ k_, while it is negative for other
modes.

The above scaling behavior is expected to hold up
to M—co at the critical point, if we believe in the
knowledge of phase transition studies in spin models.
Our results near the transition show a crossover from
MP to a constant at M~ M,.

Taking the results of scaling into account, we may
conclude that the mode with k=~ k, is relevant in the
sense that the power increases with the size of the
window, and other modes are irrelevant at the crit-
ical point.

At a< 1.88, the chaotic burst corresponding to k=0
is transient and a single zigzag pattern covers the
whole space as n—oo. If we perform the window
analysis at the transient time regime where the cha-
otic bursts still exist, the M#%-behavior is observed
without the crossover. For k=1/2, 8 is positive, while
it is negative for other modes. This shows the non-

*! For a similar approach to a discrete epidimeological model,

see ref. [16].
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stationary feature of the turbulence and (ir)relevancy
of modes clearly.

5. Summary and discussions

We have reported a new type of robust intermit-
tency. It arises from pattern competition. A selected
pattern with k=%, does not remain stable and col-
lapses intermittently through bursts. This type of
behavior may be observed in other nonlinear prob-
lems, e.g., in fluid experiments, where the pattern
competition is observed [17,18].

We have introduced a kind of filtered power spec-
tra study. The essential point is that the flicker-noise
appears only for modes k~k,. The filtered power
spectra study for the experiments in the pattern com-
petition is recommended.

Filtered analysis on the power spectra has been
developed in the fluid turbulence problems, which
may bring about fruitful results in the nonlinear field
theory problems [19]. The selectivity by the modes
we observed may be also seen in other problems such
as the brain wave.

The present intermittency seems to belong to a dif-
ferent class from the Pomeau-Manneville one
[20,21] and to be closely related with another mech-
anism suggested by Crutchfield [22,10] #3. The w ~«
behavior is widely seen in intermittency problems
[23]. The important difference here is the robust-
ness and selectivity to wavenumbers in our case.

The change of relevancy with the wavenumber
strongly reminds us of the renormalization group
analysis 1n the phase transition problems [24]. The
scaling property with filtered power spectra and win-
dow analysis may be theoretically formulated through
some kind of renormalization group analysis.
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