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Chaotic itinerancy is universal dynamics in high-dimensional dynamical systems, showing itinerant
motion among varieties of low-dimensional ordered states through high-dimensional chaos.
Discovery, basic features, characterization, examples, and significance of chaotic itinerancy are
surveyed. ©2003 American Institute of Physic§DOI: 10.1063/1.1607783

About a decade ago, chaaotic itinerancy was proposed as a
universal dynamical concept in high-dimensional dy-
namical systems. This was based on numerical studies in
coupled maps, optical turbulence, and neural dynamics.
One of the great surprises in “deterministic chaos” was
the emergence of essential random behavior even in low-
dimensional dynamical systems. In the study of high-
dimensional chaos, however, it was soon recognized that
there is often a state that switches back and forth be-
tween fully developed chaos and ordered behavior. Here
fully developed chaos can be approximated by “random
motion,” which may be described as the motion consist-
ing of many degrees of freedom, and ordered behavior
can often be characterized by low-dimensional dynamics.
On the other hand, itinerant motion among varieties of
ordered states through high-dimensional chaotic motion
is commonly observed. The term for this ischaotic itiner-
ancy. During the past ten years, chaotic itinerancy has
been suggested to be relevant to optical turbulence, pro-
tein folding, coupled dynamical systems including glo-
bally coupled maps, dynamics of water molecules, climate
dynamics, population dynamics in ecosystem, biochemi-
cal reaction dynamics in a cell, dynamic memory in hu-
man and animal brain, among other topics. Applications
of chaotic itinerancy to dynamic control in robotics and
to combinatorial optimization problems have also been
proposed. Recently, mathematical foundation of the con-
cept has been studied and has developed especially in
some ideal cases. We will summarize the current status of
the study of chaotic itinerancy including its recent devel-
opments in this interdisciplinary field and also provide a
future scope in high-dimensional dynamical systems.

|. DISCOVERY OF CHAOTIC ITINERANCY

Chaotic itinerancyCl) was independently discovered in
a model of optical turbulencéby lkeda,! in a globally
coupled chaotic systertby Kanekd,?* and in nonequilib-
rium neural networkgby Tsuda,*° and was proposed with

high-dimensional dynamical systems. In Cl, an orbit succes-
sively itinerates over ordered motion expressed by a few ef-
fective degrees of freedom. Considering attraction to, and the
residence at the ordered motion state, we called each of such
states “attractor ruin.” The motion at “attractor ruins” is
quasistationary in the sense that it is close to that in low-
dimensional attractor.

After staying at one attractor-ruin, the orbit eventually
exits from it. This escape from an attractor-ruin stems from
instability of the ruin(see Fig. 1 for schematic representa-
tion).

For example, if the effective degrees of freedom is two,
the dynamics are in the vicinity of two-dimensional subspace
in the original high-dimensional phase space. Such low-
dimensional motion is not described by a stable attractor,
even though orbits are attracted to its vicinity. After staying
at an attractor-ruin, an orbit exits from it. This exit arises
from a certain kind of instability.

With this instability the orbits enter into a high-
dimensional chaotic motion, losing coherence or correlation
among variables. This high-dimensional dynamic state is
also quasistationary, although after this chaotic wandering
the orbit is again attracted to one of the attractor ruins which
again possesses low dimensionality. In other words, there are
some “holes” connecting to attractor-ruins from the high-
dimensional chaotic state. Once the orbit is trapped at a hole,
it is suddenly attracted to one of attractor ruins, i.e., low-
dimensional ordered states.

Now, a mechanism of the above-mentioned instability
should be solved. In this Focus Issue, several possibilities for
the mechanism are addressed.

II. CHARACTERISTICS OF CHAOTIC ITINERANCY

The basic characteristics of Cl are as follows.

A. Existence of low-dimensional ordered motion
(attractor ruin )

To exhibit CI behavior, there are several invariant sub-
sets that are in low-dimensional space in the phase space.

unanimous cooperation as universal dynamics in a class dfhese subsets work as attractor-ruins.
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Schematic Representation of Chaotic ltinerancy bit escaping from an attractor ruin wanders is restricted in
in phase space . . . . . . -
spite of this high-dimensionality, the itinerancy from one at-
tractor ruin to another is distinct from random hopping
among attractors with the help of external perturbations. On
the other hand, due to this restricted path, the system main-
tains memory concerning the motion on attractor ruins which
the orbit previously visited, and hence the history-dependent
- orbits are generated.
As mentioned earlier, dynamics for an exit from an at-
X tractor ruin is not represented by simple noise motion. An
aspect of chaotic motion for the escape from an attractor
ruin, however, may be expressed by state-dependent noisy
tigh-dimensional dynamics. Then, it may be possible to discuss this aspect, by
TEE using a state-dependent noise, as a first-step approximate de-
scription. For example, escape statistics from an ordered
state may be discussed by using multiplicative noise, where
the noise strength explicitly depends on the state. In the

In high-dimensional phase space, there can be stable arpdresent issue, Nakao and Mikhailov discuss this aspect.

unstableg(invariany manifolds connecting each of the invari-
gnt gets. To realiz_e attrgction to the neiglhborhood of thig- Importance of marginal mode
invariant set, the dimension of stable manifold must not be
negligible in a whole space, in other words, at least a Le- [N Cl, the attraction to low-dimensional motion and the
besgue measure of the basin of such an invariant set is pogscape from it are somewhat balanced over the long term.
tive. On the other hand, this low-dimensional manifold can-There are two extreme cases. If the former tendency wins,
not be an attractor in the whole space since there is at leatie motion falls onto a low-dimensional attractor, while if the
nonzero dimensional unstable manifold along which the orlatter wins, a high-dimensional irregular motion appears. For
bits leave the neighborhood of such an invariant set. In thi&!, balance between the two tendencies is required.
regard, it is natural to call the geometric structure represent- ~ 1his balance leads to neutral stability of some modes.
ing such low-dimensional ordered motion an attractor ruin. The stability of this kind can be described by the Lyapunov
In dynamical systems having some symmetry, there exSPectra. As far as we have verified in numerical simulations
ists the case that a whole system can be decomposed in® several high-dimensional dynamical systems exhibiting
several low-dimensional invariant subspaces, according t&!: there appear many exponents whose values are close to
which the whole dynamical behavior can be characterized bgero. The accumulation of the Lyapunov spectra to null ex-
the union of the behaviors in subspaces. As is clearly seen Hjonents is one characteristic feature common to Cl we have
the definition of invariant subspace, once the motion is restudied so fa(see, e.g., Ref.)6
stricted to this low-dimensional subspace, the orbit stays This characteristic leads to a new type of instability that
there. Sauer studies in this Focus Issue. He focuses on the study of
As a typical example, let us consider a globally coupled@ two-dimensional map with extremely slow convergence or
system consisting of identical elements showing chaotic dynonconvergence of zero-Lyapunov exponent and its large
namics(see Sec. lll for details Synchronization of all ele- fluctuation. Although chaotic itinerancy is a concept in high-
ments provides a chaotic state. This chaotic state is invariagimensional dynamical systems, Sauer's model expresses
under any permutation of elementary maps. Since this groupne of the essential characteristics of chaotic itinerancy.
action commutes with the temporal evolution rule, this cha-Sauer investigates the possibility of sensitive dependence on
otic state is also invariant under temporal evolution. Further2dditive noise to this skeleton model and found the scaling
more, there could be states obtained by partial synchronizd@w for natural measure. This suggests that the break of glo-
tion, i.e., synchronization only over some elements. ThenPal stability is one of the essential characteristics of chaotic
each of the states constitutes an invariant subspace. Some!Bferancy.
these states can have positive Lebesgue measure of the basin In Cl large fluctuations of null Lyapunov exponents are
of attraction. If this invariant set is unstable in a transversafxpected, as Sauer treats in his article. Indeed, fluctuations in
direction to its invariant subspace, then the orbit is directedhe largest Lyapunov exponents are addressed as a typical
to other invariant subspaces from such chaotic invariant segase of Clin this Focus Issue by Tsuda and Umemura.
In such a case, wandering dynamics is observed as ClI, and

each invariant set, i.e., attractor restricted to each invariarﬁI AN EXPLANATION OF CHAOTIC ITINERANCY IN A
space, is an attractor ruin. SYMMETRIC DYNAMICAL SYSTEM: A GLOBALLY

B. Escape from low-dimensional motion through COUPLED MAP
restricted path

high-dimensional chaos

- —

X (1)

FIG. 1. Schematic representation of chaotic itinerancy.

One of the simplest models for high-dimensional dy-
After the escape from low-dimensional states, the mo-namical systems is globally coupled dynamical systems. In
tion becomes high-dimensional. Since the region that an omparticular, a “globally coupled map{GCM) consisting of
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chaotic elementfshas been extensively studied, as a simple X(@) X(3)
prototype model for chaotic itinerancy. A standard model for
such GCM is given by

Surface x(1)=x(2)

€ N
X+ 1(1) = (1= T Oxa(D) + 5 2 F0xal(D)), (1)

wheren is a discrete time step andis the index of an
element {(=1,2,..,N=system size). The maf(x) is cho-
sen so that the dynamies, 1= f(x,) shows chaos. In par-
ticular, the logistic mag (x) =1—ax? is often adopted. The
model is just a mean-field-theory-type extension of coupled
map lattice¥CML).”

Through the average interaction, elements tend to oscil-
late synchronously, while orbital instability leads to destruc-
tion of such coherence. In the former limit, all elements os-
cillate coherently (coherent phase while elements are
completely desynchronized in the other limit of strong or-
bital instability (desynchronized phase Between these ) ) ]
cases, there is a case that elements split into clusters in whi r%Ozr‘rj?}ﬁ'gﬁg&{f?&ﬁ;f;;i;o” of attraction to, and escape from, an at-
they oscillate coherently. Here a cluster is defined as a set ofa
elements in whichx(i)=x(j). Attractors in GCM are clas-

sified by the number of synchronized clusterand the num-  tor ryin are given by orbits passing through further restricted
ber of elements for each clustéli. When the parameter sbspace among the subspace for the attractor ruin. Third,
characterizing nonlinearitye.g., a in the above-mentioned \yhen Cl is observed, desynchronization and synchronization
logistic map caseis not large, observed attractors have agre palanced over the long term. This leads to the accumula-
small number of cluster&. If the number of clustek is  tion of null Lyapunov exponents, as already mentioned.
small, the corresponding orbit is aftracted to just low-  As discussed earlier, each attractor ruin in GCM is given
dimensional attractor, i.e., at mdsdimensional. As the pa- py the clustered state, characterized by the number of ele-
rameter is increased, these low-dimensional states lose thgents in each clusteN; ,N,,Ns, ... ,N,). Hence stability
stability. If the instability is not large enough to lead to com- analysis of clustered states gives a basis for the study of Cl in
plete de-synchronization, the system often shows chaotigcm, Maistrenko and Panchuk analyzed the stability of
itinerancy. Here, low-dimensional attractor ruins are givengjystering solution, as well as its basin in detail. In particular,
by a state with a few number of clusters. they analyzed basin structure of partly desynchronized at-
As an example, consider the case that this attractor ruiactor, i.e., clustering withNy,1,1,. . . ,1) with N;>1.

is given by a two-cluster state. Then the system is attracted to 1o study attractor ruins, we need to deepen our under-
the neighborhood of two-dimensional plang(1) .x(2)) in standing in long-lasting transients within high-dimensional
theN-dimensional phase space. In Cl, after the orbit stays iRjynamical system. By using one-body distribution of the
the neighborhood of this two-dimensional plane it leaves ougach valuex for each element also, Chawanya analyzed the

of the plane. During the exit process, often the orbit ap-existence of such quasistable state and the transient length in
proaches an almost coherent state, i.e., the stateX{lth 5 GCM consisting of tent maps.

~x(2). In this GCM, when elements are totally synchro-
nized, the dynamics are approximately represented by just a
sgle mapey (). Her s map shows stonger or. V. MLNOR ATTRACTOR A9 A possiLe
bital instability than a clustered state with a few clusters.
Hence as the orbit approaches this one-dimensional subspace An attractor ruin in Cl possesses the structure of both
in the two-dimensional subspace, it exists from the originalglobal attraction to it from high-dimensional manifolds and
two-dimensional subspadsee also the schematic Fig. &  escape from it through restricted region of its neighborhood.
is interesting to note that the effective degrees of freedonThis structural feature is similar to that of a Milnor attractor.
decreases before high-dimensional chaotic state appears. Amthis section, we discuss the possibility to characterize an
explicit experimental realization of globally coupled dynami- attractor ruin with a Milnor attractcY®
cal systems is given by Kiss and Hudson in the presentissue, Milnor attractor is defined as éminimal) set that has
as will be described later. positive measure of its basin of attractithThis definition

Let us reconsider basic characteristics in Cl in this ex-does not exclude the possibility that the orbits leave from the
ample. First, in this globally coupled dynamical system, in-attractor, namely, the presence of unstable manifolds of the
variant subspace is clearly defined from symmetry, wherebwttractor. This is clearly excluded in the definition of conven-
one can define a low-dimensional attractor ruin. On the othetional geometric attractor. Therefore, Milnor attractor is an
hand, high-dimensional chaotic motion is given by desyn-extended concept of attractor and includes the conventional
chronized dynamics. Second, paths to go out from the attraggeometric attractor.

Global attraction
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In this way, Milnor attractor possessing unstable mani-with time evolution, Milnor attractors should be visited re-
folds is unstable by perturbations of arbitrarily small size,peatedly.
but it still globally attracts typical orbital points. Here, we A system with multiple Milnor attractors is easily con-
use the term Milnor attractor, only if it does not belong to thestructed by coupling dynamical systems, each of which pro-
geometric attractor. If this Milnor attractor is chaotic, the duces a Milnor attractor. Using a CML constructed as such,
basin is considered to be riddI&tThis is the case for the Tsuda and Umemura investigated the role of Milnor attractor.
present GCM model. They discovered that the CML with a system size 5, which is

Existence of Milnor attractor in a symmetrically coupled an intermediate case of CML and GCM in its effective cou-
system was first noted by Pikovsky and Grassbe"r?géhe pling, produces ClI via a “higher order” Milnor attractors,
authors discuss a coupled map of two identical elementsvhile a CML with a larger size produces, if any, only tran-
Still, the Milnor attractor is not so common in a coupled sient Cl. Here, global coupling is necessary to produce ClI
system with few elements. Indeed, since Milnor attractor invia Milnor attractors, while the result also suggests the plau-
the above-mentioned sense is not asymptotically stable, orbility of the above magic number=72 with respect to
might, at first sight, think that it is rather special, and appearsginiversal observation of Milnor attractors.
only at a critical point like the crisis in the logistic map. The existence of Milnor attractors in Cl is not restricted
Often, such critical points exist only at specific points in theto coupled map systems. In the neural network model by

parameter space. Hence Milnor attractors might look nongeTsuda, the Milnor attractor is likely to exist. Indeed, the ob-
neric. servation of a “critical circle map” in the collective activity

However, to our surprise, Milnor attractors are ratherof neurons in the modé?f is a possible manifestation of it.

commonly observed around the border between the ordered

and partially ordered phases in a globally coupled ffap, \, | ASSIFICATION OF CHAOTIC ITINERANCY IN A

when the number of degrees of freedom is larger than 5-1Q;eNERAL CASE

It is suggested that the Milnor attractors are prevalent when

the degrees of freedom having instability and globally”- With regard to symmetry

coupled to each other, is larger than 5-30rhis number In Sec. IV, we discussed Cl based on a study of a dy-
5-10 is also termed magic numbet-2, borrowing the ter- namical system with symmetry. In a globally coupled dy-
minology in psychology®**We will come back to this prob- namical system of identical elements, there is permutational
lem in Sec. VI. symmetry, while in a lattice systef€ML), there is transla-

A Milnor attractor is invariant under the group action, tional symmetry. In general high-dimensional dynamical sys-
say substitution of elementary individual systems, and is intems, such symmetry does not exist. Still, the study with the
variant under the dynamics because of commutability besymmetric case may be relevant to a general case also.
tween the dynamics and the group action. Therefore, a Mil-  Case |.With some transformation, the system may be
nor attractor forms an invariant set and can be an attractanapped into a symmetric case. Let us consider a coupled
ruin. In this case, the presence of a Milnor attractor is closelylynamical system with nonidentical elements. In this case,
related to the appearance of riddled baSin. with some nonlinear transformation of variables, discussion

Note that the Milnor attractors satisfy the condition of for the symmetric case will be applicable. Consider phase
the above-ordered states constituting chaotic itinerancysynchronization, for exampfé.Elements are not completely
Some Milnor attractors that we have found maintain globalsynchronized, but after some transformation of variables,
attraction, which is consistent with the observation that thehey are regarded to be synchronized. Such generalization
attraction to attractor ruins in Cl is global starting from a will be relevant to Cl, in particular, for a globally coupled
high-dimensional chaotic state. Here, note that attraction oflynamical system with heterogeneous elements, including a
an orbit to precisely a given attractor requires infinite time incoupled dynamical system consisting of elements with dif-
differentiable dynamical systems, and therefore before théerent time scales.
orbit is completely attracted to a given Milnor attractor, it The paper of Fujimoto and Kaneko studies Cl in a
may be kicked away. Then, the long-term dynamics can beoupled dynamical system with distributed time scdkese
constructed as the successive alternations of the attraction talso Ref. 18 for Cl with distinct time scalesThe model
and the escape from, Milnor attractors. Hence the dynamiceonsists of elements with the same dynamics except their
is represented by transition over Milnor attractors. This trantime scale. It is mapped to identical elements with the trans-
sition is generally asymmetric: when there is a connectiorformation of time scale by each. This coupled chaotic system
from a Milnor attractor A to a Milnor attractor B, but not with multiple time scales exhibits chaotic itinerancy with a
necessarily from B to A. The total dynamics is representednechanism of bifurcation cascade. Fast dynamics succes-
by the motion over a network, given by a set of directedsively change slow dynamics, so that correlation is trans-
graphs over Milnor attractors. In general, the “orderedferred to elements with a huge time scale difference. The
states” in Cl may not be exactly Milnor attractors but can bework by Fujimoto and Kaneko opens a way to study chaotic
weakly destabilized states from Milnor attractors. Still, theitinerancy in frequency space.
attribution of CI to Milnor attractor network dynamics is The above-mentioned theoretical paper is also consid-
expected to work as one ideal limit. ered to give a model for dynamic effect of this intermingled

To make itinerancy over Milnor attractors recurrently, time scale, studied by Kay for neural activity, as will be
there should be multiple Milnor attractors in the system, andliscussed in Sec. VIID.
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Case lI: Intrinsically asymmetric cas&enerally, invari-  jumps changes chaotically. This indicates that chaotic transi-
ant subspace is not directly defined by the symmetry. In dion between synchronized states occurs in some areas of the
typical situation for generating Cl in this case, the invariantcortex and also between asynchronous states in other areas.
set possesses both stable and unstable manifaldish are  Since a transition is very sharp, this may be related to the
invariany and the transition between invariant sets can occutransition by the appearance of heteroclinic cycle. If the ex-
via these invariant manifolds. istence of heteroclinic orbits is verified, the present findings

of Freeman could provide a new example of CI.

B. From hypercycle to chaotic itinerancy C. Classification by the form of ordered motion

As a transition over low-dimensional invariant sets, et-  g50n motion at an attractor ruin is not necessarily cha-
eroclinic cycles are common with Cl, and may be important

; h ib| hani ; he h i tic. In some cases, it can be fixed point, limit cycle, or
or another possible mechanism of Cl. In the heteroclinic,, .siperiodic. For example, CI observed in the paper of Ot-

cycle, an orbit visits successively the neighborhoods of the aet al.in the present issue is based on quasiperiodic and

saddle-type fixeg p‘?i”ts- Here an orbit _approaches a fixeTjrequency locking states. If the fixed point is ordered motion,
point from the direction of its stable manifold, and after ap-jicq is necessary to make a switching as discussed in the

proaching close neighborhood of it, the orbit goes out of itnonequilibrium neural network model by Tsulla.
through its unstable manifold and then asymptotically ap- The noise may play the role of producing positive mea-

proaches a stable manifold of another fixed point. In otheg, .o ¢ snnort of ordered motion which allows the riddled
word_s, one unstable_ mamfo_ld of a fixed point is a stablé, in to appear. Kozma treats the KlIll model originally in-
manifold of another fixed point, and these manifolds form 3roduced by Freeman, and discusses a type of “attractor
cycle to switch among fixed points. The existence of Sucr}:rowding.” Kozma also found a similar noise effect to that
heteroclinic cycles has been discussed most extensively in @ljenstrom found in a model of the olfactory system. Cha-

class of population dynamics modl. otic itinerancy with multiplicative noise that was introduced

However, in such a case if the heteroclinic orbits becom&, yhe torm of stochastic renewal of neural dynamics was
chaotic or not is problematic. Heteroclinic cycles originally studied by Tsudaet al. about 15 years ago. Statistics of

studied are nonchaotic and structurally unstable and are ngf, s from 4 stationary state by multiplicative noise is also
suitable for a mathematical framework for chaotic itinerancy.qy ,qied by Nakao and Mikhailov.

It is possible to introduce chaotic dynamics to it as studied, A similar transition phenomenon in the system with

for egample, by Chawany&.In the pres_ent issue, Ashwin_ riddled basins has also been found by Grebetgal.2 by

et al. introduced a model for robust cycling between chaoticn o qcing additive noise to such a system. In the present
and equilibrium saddles. They explicitly design a system for,jje Kozma addresses the role of additive noise in the
robust cycle between invariant sets and saddles. In general""&ttractor crowding” of the KIll model. He discovered a

will be important to study a robust cyclic process, by “thick- giapjjization of chaotic orbits by noise and also the appear-

ening” connection path; among invariant sets, so that_ & nce of maximum in signal to noise ratio in the chaotically
motion can include high-dimensional chaotic dynamics.; arant state

Such a system gives one prototype of Cl.

In general, saddle-type structures in phase space are im-
portant to chaotic itinerancy. In relation, the saddle-typeD
structure in infinite dimensional systems is studied in this  There seem to be several types of “chaotic itinerancy”
issue by Nishiura, Teramoto, and Ueda. Chaotic itinerancyovered by this general definition for it. One classification
that appears in a dynamical system with continuous spacgay be possible according to the degree of correlation be-
and time is analyzed by the interactions of saddle-type struaween the ordered states visited successively. If the paths for
tures in phase space. A specific saddle-type structure hale transitions between the ordered states are narrow, the
been discovered and analyzed. They studied a transitory dyorrelation between successive ordered states is high. On the
namics of particle-like patterns in the Ginzburg—Landauother hand, the correlation is low if the memory on the pre-
equation, the Gray—Scott model, and a three-component resous states is lost due to high-dimensional chaos during the
action diffusion model, and suggest that localized steady otransition.
time-periodic saddle-type structures, called scattors, may ) .
play an important role in chaotic itinerancy in many partial 1- €ases with strong correlation
differential equation systems. If the connectivity among degrees of freedom is sparse,

In this Focus Issue Freeman studies human EEG with hithe path can often be very much restricted to some specific
1X 64 electrode system that is a nontrivial extension of arportion in the total phase space. For example, consider a
8% 8 electrode system that he invented for the previous studsystem with local coupling in space such as the one typically
ies of animal olfactory bulb. Freeman has discovered a curirealized in a coupled map lattic®€ML). Switching over
ous instability that reveals sudden jumps in phase which arseveral traveling wave patterns is observed in this CRIL,
synchronized in a very wide range. Such jumps are asyrwhere the traveling wave is a global phenomenon covering
chronous across the midline separating the left and righall lattice points. Hence, the switching of wave patterns can
hemispheres and also across the central sulcus separating te interpreted as an example of chaotic itinerancy. In this
frontal and parietal lobes. The time duration between suddeoase, although the transition occurs through a chaotic state,

. Degree of path
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its dimension is too low to allow for a variety of destinations. increases with the factorial order bf[say (N—1)!], while
Indeed, the transition over wave patterns is rather limited. Ithe volume of phase space expands only exponentially.
seems that ClI in optical turbulence by Ikéddso belongs to Hence the combinatorial variety surpasses the increase of
this class. phase space volume at sormde beyond which the distance
The extreme case for low-dimensional path is heterobetween an attractor and its basin boundary may drastically
clinic cycle, where connections are made only by one-decrease, leading to the increase of fraction of Milnor
dimensional unstable and stable manifolds. Chaotic itinerattractors’* Now, several attractor ruins are formed, and ClI
ancy realized by “thickening heteroclinic cycle,” as may be rather commonly observed.
discussed in Sec. IV B, has still limited path connection, and Let us expand upon the above-presented discussion a
belongs to this case with strong correlation. little bit. Consider a one-dimensional phase space, and a ba-
sin boundary that separates the regionsx@f)>x* and
x(1)<x*, while the attractor in concern exists at around
For the chaotic itinerancy in the GCM, there is a hugex(1)=x,<x*, and the neighboring one at arourxgl)
number of invariant sets, given by the clustering condition.=xz>x*. Now consider a region ofN-dimensional phase
The chaotic itinerancy occurs among such a huge number a&fpacex,<x(i)<xg. If the region is partitioned bybasin
possible attractor ruins. If the orbit passes through highboundaries ak(i)=x* for i=1,... N, it is partitioned into
dimensional desynchronized state, and it lasts relatively lon®2N units. Since this partition is just a direct product of the
there remains little correlation between two successive ateriginal partition byx(1)=x*, the distance between each
tractor ruins. The memory of the previous state decays durattractor and the basin boundary does not change Mith

2. Cases with weak correlation

ing the transition. On the other hand, consider a boundary given by some
condition for (1),...x(N)), represented by &possibly
3. Cases with medium correlation very complex hyperplane C(x(1),...x(N))=0. In the

present system with global couplings, many of the permuta-

In GCM, all elem_ents are cqnnected to aII_ot_hers, WhIChtional changes of(i) in the condition also give basin bound-
make paths rather high-dimensional. By restricting the CON3ries. Often, the condition for the basin can also have clus-

nection, the path has more restrictions. For example, Nozav‘ﬁ%ring (N4,...,Ny), since the attractors are clustered as such.

StUdied. a GCM.where the coupling strengt-h among the el Then the condition obtained by the permutation of
ments is not uniform but sparse, by borrowing Hopfleld-typec(x(l)’”_}X(N)):0 gives a basin boundary also. The num-

neural network As a result, the number of “attractor ruins” ber of such segments of the boundaries increases combina-
is reduced and the paths between such attractor ruins af8rial|y with N, roughly speaking on the order oK 1)!
much limited. Hence there is larger correlation between th%\/hen a variety of clusterings is allowed for the boundary,

patterns before and after a transition. Such restriction in thg, ) +h« N-dimensional phase space region is partitioned by

path is also imposed in Tsuda’s nonequilibrium neural HEt'O((N—l)!) basin boundary segments. Recalling that the

w_ork model? which leads to long-time hysteresis over re- distance between an attractor and the basin boundary re-
trieved pattems. - . ains at the same order for the partition of the order ™f 2

In these chaotic itinerancy models, the unstable manifol he distance should be drastically decreasedVif-(L)! sur-
of the attractor ruins has a relatively low dimension. In thispasses B Since forN>5. the former increases dréstically
respect, the corr.elatlpn between memory states may detq3ster than the latter, the distance should decrease drastically
mine the dimensionality of the transition in such a way that &, \~ 5 Then forN>5. the probability that a basin bound-

str;)hng r(}:orrelatlorr:. Eeor;erate§ a lltt)w-dl'Tensmtr;]a.I tran5|t|ct)% y touches with an attractor itself will be increased. This
path, whereas a high-dimensional transition path 1S genera gument is applied for any attractors and their basin bound-

in a weak correlation case. ary characterized by complex clusterings having combinato-
rial complexity. Although this explanation may be rather

VI. UBIQUITY OF CHAOTIC ITINERANCY IN A rough, it gives a hint to why Milnor attractors are so domi-

“HIGH"-DIMENSIONAL SYSTEM nant forN=(5-10). In this sense, the dimension necessary

h for prevalence of CI could be “magic number seven plus

Through numerical studies for a variety of models wit 13
27

many degrees of freedom, chaotic itinerancy seems to b&'MNuS 2. , , _
ubiquitous, when the system is neither too disordered Iosmgn As discussed earlier, attractors are sometimes crowded in

correlation among degrees of freedom nor too ordered at'® Phase space if the dimension of the phase space is
tracted to low-dimensional attractors. “high.” Freeman and his colleagues discuss this attractor

One question here remains: How many dimensions gr&rowding, in a mode! of the olfaptory bulb., the so—c'alled KIII'
required to be “sufficiently high-dimensional?” How high Model. A mesoscopic system in each different hierarchy is
should the connection among degrees of freedom be? Or, fFfudied by Freeman, Kozma, and Kay also in this issue.
other words, to what point of the argument so far is dimen-yj;, cCHAOTIC ITINERANCY IN NATURE
sionality or connectivity relevant?

There is no decisive answer as yet, although relevance
combinatorial complexity is discussed in Ref. 13: As the
number of coupled element$ increases, the combinatorial So far we have discussed ClI in a dissipative system,
variety of grouping(clustering of these degrees of freedom where attractor concepts are important. To a Hamiltonian

& Hamiltonian system: Relevance to energy
conversion
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system, the attractor concept is not applicable. Still, itineranhism for energy conversion. This problem is discussed by
motion over several quasistationary states is often observedakagawa and Kaneko in the present issue, who describe
in a Hamiltonian system with many degrees of freedom.conversion of injected energy to a certain directed motion in
There, the system of concern is confined at a state with som& model inspired by molecular motor experiments studied as
ordered structure over long time span, while chaotic motioran elementary process of muscle contraction. They simulate
with a small amplitude remains. At this ordered structure,a simple Langevin dynamics with several degrees of freedom
degrees of freedom are separated into groups, and elemertsd have found relevance of transient chaotic behavior to
(mode$ within each group show highly correlated motion. energy conversion.
On the other hand, motions of elements belonging to differ-  Both of the two systems are dynamic mesoscopic sys-
ent groups are approximately disjointed. After residence atems in the sense that a macroscopic state cannot be repre-
one of such ordered states, degrees of freedoms that wesented by a simple order parameter but a certain time-
roughly disjointed start to interact, which makes the systentiependent ordered motion at a mesoscopic level is important.
leave out of the ordered state. There, with mode couplingsThese models suggest that CI plays an essential role in the
stronger chaotic motion appears, which later is replaced bgnergy transfer of macromolecular systems by activating the
another ordered state suppressing strong chaos and sepapgecess of conversion from ergodic motion to nonergodic
tion of degrees of freedom. In this sense, it is fair to adopimotion. In general, it will be important to study functions of
the term chaotic itinerancy for such Hamiltonian dynamicsenzyme or molecular motor from the viewpoint of CI.
also.
This type of Cl was first discussed by Konishi and ) . .
Kaneko? in a globally coupled pendulum system, while B- Physico-chemical experiments
similar_dynamics were soon observed in a self-graviton A variety of physical and chemical systems with many
systent® degrees of freedom shows itinerant motion over several qua-
In some sense, one might think that such itinerancy ovegistable ordered states, through irregular motions associated
several ordered states is just thermal hopping dynamics ov&yith many degrees of freedom. So far, in the traditional pic-
energy local minima in a potential landscape, as was traditure taken for such phenomena, one assumes each state as a
tionally discussed. Although both the CI dynamics here andmetastable state” as in the local minimum of potential land-
the standard hopping process are common as transition phecape, and then assume the switching over the states as ran-
nomena over states, the transition in Cl is clearly distinguishdom hopping over barriers triggered lt§nhermal or other
able from a thermal activation process. Cl is due to deternoise. However, in recent observations, there are several phe-
ministic dynamics with several degrees of freedom, and nohomena that do not fit well with such standard ‘‘static”
by random motion from heat bath. In the itinerant motion, + ‘‘stochastic’’ picture. These phenomena may be under-
the energy is not dissipated to whole degrees of freedom asood as chaotic itinerancy.
“heat.” This feature may bring about deviation from tradi- An example in physics was first presented in optics with
tional Arrhenius law, i.e., the transition probability with excitations of multiple modes. Indeed, one of the first dis-
exp(—AE/KT) form for the switching from one state to an- coveries of chaotic itinerancy was due to the theoretical
other over the energy barrier withE. model of optical turbulence, as mentioned. Later, further ex-
Hence, chaotic itinerancy may give new insight into theamples are found both theoretically and experimentaily?
problems so far discussed just as random hopping among the present issue, Otsulka al. studied the dynamics of a
several metastable states over energy barrier. In contrast ggobally coupled three-mode laser, and observed self-induced
this standard viewpoint, there can be a directional motion foswitching over several modes of oscillation.
the switching from one state to another in CI. Itinerant mo-  Global coupling often leads to itinerant dynamics. An
tion in molecular dynamics of glass is studied by Shihjo example is given by Nasuno’s experiment on quasi-two-
from this viewpoint, while molecular dynamics simulation of dimensional gas-discharge system. In the system, localized,
water again suggests nonrandom itinerancy over several ilaminous spots are formed. With the increase of discharge
herent structure€ Recently, dynamics of surface atoms pen-current, they form a “molecular-like cluster,” which, with
etrating into micro-clusters is investigated by Kobayashifurther increase of the current, show switching over several
et al,?® where rapid diffusion of atoms is observed as a uni-quasistable internal structures, with intermittent rearrange-
versal feature of small clusters, and is discussed from a viewment of mutual positions of spots. Whether this switching
point of chaotic itinerancy. process is understood as chaotic itinerancy or not is yet open,
Macromolecules like protein may have complex dynam-but this itinerancy, at least, seems rather different from ran-
ics within, and are also candidates for, a system to exhibit Cidom hopping over the local structures.
Indeed, protein folding was discussed from this viewpoint by  One of the most beautiful experimental demonstrations
Matsumoto, while a simpler model for it is included in this of globally coupled chaotic systems is an array of coupled
issue by him. He has found unidirectional motions with highelectro-chemical oscillators, developed by Kiss and
probability in the folding process, in a Hamiltonian systemHudson®>3* Previously they showed that the system shows
of double-well applied random perturbations. He discovereadoherent, ordered, and desynchronized phases, with the
a dynamical mechanism of the appearance of this nonergodithange of coupling parameter among arrays, where clusters
motion. of elements with mutual coherent oscillations are formed. In
Directional motion in Cl may also give a robust mecha-the paper in the present issue, they showed experimental
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demonstration of chaotic itinerancy, by measuring thetransition in terms of chaotic itinerancy, as we already men-
precision-dependent clusters and analyzing them as hierationed. Kay found a dynamics at three time scales: slow, fast,
chical cluster trees, as introduced in Ref. 2. Change of effecand intermediate modes. Among others, medium time scale
tive degrees of freedom is directly computed. Their result®vents unpredictably change with a strong correlation with
show remarkable similarity with those observed in globallyanimal performance. Kay proposes in the present issue the
coupled maps. folding of different time scales as a mechanism for chaotic
As fluid turbulence provided a variety of examples for itinerancy.
chaos, it can also be an experimental testbed for chaotic itin-  Another important finding in physiological experiments
erancy. In a coupled map lattice model for Rayleigh—Benardn relation with chaotic itinerancy is chaotic alteration be-
convection, switching over several roll patterns is observedween synchronization and desynchronization of the activity
and characterized as chaotic itinerafit¥here are also cor- of neural assemblies. The first finding was made by Gtay.
responding experimental results, although detailed analysige observed this type of chaotic alteration in cat visual cor-
with regard to chaotic itinerancy is not yet published. Intex. It is often observed that integrated electric potential of
electrohydrodynamic convection of nematic liquid crystal,neuron assemblies strongly correlates and is synchronized
Sanoet al3® observed formation and collapse of target pat-between even far separated regions when an appropriate
terns, that may belong to chaotic itinerancy over several paistimulus is input. However, this synchronization does not last
terns also. for a long time. It changes chaotically to desynchronized
At a much larger scale, atmosphere dynamics may exchaotic states after a few hundred milliseconds. This alter-
hibit chaotic itinerancy. Indeed, by using an atmospherication looks like chaotic itinerancy. Tsuds al*® have pro-
model with realistic topography, Itoh and Kimdfd®found  posed a neuronal model with gap junction couplings that is a
a ClI phenomenon, in which the atmosphere system stayiffusion type of coupling to provide a dynamical mecha-
within attractor ruins for a long time, moving promptly nism of this chaotic alteration.
among them. They found preferred routes in transitions  Raffone and van Leeuwen found an alteration between
among attractor ruins. Interestingly, these characteristics caynchronization and desynchronization in a layered network
incide well with those of weather regimes in the real atmo-model with the three-variable Hindmarsh and Rose model.

sphere. They correctly discuss in the present issue the importance of
chaotic transitory process in simultaneous retrieval of memo-
C. Biology ries, taking into account cognitive behaviors. Although their

synchronization and desynchronization observed in assem-

A biological system is often composed of many dynamicbl. f model lative. thi ; t
elements. A multicellular organism consists of cells with in- €S Of model neurons are refative, this seems 1o represent a
]ather realistic model.

ternal biochemical reaction, while an ecosystem consists ot ¥ d Post tound chaotic iti in the diff
populations of several species. Due to dynamics of elements, an and Fostnov found chaolic Tinerancy In the ditu-

they sometimes synchronize, or form a cluster of synchro§'vely coupled Morris—Lecar neural system, where the tran-

nized elements, or differentiate into several clusters. SomeX'rY phenom_ena appear among three unstable states_: -
times, these dynamics are not stationary, but the clusters may'25€ and antiphase synchronized states and small amplitude
change in time. There CI may appear, and can be relevant onfiring state. By their work in the present issue, it turns out
dynamic change of mutual relationship, to provide evolvabil-nat chaotic itinerancy provides anew route_ to chaos via
ity, and to sustain diversif?*° Although decisive experi- resonant torus breakdown. The diffusive coupling adoptgd by
mental demonstrations are not yet available, several theoreffan @nd Postnov can be interpreted as a representation of

ical models are studied, to imply the possible relevance of@P junction coupling of neurons which has widely been
chaotic itinerancy for evolvability of biochemical reaction 2PServed in animal and human brain, even in the neocortex.

dynamics*! differentiation from stem cell and diversity in Their system is relatively low-dimensional, but show a new

an ecological systeff (see also Sec. VIIIB mechanism of chaotic itinerancy which may hold also in
high-dimensional systems like gap junction coupled neural
. systems.
D. Brain

A neural model for chaotic itinerancy is addressed in the

Chaotic itinerancy has also been addressed in neurgresent issue in two directions. One is a numerical study in a
physiological experiments with animals and even humandarge scale system that is presented by Nara, and the other is
Freeman established the presence of chaotic behavior, its ra-mathematical study in a prototype model of a chaotic neu-
alization by noise through attractor crowding and its func-ral network of a small scale that is presented by Kitajima
tional significance. The transition between multiple wings ofet al.
quasiattractors during a motivated perception process and Nara has studied an effect of chaotic search in the prob-
also during learning was interpreted by chaotic itinerancylem of association of memories. Nara and his colleagues
Kay observed an itinerant behavior in local field potential ashave used a recurrent neural network with limit cycle oscil-
characterized to be nonstationary transitory dynamics in th&tions which represent memories. In the present article, Nara
animal cognitive and behavioral experiments with rats brairclarifies that chaotic itinerant behaviors can exhibit high per-
including an entire olfactory system and hippocampus. Reformance of memory search, compared with so-called ran-
cently, Freeman discovered a curious transition phenomenaiom search, and the performance can be better by learning
in human EEG. He tries to interpret, in this issue, the sharfpecause of the change of degree of constraint to access each
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memory pattern even when chaotic search was worse thang correlated motion. Accordingly, the existence of a

random search. predefined “module” is often assumed in neuroscience and
Kitajima et al. study one of the possible mechanisms ofin cellular biology.
chaotic itinerancy observed earlier by Aihatal. in a net- Still, examples are increasing to suggest that these

work of chaotic neurons. In this article Kitajinet al. treat  groups are not pre-defined, but can change in time. Groups
four coupled chaotic neurons with two orthogonal patternf neurons or genes that work correlatively often change in
which are stored in the network as a representation ofime or change depending on external condition.

memory. The model was a reduced six-dimensional chaotic ClI provides a novel viewpoint in such “dynamic change
map which possesses a three-dimensional chaotic subsysteai. relationships” (see also, for example, Ref. ¥5n Cl,
They analyzed the model and found the presence of the irgroups of correlated action are formed at each attractor ruin,
tersection of unstable manifolds of periodic points and col-as a result of dynamics, even without predefined strong cou-
lapse of in-phase-locked chaos as an essential process of thiings among the elements. The connection strength among

presence of chaotic itinerancy appeared in the model. elements in each group is not necessarily strong. The con-

nection among elements may give restriction for the transi-
E. Chaotic itinerancy at a psychological and a social tion among attractor ruins, but groupings are not necessarily
system? determined by them.

In this sense, CI gives a new insight into how module-

Aiming at a higher behavioral or psychological Ievel,t fruct ‘ d ; | d al h
Ikegami and Morimoto studied a coupled dynamical recog-yloe structures are formed spontaneously, and aiso on how
rules on dynamic change among these structures are gener-

nizer model. The study is inspired by the dynamics of turn- ted

taking in conversation. The model is a coupled dynamicaf"l As f th tical tool t derstand i ¢
system, called coupled dynamical recognizer. Here, each dy- s for a theoretical tool to understand generation ot or-

namical system is a recurrent neural network, to play a gamggreq T.Ot'ontw'tth I(?X\7/-d|mer|15|9nal d_egr.e:aéss Qf frﬁedom,
mutually. The state of neural network represents “image” on Issipafive SUCIUre™ or siaving princip’=: 1S often

the strategy of other players. lkegami and Morimoto useongp(;eC:' CthaOtIC Elnfrar)f y glI\I/es both éhfe ft(r)]rmatlon of or-
this framework for a three-person game in which coalition ered structure and aiso IS collapse, and furthérmore genera-

pair may be formed or change in tifiéDue to the instabil- tion of flexible rule, for this itinerancy. Here it should be
ity in learning dynamics, switching of the coalition pair is

noted that the itinerancy is a property of each element dy-
found, and is studied as chaotic itinerancy. Although therd!

amics, but occurs at a macroscopic level defined by collec-
may be some gap between the model and the psychologicHYe motion given by elements. In this sense, the rule for

experiment at the present stage, it will be promising to distinerancy is with regards to a higher level than each element

cuss human psychological procesich as mutual under- 9YNamics.
standing procegsrom the viewpoint of Cl. - -
Iltinerancy over several quasistationary states is often obB- Evolvability and stability

served in social system. In human history, there are quiescent p biological system consists of a huge number of ele-
regimes interspersed by the regime of drastic change, tRents, say chemical species for a cell, species for ecosystem.
which the term “revolution” is often assigned. Often, in this {ow such high-dimensional dynamical systems keep stabil-
transition, order in the ancient regime is replaced by dynamiq:ty is one of the key questions in a biological system. Fur-
change of social structure, before novel order is formed. Althermore, a biological system, although it is stationary over
though it may be too naive at the preset status of research tg,me time span, can also change in a longer time span, as are
discuss social dynamics from the viewpoint of ClI, it may common in developmental dynamics and in evolution. A bio-
provide a novel standpoint to analyze the social change. |ogical system satisfies both recursiveness to maintain its
In the study of history, most studies focus on estimatingmacroscopic state and changeability to a novel state as evo-
a chain of causal relationships so far. Chaotic itinerancy maytion. Here, the time regimes for recursiveness and evolu-
give a framework to understand a mechanism for the changgyon are sometimes separated, as seen in metamorphosis in
of relationships among elements, for generation and collapsgevelopment, and as discussed as punctuated equilibrium for
of ordered structure, and for the dynamics of transitiongyoution. Chaotic itinerancy gives a theoretical mechanism
among ordered states. By choosing a problem concerning, stapility for a recursive state and also to evolution. Stabil-
economics, in particular money, Yasutomi discusses th@y of ecosystem is discussed with population dynamics of a
emergence and collapse of money from dynamical systeMgyriety of specie® in relationship with CI, while recursive
of many agents exchanging goods, in this issue. production of biochemical states and their evolution are stud-

ied with itinerant dynamic&:
VIII. SIGNIFICANCE OF CHAOQOTIC ITINERANCY

A. Dynamics of relationship C. Energy conversion

In a biological system, often several elements show cor- As discussed in Sec. VIIA, ClI may provide a robust
related motion or work together. Activities of neurons aremechanism for energy conversion within fluctuating environ-
often correlated, while a group of genes is sometimes exment. If the conversion occurs through “heat,” mechanical
pressed together. In such case, often it is assumed that coerergy given by a few degrees of freedom is once absorbed
plings are prepared to be strong within these elements formnto many degrees of freedom. Cl also gives switching be-
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tween low- and high-dimensional dynamics. In Cl, howevermingled. Furthermore, in “memory,” fast time-scale changes
itinerancy occurs through restricted paths within the totalare embedded into much slower modes. Papers by Fujimoto
phase space. Hence the conversion may occur more robustiynd Kaneko and Kay discuss this issue.

and efficiently within a limited time span. Deviation from The significance of chaotic itinerancy in the brain and
Arrhenius law for crossing energy barrier discussed by Na€ognition has widely been discussed by Tsuda and
kagawa and Kaneko may suggest such relevance of Cl dyolleagues? Among others, related to this issue, the simul-

namics to energy conversion. taneous processing of learning and retrieval of memories is
highlighted. In the appearance of chaotic itinerancy, the sys-
D. Searching process tem which exhibits chaotic itinerancy can retrieve memo-

. o . . rized patterns while learning. In usual neural network mod-
~ Searching process within high-dimensional phase spacgis this simultaneity has been difficult to realize, because
is often important in optimization and information process-yithout chaotic itinerancy only currently retrieved memory
ing. Since orbits in CI take only restricted regions in thejs ghiact to be learned and such excess learning avoids the

phase space, the search process with CI may be more effispowal of retrieval of memories.

cient than random searching process, if the dynamics in thg Freemaf® addressed a perceptual drift as a possible con-
phase space are chosen properly. An example for such applfition of chaotic itinerancy to the level of perception and
cation was discussed by Nozafiaas a use of Cl for the cognition. Perceptual drift is necessary particularly for pat-

traveling salesman problem. tern recognition and classification that we naturally experi-
ence in our daily life. This is a category formation in an
E. Information processing extensive sense. For category formation, both identification

Since in chaotic itinerancy “neutral” stable modes are of different patterns by finding similarity and differentiation
immanent, which are realized in the successive transitionSf Similar patterns by finding differentare prerequisites.

between ordered modes via chaotic motion, the decay of thi& Order to make these processes compatible, perceptual drift

autocorrelations and mutual information due to chaotic moiS Useéd to work at the cognitive level. Freeman's finding

tion is very slow; usually in power decays. In such a casedddressed in the present issue is new evidence of perceptual
according to Matsumoto and Tsu#fa®'an information mix-  drift. Since perceptual drift is deeply related to the way of
ing appears, thereby the information input to a certain eleformation of memories, especially episodic memories, the
ment of the network could propagate to other elements pd2ropagation and nonstationary transition of the activity of the
fore decaying. By the information mixing property, the €ntiré olfactory system and hippocampal formation with
information possesses a similar structure to hologram. Ifnultiple time scales described by Kay may give a dynamical
other words, each digit contains the content of whole inforMe&chanism of perceptual drift underlying the formation of

mation, though there is a quantitative difference. By thisM€MOres.

property, the input information is maintained within the net-

work. The d_n‘ferencc_a fr(_)m the ho_|09ram IS the way of main- K. Ikeda, K. Matsumoto, and K. Otsuka, “Maxwell-Bloch turbulence,”
tenance of information: in a static manner in hologram, but prog. Theor. Phys. Supm9, 295 (1989.

in a dynamic one in chaotic itinerancy. Indeed, such global?K. Kaneko, “Clustering, coding, switching, hierarchical ordering, and

information cascade in Cl is studied by using a bit space, for,control in network of chaotic elements,” Physicad, 137 (1990.
a GC|\/|6 K. Kaneko, “Globally coupled circle maps,” Physica &4, 5 (1991).

o . 41. Tsuda, inMicrocomputers and AttentiofManchester University Press,
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