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Frequency locking at the transition from torus to chaos is studied with the use of the map

Gni1=0,+0.25+ A-sin(2726,) (mod 1).

We find period-adding phenomena and various critical

exponents, which are explained by extending Pomeau and Manneville’s theory of intermittency.

In recent years, various routes to chaos
and their critical phenomena have been
extensively studied.”~* Previously” we
studied a 2-dimensional mapping and found a
period-adding phenomenon at the frequency
locking in the transition from torus to chaos.
In this short note we show similar
phenomena in a 1-dimensional mapping and
give a simple explanation for the critical
exponent.

We take the following map®

F(8,)=8,+D+ A sin(229,).
(mod 1) (1)

This map can be obtained by eliminating 7,

19n+1:

through the condition #,=#,.: in the map

{rn+1zarn—glrna-k/fsin(zwn), )

l9n+1:l9n+gz7’n2 , (mod 1)
or in the map

{rn+1=(1—7)rn+d+a sin(2x9,),

On+1=8n+7n+1. (mod 1) (3)

We note that the map (2) is a discrete
version of the complex Ginzburg-Landau
equation with the additional perturbation A
sin(279,) and the map (3) can be regarded
as the extended standard mapping®® which
includes the dissipation 7 and the external
pumping 4. We fix the value D at 0.25 and

Table I. The stable period with the rotation number P/Q which appears at A. We change the
parameter A by 5X107° for 0.12< A<0.1559 in Table I(a) and by 10~° for 0.1559< A <0.15633 in
Table I(b). (See the text for the definition of P and Q.)

(a)

AX10 1.272 | 1.372 | 1.423 1.460 1.4815 1.5105 1.527 1.537 1.541
Q 9 23 14 33 19 24 29 34 73
P 2 5 3 7 4 5 6 7 15
AX10 1.544 | 1.5465 | 1.5485 1.552 1.5545 1.5565 1.558
Q 39 83 44 49 o4 59 64
P 8 17 9 10 11 12 13
(b)
(A—0.156)x10* —0.8 0.2 1.0 14 1.7 2.3 2.8 3.0 3.2
Q 69 74 79 163 84 89 94 193 99
P 14 15 16 33 17 18 19 39 20
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change A as a bifurcation parameter.

For A<A.=1/(2z) the map (1) is
invertible and the attractor is a periodic
orbit or torus. (We call the attractor ‘torus’
if the Lyapunov number equals 0 within the
accuracy of 107%) The rough phase diagram
for 0<A<0.25 is shown in Fig. 1. Here, the
rotation number is defined by limx.o(F"(%)
—&)/n, and when the attractor is Qa-
periodic orbit it is represented by P./Qn,
where P, is the number of the times when
the r.h.s. of (1) exceeds 1.0.

A0 0.05 01 0128 057 082,019
T 0 R U S 9 TORUS -—5 —CHAOS

A0J9 020 021 02 023 0% 05
G104 714 13 § 12 1

Fig. 1. Rough phase diagram of the map (1) for
D=0.25. We change the parameter A by
0.01. The length of the period is written
below the line. If any number is not
written, the attractor is torus (for A<1
/(2x)) or chaos (for A>1/(2x)).

As we increase A, the frequency locking
at the rotation number 1/5 occurs from
torus and then a chaotic state appears.
Thus, this mapping can be regarded as a
simple model for the transition “Torus
- Frequency Locking—Chaos”, which was
observed in various dissipative systems.”~!?

As we change the parameter A, there
appear a sequence of periodic orbits with the
rotation numbers Pn/@Q.=n/(5z—1), suc-
cesively at A» and for A> A-=0.15671685---,
the locking at 1/5 occurs (see Table I).

In general, all rational numbers between
p/q and #/s(p and g or 7 and s are relatively
prime) are represented by (up-+mr)/ (ng
+ms) {(n and m are integers).” Thus, it is
expected that there occurs a frequency
locking at (p+7)/(g+s) between the
locking at p/q and #/s, since the rotation
number is a continuous function of A. The
period-adding sequence with the rotation
number #/(5z—1) can be understood as a
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locking between (#—1)/(5(z—1)—1) and
1/5. There also appears a frequency locking
at (2»—1)/(10%—7) between »/ (5%2—1) and
(n—1)/ (52—6). (See Table 1.) Here, we
have to note that our numerical results
suggest that the most stable period between
the orbits with the rotation numbers p/¢ and
/s has the rotation number (p+7)/(g+s).
Though there exist infinite sequences (Farey
sequences) of periodic orbits, we study only
the (5z—1)-sequence in this short note, since
it has a large stable region as will be seen
later.

Next, we will study the convergence of
An. We have obtained

Aw—Anxn™?, (4)

which is the same as the previous result of a
2-dimensional mapping.” In order to study
this critical phenomenon we plot F®(x)
(mod 1) at A=A. in Fig. 2(a). As is seen
from this figure, the locking at 1/5 occurs
via the tangent bifurcation. Thus, we can
expand F®(r) around the periodic points
{x.*}(v=1,+,5) for A=A by
FO(x)=(x—x," )+ alx —x.*V+e,

(mod 1) (5)
where ¢ is proportional to (A=—A). This
form of expansion is common to the form of
the theory of intermittency by Pomeau and
Manneville.®'” In our case, however, the

state before the tangent bifurcation is not
chaos but torus. From Eq. (5), we have

14

F1.0
\fy:/—“sfx) (mod 1)
Y=X

M 0 y=x
v=F00)—,
Y (od 1)

Q 1.0 0 1.0

Fig. 2. y=F®(x; A) (mod 1) at
(a) A= A. (the onset of 5-periodic orbit),
(b) A= A. (the onset of chaos).
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(rot. no. at A)—(rot. no. at A«)x<ye , (6)

since the time intervals while the orbit stays
close to {x.,*} is proportional to 1/ve. The
difference between rotation numbers at A,
and A is given by

n/ (5n—1)—1/5=1/5(52—1)c1/n
as n—co . (7)

From Egs. (6) and (7), we obtain 1/noc/e,
that is Aw— A2

In order to confirm our picture, we
calculated numerically the minimum of the
Lyapunov numbers AR" for the (57—1)-
periodic orbit. For large », we had AZ™®
«1/n. The Lyapunov number for (5%—1)-
periodic orbit is given by

_ 1 5n—1 ,
/1"_571—1 JZ:I logIF (Ij)l, (8)

where {x;} are periodic points. We note
that [13-1lF'(x:)|=1 for {x.} close to {x.*}, if
#n is large enough. According to our picture
the number of such periodic points grows
proportionally to (e ?)  while the
number of the points {£:} which are apart
from {z,*} is O(1). Thus we have

o 1
S5n—1

L s

_S—nx.E {£x)

An {O(n)xlog 1+{z} log| F" (&)1}
A

[log F'{x:)l. (9)

We expect that each periodic orbit has a
similar structure and that the periodic points
{£.} at A, are independent of # (A, is the
value at which A, takes its minimum).
Then X, ¢ ;7,3 loglF’(x:)| is independent of »
and we have A% oc1/x.

Next, we study the self-similar structure
of each (5%—1)-periodic orbit. The width
AAn=A"—A(Ar(A,") is the value at
which (52—1)-periodic orbit gains (loses) its
stability) is depicted in Fig. 3, which shows
for sufficiently large #

AApocn™2 . (10)

Since (An:1—An)oxn™ for large #, we have
AA»<(An+1—An), which shows a simple
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AA,
10—6_
107"+
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10°F

10 10° 10° n
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Fig. 3. log 4A» as a function of log ». We plot
only =20, 62, 122, 296 and 638. (See the
text for the definition of 4A..)

similar structure. It seems that #-A.(A»
+x-#%) is a universal function of z. This
scaling may open the possibility of the
renormalization group approach similar to
the theory of intermittency.'?

At A=A.=0.18189---, the 5-periodic orbit
loses its stability and the chaotic state
appears through the intermittency (see Fig.
2(b)). In the chaotic regime there appear
successively the periodic orbits (windows)
with the rotation number 1/6, 1/7, 1/8, -,
and at A=0.25 a stable fixed point appears.
Thus, this mapping may become a simple
model of the “periodic-chaotic transition”,
which was observed in B-Z reactions.’®

In this short note, we have studied the
period-adding structure of the frequency
locking by extending the theory of
intermittency. The period-adding structure
is seen in various phenomena, such as B-Z
reactions,'? devil’s staircases,’® or windows
of 1-dimensional mappings.'? It will be
interesting to study these phenomena from
our picture. Frequency locking has been
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observed both in experiments™® and

numerical integration of differential equa-
tions.'” Since our critical phenomenon
seems to have a large universality class in 1-
or 2-dimensional mappings, it may be
expected that our theory is illustrated
through more precise experiments. Detailed
results with further studies on self-similarity
and the effects of small noise will be
reported elsewhere.
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