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Hamiltonian dynamical systems with many degrees of freedom are investigated using symplec-

tic map lattices.

It is shown that anomalous diffusion exists only up to some crossover time

beyond which the diffusion is normal. A diffusion constant, which is inversely proportional to the
crossover time, exhibits a faster than any power-law dependence on the nonintegrability parame-
ter, strongly suggesting the relevance of a bound by Nekhoroshev for Arnold diffusion. The
motion in the standard mapping is also reexamined to show that the flicker noise is seen only

down to some crossover frequency.

The understanding of the nature of Hamiltonian sys-
tems has progressed considerably in recent years.! The
minimal-dimensional case has been investigated intensive-
ly through the “standard mapping.”? The onset of global
stochasticity with the collapse of the last Kolmogorov-
Arnold-Maser (KAM) torus has been studied through the
renormalization-group method, the diffusion process in
the phase space has been investigated through the
random-phase approximation in the highly nonintegrable
regime, and the self-similar structure of islands and
cantori and their relevance to anomalous diffusion and
flicker noise have been clarified. > ~>

The characteristic features of Hamiltonian systems
with many degrees of freedom, however, are not well un-
derstood. It is thought that a process called “Arnold
diffusion” connects the whole stochastic layer, thus the
phase space of large Hamiltonian systems is topologically
distinct from those of 2 degrees of freedom.® At the same
time, however, for a weakly nonintegrable system, KAM
tori still have a positive measure in the phase space. The
former can be considered as the origin of statistical
mechanics, since in the standard mapping with K < K,
the phase space is separated by KAM tori, which destroy
the ergodicity.

For a system of many degrees of freedom, it is expected
that the small-scale structure found in the low-
dimensional systems is smeared out, and that normal re-
laxation takes place, which assures the approach to a
canonical ensemble within nonastronomical time.’

The difficulty in the study of the dynamics with many
degrees of freedom lies in the very long-time scales (espe-
cially in weak nonintegrability) and which cannot be ap-
proximated perturbatively. The rate of diffusion is bound-
ed by “Nekhoroshev’s bound,”®® which includes a singu-
lar factor like exp(— 1/K?) with K as a strength of pertur-
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bation to an integrable system and a is a positive constant.

There are few studies on the motion in phase space of
Hamiltonian systems with many degrees of freedom. It is
as yet unknown if Arnold diffusion is relevant to physics,®
if the diffusion is normal or the motion includes the flick-
erlike noise, or if the diffusion rate has a singular depen-
dence on the nonintegrability parameter as the above
upper bound suggests. The necessity of long computation
times for lattice differential equations has made it difficult
to answer these questions. In the present paper we try to
resolve these questions using a symplectic map lattice, to
avoid this difficulty.

In Hamiltonian systems, the relevance of models with
discrete time has been established in the standard map-
ping.2 We extend this approach to lattice systems, '© !4
essentially following the idea of coupled map lattices. !°

Here the following symplectic map lattice (SML) sys-
tem is investigated:
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where i=1,2,...,N with periodic boundary cbnditions.
The symplectic condition

de,,(i)xdp,.(i)-denﬂ(i)xdp,,“(i)

is satisfied so that the model corresponds to a Hamiltonian
system (where X denotes the exterior product). Here we
discuss a one- (spatial) dimensional lattice only, but the
extension to higher spatial dimensions is straightforward.
The dynamics (1) is obtained from the Hamiltonian
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or may be regarded as a Poincaré mapping from a lattice-
differential equation. These interpretations are similar to
those for the standard mapping.' ~3
We focus our attention on two quantifiers:
power spectrum, defined by
)

P(w) -<< gp,. (j)e 2rine

and (2) the short-time diffusion coefficient, defined by

(1) the
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where ({---)) represents a temporal average. The sum-
mation over m in (3) is taken for the M sequential tem-
poral average.

If the diffusion in phase space is normal, there exists a
finite constant Do =lim;_. D (z). If the diffusion is
anomalous, D(¢) =t 7%, with some exponent &, which
characterizes the stickiness of such diffusion.'¢ Through a
Fourier transform, it follows that the power spectra exhib-
it P(w) = 0 ~® with a=2—4§. If the diffusion is normal
a=2.

We calculate these two quantities for the SML (1) and
for the standard mapping

Pn+1=pn+ (K/27)sin(2nx,), Xpn+1=Xn+pa+1 (4)

to study the characteristic motion in phase space in Ham-
iltonian systems.

First, we recall the standard mapping. It is believed
that Hamiltonian systems with 1.5 or 2 degrees of free-
dom exhibit power-law decay of temporal correlations.’
For the standard map, power spectra of the momentum
look like @ ~ ¢ for @— 0, with some exponent 1 <a <2.
This 1/w-type behavior has been understood as hierarchi-
cal diffusion threading through a self-similar island struc-
ture. Actually, D(¢) shows a power-law decay for some
range of time interval ¢.

Although the picture of hierarchical diffusion seems
plausible, one may expect that the self-similarity is not
complete, especially for a system with many degrees of
freedom. This logic leads one to expect the absence of
such anomalous diffusion on very long time scales.

We have simulated the standard map starting from ini-
tial conditions belonging to the stochastic sea. The
diffusion coefficient [Eq. (3) without the summation over
the lattice sites i] exhibits power-law decay up to some ¢,
(=1/w.), with a power ¢t % (6 <1). The diffusion con-
stant D behaves as (K —K_.)>%' - as is studied by the
renormalization group, where K.(=0.97...) is the pa-
rameter at which the last KAM torus breaks up.> In our
numerical data, the inverse of the crossover time ¢, is pro-
portional to the diffusion constant D.. Corresponding to
the diffusion coefficient, the power spectrum of the vari-
able p (without taking “mod1”) of length 22! is calculat-
ed. We have found that, as w— 0, the  ~ *-type behavior
persists only down to a crossover frequency w. (= 1/t.)
and is replaced by ® ~2, which is reminiscent of simple
(nonhierarchical) diffusive behavior (1 < @ <2). The ex-
ponent a is consistent with the above relation with é.

From these results we can conclude that anomalous

diffusion resulting from the dynamical hierarchy holds
only up to some crossover time. For longer times, the
diffusion is normal if K > K.. The crossover exists either
because self-similar structure continues only down to
some size except at K=K, or because the static self-
similar structure (“fat” fractal*) does not reflect the dy-
namics of our quantity of such longer-time scales corre-
sponding to very small-scale structures in phase space. !’

Now let us proceed to the lattice system (1). Here, we
have used a random initial condition. It turns out that the
probability of hitting a KAM torus is very small if we do
not choose a special class of initial condition [e.g.,
x(i) =const, p(i) =const], and the following results are
independent of the choice of random initial conditions.
For K <1, our model exhibits the sticky motion with a
power spectrum of @ ~® for a time interval not too long.!!
The crossover behavior is more easily seen in lattice mod-
els. As is expected from the Arnold diffusion in a system
with many degrees of freedom, there is no barrier for the
diffusion to infinity, if K is not zero. Neither the crossover
frequency nor the diffusion constant shows singularity at
any special value of K other than 0.

In Fig. 1, D(¢) is shown for some values of K. It shows
the power-law behavior for 1o <t <1, (for K <1). Thus,
the diffusion is anomalous in that time scale, reflecting the
hierarchical structure in the phase space. For ¢ > ¢, D(¢)
approaches a constant, which means that the diffusion in
our lattice system is normal even for small K. This sug-
gests that the long-time behavior of generic Hamiltonian
dynamical systems is well described by normal (non-
hierarchical) diffusion. Again, t. lis proportional to the
diffusion constant D . (Fig. 2).

Numerical results for the power spectra are consistent
with this diffusion coefficient D(¢). For K <1, in the
medium-frequency regime, they show o ¢ with 1 <a
<2, but in the extreme low-frequency region they ap-
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FIG. 1. A log-log plot of the short-time diffusion coefficient
D(t) for SML (1). D(¢) is calculated from 1000 sequential
averages of t steps for r=<2'’, from 100 averages for
23 <t =2" and 10 averages for ¢t > 2!”. System size N =128.
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FIG. 2. A log-log plot of the diffusion constant D and in-
verse of crossover time z.~' vs K for SML (1). Calculated from
the data in Fig. 1.

proach the normal » ~2 behavior. The estimated cross-
over frequency is the order of 1/t., and the exponent a is
again consistent with the relation a + 6 =2.

The above results lead to the following picture: Up to
some time scale, the motion in phase space “sticks” to
some KAM tori, and the hierarchical structure of torus
and islands leads to the power-law-type behavior. For
longer time scales, the dynamics does not affect a small-
scale structure, leading to a normal diffusion. One plausi-
ble reason for this is that the self-similar structure of is-
lands and KAM torus is destroyed on the long-time scale
for Arnold diffusion.

For K > 1.0, our numerical results agree well with the
prediction from a random update iteration which leads to
Dw=K?and P(w) =w "2

As K goes to 0, the exponents 6 and a slowly approach
to unity (e.g., §=0.8 for K=0.1 and §=0.9 for
K =0.02, and is close to 1 for K =0.01). Since the cross-
over time goes to infinity as K goes to zero, this means
that the flickerlike noise with 1/w is generally observed in

usual time scales in nearly integrable Hamiltonian sys-
tems.

The crossover time and diffusion constant are indepen-
dent of the spatial lattice size (V) if IV is larger than the
spatial correlation length. This is assured by taking V> 8
in our case. This size independence seems to be a general
feature in locally interacting systems. '8

What is the dependence of D on nonlinearity K? We
can see that the shape in Fig. 2 is concave, which suggests
that the singularity near K = 0 is higher than any power
law. Nekhoroshev’s bound leads to the form of Do
<exp(—const/K?) (Ref. 2) with a constant a indepen-
dent of N.'® We have fitted our data by the form
Do =exp(—const/K?), changing a. The fit is good if the
exponent a is 0.1~0.3. With the present computer
resources, it seems hard to confirm this specific form and
to determine the value of a precisely, but our data suggest
the singular dependence of diffusion constant on K near
integrability, consistent with Nekhoroshev’s bound.

To sum up, the diffusion in a Hamiltonian system is
normal, but an anomalous diffusion is seen up to some
time scale. The crossover to normal diffusion occurs at a
scale inversely proportional to the diffusion constant. As
the system approaches integrability, the diffusion constant
goes to zero in a singular form as in Nekhoroshev’s bound.

The relaxation rate to the equilibrium distribution turns
out to agree with the diffusion constant.!! Relations
among other dynamical systems’ quantifiers such as
Lyapunov spectra will be discussed elsewhere.'® The
dynamical nature of Hamiltonian systems is thought to
depend on the connectivity amongst the variables. Results
of symplectic maps with long-range interaction and other
connectivities will also be reported in the future. '°

The authors would like to thank D. K. Campbell, M.
Casdagli, and P. Grassberger for a critical reading of the
manuscript and valuable comments, and Y. Aizawa, D.
Farmer, K. Ikeda, K. Nozaki, S. Takesue, and M. Wadati
for useful discussions. They would also like to thank the
Institute of Plasma Physics at Nagoya for the facility of
the FACOM M380 and VP 200 computers.

\Hamiltonian Dynamical Systems, edited by R. S. MacKay and
J. Meiss (Hilger, London, 1988); A. J. Lichtenberg and M.
A. Lieberman, Regular and Stochastic Motion (Springer-
Verlag, Berlin, 1983).

2B. V. Chirikov, Phys. Rep. 52, 269 (1979).

3J. M. Greene, J. Math. Phys. 20, 1183 (1979); D. Bensimon
and L. P. Kadanoff, Physica 10D, 82 (1984); R. S. Mackay, J.
D. Meiss, and 1. C. Percival, ibid. 13D, 55 (1984).

4D. K. Umberger and J. D. Farmer, Phys. Rev. Lett. 55, 661
(1985).

5C. F. F. Karney, Physica 8D, 360 (1983); B. V. Chirikov and
D. L. Shepelyansky, ibid. 13D, 395 (1984); T. Kohyama,
Prog. Theor. Phys. 71, 1104 (1984); Y. Aizawa, ibid. 71, 1419
(1984); T. Geisel, A. Zacherl, and G. Radons, Phys. Rev.
Lett. 59, 2503 (1987); J. D. Meiss and E. Ott, Physica 20D,
387 (1986).

V. I. Arnold, Sov. Math. Dokl. 5, 581 (1964); see also P. J.

Holmes and J. E. Marsden, J. Math. Phys. 23, 669 (1983).

’See, €.g., E. Fermi, J. Pasta, and S. Ulam, Collected Papers of
Enrico Fermi (Univ. Chicago Press, Chicago, 1965), Vol. 1,
p. 977; M. Casartelli et al., Phys. Rev. A 13, 1921 (1976); R.
Livi et al., ibid. 31, 1039 (1985); J. Phys. A 19, 2033 (1986).

8N. N. Nekhoroshev, Russ. Math. Surv. 32, 65 (1977); G. Ben-
netin and G. Galavotti, J. Stat. Phys. 44, 293 (1986).

9G. Benettin, L. Galgani, and A. Giorgilli, Phys. Lett A 120, 23
(1987).

10For two-coupled standard mappings see, C. Froeschle, Astron.
Astrophys. 16, 172 (1972); K. Kaneko and R. J. Bagley, Phys.
Lett. 110A, 435 (1985); H-t. Kook and J. Meiss (unpub-
lished).

1K, Kaneko and T. Konishi, J. Phys. Soc. Jpn. 56, 2993 (1987);
T. Konishi and K. Kaneko, in Cooperative Dynamics in Com-
plex Physical Systems, edited by H. Takayama (Springer-
Verlag, New York, 1989).



RAPID COMMUNICATIONS

40 DIFFUSION IN HAMILTONIAN DYNAMICAL . .. 6133

12K. Kaneko, Phys. Lett. A 129, 9 (1988).

13G. Paladin and A. Vulpiani, Phys. Lett. A 118, 14 (1986).

14H, Kanz and P. Grassberger, J. Phys. A 21, L127 (1988).

15See, e.g., K. Kaneko, Prog. Theor. Phys. 72, 480 (1984); 74,
1033 (1985); Physica 34D, 1 (1989); Collapse of Tori and
Genesis of Chaos in Dissipative Systems (World Scientific,
Singapore, 1986); J. P. Crutchfield and K. Kaneko, Directions
in Chaos (World Scientific, Singapore, 1987), and references
therein.

16The anomalous diffusion is known as Levy flight; see, e.g., E.
W. Montroll and M. F. Shlesinger, in Studies in Statistical
Mechanics (North-Holland, Amsterdam, 1984), Vol. 11, p. 1.

17Some other quantities such as the fluctuation of Lyapunov ex-
ponent may be more sensitive to the self-similar structure and
show the anomalous behavior up to longer time scales; P.
Grassberger and H. Kanz, Phys. Lett. 113A, 167 (1985).

18C. E. Wayne, Commun. Math. Phys. 104, 21 (1986).

I9T. Konishi and K. Kaneko (unpublished).



