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A coupled map lattice model for convection is proposed, which consists of Eulerian and Lagrangian procedures. Simulations of
the model reproduce wide-ranged phenomena in Bénard convection experiments: For a small aspect ratio, formation of convec-
tive rolls, their oscillation, and many routes to chaos are found, with the increase of Rayleigh number. For a large aspect ratio,
spatiotemporal intermittency is observed. For a high Rayleigh number, transition from soft to hard turbulence is confirmed, as is
characterized by the temperature distribution change from Gaussian to exponential. The roll formation in a three-dimensional
convection is also simulated, which reproduces experiments well.

Rayleigh—-Bénard convection (RBC) has always
been a typical experiment for chaos, spatiotemporal
chaos, pattern formation, and turbulence. For a small
aspect ratio, the transition to chaos of the oscillation
of convective rolls was studied with the increase of
Rayleigh number [1]. For a large aspect ratio, spa-
tiotemporal intermittency (STI) i1s observed at the
transition to turbulence [2]. The process of for-
mation of rolls in a system with a large container gives
a prototype for the pattern formation and the slow
motion of defects between rolls [3]. For larger
Rayleigh number, a transition from soft to hard tur-
bulence was clarified by Libchaber’s group [4].

So far, only some of these experimental results
(e.g., low-dimensional chaos) are partially repro-
duced by extensive simulation with the use of the
Navier-Stokes equation. We do not have a single
simple model which reproduces all the above phe-
nomena as yet. In the present Letter we report a sim-
ple coupled map lattice (CML) model which can re-
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produce all the above phenomena just by the change
of aspect ratio, Prandtl number, and Rayleigh num-
ber. The agreement with experiments is mostly qual-
itative, although some quantitative agreements are
presented in the STI and in the transition from soft
to hard turbulence.

The CML model is one of the most powerful
methods to study the dynamics in spatially extended
systems [5]. CML modeling is based on the sepa-
ration and successive operation of procedures which
are represented as maps acting on field variables on
a lattice. The CML model has been successfully ap-
plied as simulators for various physical phenomena
[6]. Here we decompose the fluid motion into
Eulerian and Lagrangian procedures, to include the
advective motion [7].

First we choose a two-dimensional lattice (x, y)
with y as perpendicular direction, and assign the ve-
locity field v’(x, y) and internal energy E‘(x, y) as
a field variable at time z. The dynamics of the field
consists of Lagrangian and Eulerian parts. The latter
part is further decomposed into the buoyancy force,
heat diffusion and viscosity, which are carried out by
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the conventional CML modeling method [6]. Here
we assume that E’(x, y) is scaled so that its average
is roughly 0; in other words, E*(x, y) takes opposite
signs at the top plate and the bottom plate. In the
constructing procedures, we assume that E’(x, y) is
associated with the temperature.

For the Eulerian part we notice the following pre-
scriptions: (I) a site with higher temperature re-
ceives a force in the upward direction; (II) heat dif-
fusion leads to the diffusion for E’(x, y); (III) the
velocity field v/(x, y) is also under diffusive dynam-
ics, due to the viscosity; (IV) in an incompressible
fluid, the pressure term requires div ¢ to be 0. We do
not take this condition here, since the inclusion of
pressure requires more complicated modeling. In-
stead, we borrow a term from compressible fluid dy-
namics, which brings about this pressure effect, and
constrains the div e term from growing to large val-
ues. This term is given by the discrete version of
grad(div r). An “expanded” region with larger div v
imposes a force to neighboring lattice points through
this term. Combining these dynaniics, the Eulerian
part is written as the successive operations of the fol-
lowing mappings (hereafter we use the notation for
the discrete Laplacian operator: AA(x, y)=
A=, +A(x+1, )+ A(x,y—1)+A(x,y+1)
—4A4(x, y)] for any field variable 4):

(1) buoyancy procedure,

vi(x, y)=vy(x, )
+3c[2E(x, ) —E'(x+ 1L, ) —E'(x—1,y) ],
v(x, y)=vi(x, y) (1)
(i1) heat diffusion,
E'(x,y)=E'(x,y) +KkAE (X, y) . (2)
(ii1) viscosity and pressure effect,
vi(x, ¥)=vx(x, ¥) + vAvI(X, y)
i lvx(x+ L y)+oi(x—1, y) ] —v3(x, ¥)
+ilvs(x+ 1L, y+ ) +ui(x—1,py-1)
—u(x=Ly+ 1) —v3(x+1,y-1)]} (3)

and the equation with x<y.

Successive operation of the above three parallel
procedures completes the Eulerian scheme. The
Lagrangian scheme expresses the advection of ve-
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locity and temperature. We set a quasi-particle on
each lattice site (x, y). The particle has a velocity
v{x, ¥) and moves to (x+dx, y+dy) by the La-
grangian scheme, where dx=1.(x, v), dy=1v,(x, y).
All field variables (velocity and internal energy) are
carried by this particle. Since there is no lattice point
at the position (x+ 8x, y+ 8y) generally, we allocate
the field variable on its four nearest neighbor sites.
The weight of this allocation is given by the lever rule;
(1-8x)(1—-38y), dx(1—-3y), (1 —8x)dy, and dxby
for the sites ([x+6x], [y+6v]), ([x+dx]+1,
[y+6y]), ([x+6x], [¥+dy]+1) and ([x+6x]
+1, [y+ 8y] +1) respectively, with [z] as the max-
imal integer smaller than z.

The total dynamics of our model is given by suc-
cessive applications of the above procedures;
{v'(x,y),  EAx,»)-™(xy), E(xy)l-
{r'(x,¥), E'(x,¥)} - (Lagrangian)—{r'"'(x, ),
E'"'(x, y)} *'. This completes one step of dynamics.

For the boundary, we choose the following con-
ditions. (I) Top and bottom plates: assuming the al-
location of E to temperature, we choose the bound-
ary condition E(x, 0)=8T=—FE(x, N,). For the
velocity field we have used either a fixed boundary
or free boundary. For the Lagrangian scheme, we use
a fixed or reflection boundary. (II) Side wall at x=0
and x=N,. we use either fixed, reflective, and pe-
riodic boundary conditions. Hereafter we mostly
choose the fixed boundary for top and bottom plates
and the periodic boundary condition for the x-
direction. Changing to a fixed boundary at the wall
alters our velocity pattern (for a small size ), but most
of the transition sequence of the patterns remain
invariant.

Basic parameters in our model (and in experi-
ments) are Rayleigh number (proportional to 67),
Prandt] number (ratio of viscosity to heat diffusion,
v/k), and aspect ratio (N,/N,). Here we study in
detail the dependence of the convection pattern on
the Rayleigh number and the aspect ratio. For sim-
ulations we take the diffusion coefficient 7 as
{v<n< v [8], although our results are reproduced,
as far as 5 is the same order of v, where div v is kept
small numerically.

For small Rayleigh number, we have a steady con-

#1 The order of operations of procedures is not important. Models
with different orders give essentially the same phenomenology.
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vective flow. Few rolls are formed, the number of
which increases with 87 and the aspect ratio. At small
aspect ratio, these rolls start to oscillate periodically
in time, with the increase of 87 If the Prandt! num-
ber is small, we have observed period doubling bi-
furcation to chaos with the further increase of 87
Here, we note that the doubling is interrupted after
a finite number of times (up to period 4 or 8). In
the experimental observation, it is believed that noise
induces such imperfect bifurcation. In our simula-
tion, high dimensional dynamics plays the role of a
generator of “noise”, which, we believe, is the origin
of the interruption of a doubling sequence in real fluid
systems. If the Prandtl number is larger, the onset of
chaos occurs through a quasiperiodic state (two-
dimensional torus), in agreement with the experi-
mental observation of the route to chaos [1].

For a large aspect ratio, many steady convective
rolls are formed. The number of rolls increases with
OT. With the increase of 87, the rolls start to oscillate
periodically (all the rolls have the same frequency).
As 67T is further increased, the collective oscillatory
behavior becomes unstable. Laminar roll motion and
turbulent motion coexist in spacetime as is shown in
fig. 2.

We have measured the distribution of the size of
a laminar region to characterize the STI transition
[5]. The distribution of the spatial length of laminar
domains is given in fig. 3. It clearly shows the power
law distribution at the STI transition, while the dis-
tribution decays exponentially when the Rayleigh
number is larger. These results agree with the ob-
servation in the RBC experiments with a large aspect
ratio [2]. The exponent of the power law distribu-
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X

Fig. 1. Snapshot of convective roll pattern for our CML model.
The velocity field of our CML model is shown for time step
t=300. N,=30, N,=17,r=0.2, k=0.4, and §T=0.1.

PHYSICS LETTERS A

26 April 1993

time

space 100

Fig. 2. Spatiotemporal pattern of velocity field v,. Successive
changes of v,(x, {N,) are plotted in spacetime, with the use of a
gray scale with black and white indicating v,=+0.75 respec-
tively. N,=100, N,=17,v=0.2, k=0.4, y=0.3, and 8T=1.2.
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Fig. 3. Log-log plot of the probability distribution for the length
of the laminar domain. The distribution shows a power law at
the onset of STL. N,=850, N,=17,y=x=0.2and 87=0.1. As 8T
is increased, the exponential distribution replaces the power law.

tion is 2.0+ 0.2 from our simulation, which agrees
with experimental results [2].

For larger 87, hot and cold plumes start to appear.
Plumes in our model are defined as isolated sets of
a few connected lattice points with larger or smaller
energy E than their neighbors. If 87 is not large
enough, hot plumes cannot reach the opposite plate
(and vice versa for cold plumes). A hot layer is con-
nected near the bottom plate. The boundary layer
still remains. With the increase of 87 (> 6.0), the
layer splits into disconnected regimes, and plumes
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can reach the opposite plate (see fig. 4 for the con-
tour plot of E(x, ¥)). A similar change of convective
pattern is found by Libchaber’s group, where each
state 1s termed as soft (for the former) and hard tur-
bulence. According to their experiment, the temper-
ature distribution (in the middle of the container)
is Gaussian in soft turbulence, and exponential in
hard turbulence [4]. We have measured the distri-
bution of E(x, 1N, ) by sampling over 10° time steps,
and over the horizontal position x (note the periodic
boundary condition for the side wall). The distri-
bution is plotted in fig. 5, which shows the transition
from Gaussian to exponential.

(a)

8T=1.0
Convection

{b)
30T=3.0

Soft-turbulence

(C) 20
dT=10.0 ..

Hard-turbulence :

e

Fig. 4. Snapshot of equi-energy (equi-temperature) contour,
plotted with 30 levels for E= — 8T 10 8T. N,=N,=30,r=x=0.2.
(a) 8T=1.0 (b) 6T=3.0 (¢) 8T=10.0.
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Fig. 5. The distribution of E(x, }N,) sampled over time and x.
Three examples are overlayed with increasing Rayleigh number.
Ny=N,=30,and v=x=0.2.
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Fig. 6. Rayleigh number dependence of the flatness
C(E~{EY)Y ((E—<{E>)*>~? of the temperature distribu-
tion. For a low Prandt] number ((a) y=0.2 and x=0.5), the flat-
ness is raised from 3 to 6 with the increase of 87, while it is raised
up to 12 for a high Prandtl number ((b) ¥=0.2 and x¥=0.3).
Furthermore, the plateau around 3 (in the soft turbulent regime)
gets narrower by decreasing the Prandtl number.

We have computed the flatness of the distribution
({IBE(Ny, 1N, 1%) <IS8E(N,, 1N,) 17> ~? with SE
=E—(E>) (fig. 6). For a low Prandtl number, the
flatness rises from 3 to 6 with the increase of 87, in
agreement with experiments. For the high Prandtl
number regime, on the other hand, the flatness rises
continuously up to 12. We also note that the plateau
around flatness 3 (in the soft turbulence region) gets
narrower with the decrease of the Prandtl number.
The Prandtl number dependence of the flatness is
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our prediction here, which, we hope, will be con-
firmed in future experiments.

Our CML model provides the first simple model
for the soft-hard turbulence transition *2. Besides the
above quantitative characterization, our observation
of the energy pattern also suggests that this transition
is associated with the percolation of plumes at the
bottom plate.

The extension of our model to three dimensions is
quite straightforward. We have simulated a three-
dimensional convection in rectangular and cylinder
containers, taking a fixed boundary at the wall.
Starting from an almost homogeneous field, rolls are
formed locally within short time steps, while the slow
motion of the defects between locally aligned rolls is
observed later, over long time steps, as has been
found in experiments [3] (see fig. 7). The domain
size of aligned rolls increases so slowly that the ir-
regular motion of defects remains over long time
steps. If the Rayleigh number is larger, these defects
form cellular structures as in fig. 7c.

In summary, we have proposed a CML model for
RBC, by introducing a Lagrangian scheme, where the
advective motion is expressed by quasi-particles. Our
model reproduces almost all phenomenology in ex-
periments; a steady convective flow, roll formation
process, periodic oscillation of rolls, bifurcation to
chaos, and STI. In particular, the transition from soft
to hard turbulence is confirmed, where the temper-
ature distribution changes its shape from Gaussian
to exponential, in agreement with experimental
observation.

Some, still, may doubt our CML approach, just
because our model is not derived from the Navier—
Stokes equation. Our standpoint here is that the sa-
lient features in convection are irrespective of the
details of models. Such features form universality
classes. For the understanding of the complex phe-
nomena, the prediction of universality classes by a
model constructed from simple procedures is im-
portant. Our model suggests that the soft-hard tran-
sition originates in the percolative behaviour of
plumes. This allocation forms the basis of univer-
sality, e.g., the universal change of the temperature
distribution. The essence of the transition does not

#2 For an abstract CML model for plumes, see also ref. [9].
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Fig. 7. Roll pattern for a three-dimensional convection. Snapshot
of the perpendicular velocity v, at the middle plate (x, y, {N,) is
shown with the use of a gray scale with black and white indicating
v,= T Vemax respectively. The lattice size is (N,, N,)=100x 100
(horizontal), and N,=9. y=x=0.2. §T=0.6 for (a) and (b).
(a) Time step 200, V,,.x=0.07, (b) time step 2500, V,.,=0.2,
(c) time step 2500. 87T=2.0 and V,.x=0.6.
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depend on the details of models, as long as they be-
long to the same universality class.

It should be mentioned that our Lagrangian pro-
cedure is also useful to construct a CML model for
a shear flow, Kdrman vortex and its collapse. Inclu-
sion of rotation in the convection is rather straight-
forward. Another important extension of our CML
model is the inclusion of phase transition dynamics,
as is seen in boiling [10] and cloud dynamics. These
examples will be reported elsewhere.
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