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Chaotic itinerancy is universal dynamics in high-dimensional dynamical systems, showing itinerant
motion among varieties of low-dimensional ordered states through high-dimensional chaos.
Discovery, basic features, characterization, examples, and significance of chaotic itinerancy are
surveyed. ©2003 American Institute of Physics.@DOI: 10.1063/1.1607783#
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About a decade ago, chaotic itinerancy was proposed as
universal dynamical concept in high-dimensional dy-
namical systems. This was based on numerical studies i
coupled maps, optical turbulence, and neural dynamics.
One of the great surprises in ‘‘deterministic chaos’’ was
the emergence of essential random behavior even in low
dimensional dynamical systems. In the study of high-
dimensional chaos, however, it was soon recognized tha
there is often a state that switches back and forth be-
tween fully developed chaos and ordered behavior. Here
fully developed chaos can be approximated by ‘‘random
motion,’’ which may be described as the motion consist-
ing of many degrees of freedom, and ordered behavior
can often be characterized by low-dimensional dynamics
On the other hand, itinerant motion among varieties of
ordered states through high-dimensional chaotic motion
is commonly observed. The term for this ischaotic itiner-
ancy. During the past ten years, chaotic itinerancy has
been suggested to be relevant to optical turbulence, pro
tein folding, coupled dynamical systems including glo-
bally coupled maps, dynamics of water molecules, climate
dynamics, population dynamics in ecosystem, biochemi
cal reaction dynamics in a cell, dynamic memory in hu-
man and animal brain, among other topics. Applications
of chaotic itinerancy to dynamic control in robotics and
to combinatorial optimization problems have also been
proposed. Recently, mathematical foundation of the con-
cept has been studied and has developed especially
some ideal cases. We will summarize the current status o
the study of chaotic itinerancy including its recent devel-
opments in this interdisciplinary field and also provide a
future scope in high-dimensional dynamical systems.

I. DISCOVERY OF CHAOTIC ITINERANCY

Chaotic itinerancy~CI! was independently discovered
a model of optical turbulence~by Ikeda!,1 in a globally
coupled chaotic system~by Kaneko!,2,3 and in nonequilib-
rium neural networks~by Tsuda!,4,5 and was proposed with
unanimous cooperation as universal dynamics in a clas
9261054-1500/2003/13(3)/926/11/$20.00
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high-dimensional dynamical systems. In CI, an orbit succ
sively itinerates over ordered motion expressed by a few
fective degrees of freedom. Considering attraction to, and
residence at the ordered motion state, we called each of
states ‘‘attractor ruin.’’ The motion at ‘‘attractor ruins’’ is
quasistationary in the sense that it is close to that in lo
dimensional attractor.

After staying at one attractor-ruin, the orbit eventua
exits from it. This escape from an attractor-ruin stems fro
instability of the ruin~see Fig. 1 for schematic represent
tion!.

For example, if the effective degrees of freedom is tw
the dynamics are in the vicinity of two-dimensional subspa
in the original high-dimensional phase space. Such lo
dimensional motion is not described by a stable attrac
even though orbits are attracted to its vicinity. After stayi
at an attractor-ruin, an orbit exits from it. This exit aris
from a certain kind of instability.

With this instability the orbits enter into a high
dimensional chaotic motion, losing coherence or correlat
among variables. This high-dimensional dynamic state
also quasistationary, although after this chaotic wander
the orbit is again attracted to one of the attractor ruins wh
again possesses low dimensionality. In other words, there
some ‘‘holes’’ connecting to attractor-ruins from the hig
dimensional chaotic state. Once the orbit is trapped at a h
it is suddenly attracted to one of attractor ruins, i.e., lo
dimensional ordered states.

Now, a mechanism of the above-mentioned instabi
should be solved. In this Focus Issue, several possibilities
the mechanism are addressed.

II. CHARACTERISTICS OF CHAOTIC ITINERANCY

The basic characteristics of CI are as follows.

A. Existence of low-dimensional ordered motion
„attractor ruin …

To exhibit CI behavior, there are several invariant su
sets that are in low-dimensional space in the phase sp
These subsets work as attractor-ruins.
© 2003 American Institute of Physics
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In high-dimensional phase space, there can be stable
unstable~invariant! manifolds connecting each of the invar
ant sets. To realize attraction to the neighborhood of
invariant set, the dimension of stable manifold must not
negligible in a whole space, in other words, at least a
besgue measure of the basin of such an invariant set is p
tive. On the other hand, this low-dimensional manifold ca
not be an attractor in the whole space since there is at l
nonzero dimensional unstable manifold along which the
bits leave the neighborhood of such an invariant set. In
regard, it is natural to call the geometric structure repres
ing such low-dimensional ordered motion an attractor rui

In dynamical systems having some symmetry, there
ists the case that a whole system can be decomposed
several low-dimensional invariant subspaces, according
which the whole dynamical behavior can be characterized
the union of the behaviors in subspaces. As is clearly see
the definition of invariant subspace, once the motion is
stricted to this low-dimensional subspace, the orbit st
there.

As a typical example, let us consider a globally coup
system consisting of identical elements showing chaotic
namics~see Sec. III for details!. Synchronization of all ele-
ments provides a chaotic state. This chaotic state is invar
under any permutation of elementary maps. Since this gr
action commutes with the temporal evolution rule, this ch
otic state is also invariant under temporal evolution. Furth
more, there could be states obtained by partial synchron
tion, i.e., synchronization only over some elements. Th
each of the states constitutes an invariant subspace. Som
these states can have positive Lebesgue measure of the
of attraction. If this invariant set is unstable in a transver
direction to its invariant subspace, then the orbit is direc
to other invariant subspaces from such chaotic invariant
In such a case, wandering dynamics is observed as CI,
each invariant set, i.e., attractor restricted to each invar
space, is an attractor ruin.

B. Escape from low-dimensional motion through
restricted path

After the escape from low-dimensional states, the m
tion becomes high-dimensional. Since the region that an

FIG. 1. Schematic representation of chaotic itinerancy.
ownloaded 13 Dec 2004 to 133.11.199.16. Redistribution subject to AIP lic
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bit escaping from an attractor ruin wanders is restricted
spite of this high-dimensionality, the itinerancy from one a
tractor ruin to another is distinct from random hoppin
among attractors with the help of external perturbations.
the other hand, due to this restricted path, the system m
tains memory concerning the motion on attractor ruins wh
the orbit previously visited, and hence the history-depend
orbits are generated.

As mentioned earlier, dynamics for an exit from an a
tractor ruin is not represented by simple noise motion.
aspect of chaotic motion for the escape from an attrac
ruin, however, may be expressed by state-dependent n
dynamics. Then, it may be possible to discuss this aspec
using a state-dependent noise, as a first-step approximat
scription. For example, escape statistics from an orde
state may be discussed by using multiplicative noise, wh
the noise strength explicitly depends on the state. In
present issue, Nakao and Mikhailov discuss this aspect.

C. Importance of marginal mode

In CI, the attraction to low-dimensional motion and th
escape from it are somewhat balanced over the long te
There are two extreme cases. If the former tendency w
the motion falls onto a low-dimensional attractor, while if th
latter wins, a high-dimensional irregular motion appears.
CI, balance between the two tendencies is required.

This balance leads to neutral stability of some mod
The stability of this kind can be described by the Lyapun
spectra. As far as we have verified in numerical simulatio
of several high-dimensional dynamical systems exhibit
CI, there appear many exponents whose values are clos
zero. The accumulation of the Lyapunov spectra to null
ponents is one characteristic feature common to CI we h
studied so far~see, e.g., Ref. 6!.

This characteristic leads to a new type of instability th
Sauer studies in this Focus Issue. He focuses on the stud
a two-dimensional map with extremely slow convergence
nonconvergence of zero-Lyapunov exponent and its la
fluctuation. Although chaotic itinerancy is a concept in hig
dimensional dynamical systems, Sauer’s model expre
one of the essential characteristics of chaotic itineran
Sauer investigates the possibility of sensitive dependenc
additive noise to this skeleton model and found the sca
law for natural measure. This suggests that the break of
bal stability is one of the essential characteristics of cha
itinerancy.

In CI large fluctuations of null Lyapunov exponents a
expected, as Sauer treats in his article. Indeed, fluctuation
the largest Lyapunov exponents are addressed as a ty
case of CI in this Focus Issue by Tsuda and Umemura.

III. AN EXPLANATION OF CHAOTIC ITINERANCY IN A
SYMMETRIC DYNAMICAL SYSTEM: A GLOBALLY
COUPLED MAP

One of the simplest models for high-dimensional d
namical systems is globally coupled dynamical systems
particular, a ‘‘globally coupled map’’~GCM! consisting of
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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chaotic elements2 has been extensively studied, as a sim
prototype model for chaotic itinerancy. A standard model
such GCM is given by

xn11~ i !5~12e! f ~xn~ i !!1
e

N (
j 51

N

f ~xn~ j !!, ~1!

where n is a discrete time step andi is the index of an
element (i 51,2,...,N5system size). The mapf (x) is cho-
sen so that the dynamicsxn115 f (xn) shows chaos. In par
ticular, the logistic mapf (x)512ax2 is often adopted. The
model is just a mean-field-theory-type extension of coup
map lattices~CML!.7

Through the average interaction, elements tend to os
late synchronously, while orbital instability leads to destru
tion of such coherence. In the former limit, all elements
cillate coherently ~coherent phase!, while elements are
completely desynchronized in the other limit of strong o
bital instability ~desynchronized phase!. Between these
cases, there is a case that elements split into clusters in w
they oscillate coherently. Here a cluster is defined as a se
elements in whichx( i )5x( j ). Attractors in GCM are clas-
sified by the number of synchronized clustersk and the num-
ber of elements for each clusterNi . When the paramete
characterizing nonlinearity~e.g., a in the above-mentioned
logistic map case! is not large, observed attractors have
small number of clustersk. If the number of clusterk is
small, the corresponding orbit is attracted to just lo
dimensional attractor, i.e., at mostk-dimensional. As the pa
rameter is increased, these low-dimensional states lose
stability. If the instability is not large enough to lead to com
plete de-synchronization, the system often shows cha
itinerancy. Here, low-dimensional attractor ruins are giv
by a state with a few number of clusters.

As an example, consider the case that this attractor
is given by a two-cluster state. Then the system is attracte
the neighborhood of two-dimensional plane (x(1) ,x(2)) in
theN-dimensional phase space. In CI, after the orbit stay
the neighborhood of this two-dimensional plane it leaves
of the plane. During the exit process, often the orbit a
proaches an almost coherent state, i.e., the state withx(1)
'x(2) . In this GCM, when elements are totally synchr
nized, the dynamics are approximately represented by ju
single mapxn115 f (xn). Here this map shows stronger o
bital instability than a clustered state with a few cluste
Hence as the orbit approaches this one-dimensional subs
in the two-dimensional subspace, it exists from the origi
two-dimensional subspace~see also the schematic Fig. 2!. It
is interesting to note that the effective degrees of freed
decreases before high-dimensional chaotic state appear
explicit experimental realization of globally coupled dynam
cal systems is given by Kiss and Hudson in the present is
as will be described later.

Let us reconsider basic characteristics in CI in this
ample. First, in this globally coupled dynamical system,
variant subspace is clearly defined from symmetry, wher
one can define a low-dimensional attractor ruin. On the ot
hand, high-dimensional chaotic motion is given by des
chronized dynamics. Second, paths to go out from the att
ownloaded 13 Dec 2004 to 133.11.199.16. Redistribution subject to AIP lic
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tor ruin are given by orbits passing through further restric
subspace among the subspace for the attractor ruin. T
when CI is observed, desynchronization and synchroniza
are balanced over the long term. This leads to the accum
tion of null Lyapunov exponents, as already mentioned.

As discussed earlier, each attractor ruin in GCM is giv
by the clustered state, characterized by the number of
ments in each cluster (N1 ,N2 ,N3 , . . . ,Nk). Hence stability
analysis of clustered states gives a basis for the study of C
GCM. Maistrenko and Panchuk analyzed the stability
clustering solution, as well as its basin in detail. In particul
they analyzed basin structure of partly desynchronized
tractor, i.e., clustering with (N1,1,1,. . . ,1) with N1@1.

To study attractor ruins, we need to deepen our und
standing in long-lasting transients within high-dimension
dynamical system. By using one-body distribution of t
each valuex for each element also, Chawanya analyzed
existence of such quasistable state and the transient leng
a GCM consisting of tent maps.

IV. MILNOR ATTRACTOR AS A POSSIBLE
REPRESENTATION OF ATTRACTOR RUIN

An attractor ruin in CI possesses the structure of b
global attraction to it from high-dimensional manifolds an
escape from it through restricted region of its neighborho
This structural feature is similar to that of a Milnor attracto
In this section, we discuss the possibility to characterize
attractor ruin with a Milnor attractor.8,9

Milnor attractor is defined as a~minimal! set that has
positive measure of its basin of attraction.10 This definition
does not exclude the possibility that the orbits leave from
attractor, namely, the presence of unstable manifolds of
attractor. This is clearly excluded in the definition of conve
tional geometric attractor. Therefore, Milnor attractor is
extended concept of attractor and includes the conventio
geometric attractor.

FIG. 2. Schematic representation of attraction to, and escape from, a
tractor ruin in chaotic itinerancy.
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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In this way, Milnor attractor possessing unstable ma
folds is unstable by perturbations of arbitrarily small siz
but it still globally attracts typical orbital points. Here, w
use the term Milnor attractor, only if it does not belong to t
geometric attractor. If this Milnor attractor is chaotic, th
basin is considered to be riddled.11 This is the case for the
present GCM model.

Existence of Milnor attractor in a symmetrically couple
system was first noted by Pikovsky and Grassberger.12 The
authors discuss a coupled map of two identical eleme
Still, the Milnor attractor is not so common in a couple
system with few elements. Indeed, since Milnor attractor
the above-mentioned sense is not asymptotically stable,
might, at first sight, think that it is rather special, and appe
only at a critical point like the crisis in the logistic map.10

Often, such critical points exist only at specific points in t
parameter space. Hence Milnor attractors might look non
neric.

However, to our surprise, Milnor attractors are rath
commonly observed around the border between the ord
and partially ordered phases in a globally coupled map8,9

when the number of degrees of freedom is larger than 5–
It is suggested that the Milnor attractors are prevalent w
the degrees of freedom having instability and globa
coupled to each other, is larger than 5–10.13 This number
5–10 is also termed magic number 762, borrowing the ter-
minology in psychology.14,15We will come back to this prob-
lem in Sec. VI.

A Milnor attractor is invariant under the group actio
say substitution of elementary individual systems, and is
variant under the dynamics because of commutability
tween the dynamics and the group action. Therefore, a M
nor attractor forms an invariant set and can be an attra
ruin. In this case, the presence of a Milnor attractor is clos
related to the appearance of riddled basin.16

Note that the Milnor attractors satisfy the condition
the above-ordered states constituting chaotic itinera
Some Milnor attractors that we have found maintain glo
attraction, which is consistent with the observation that
attraction to attractor ruins in CI is global starting from
high-dimensional chaotic state. Here, note that attraction
an orbit to precisely a given attractor requires infinite time
differentiable dynamical systems, and therefore before
orbit is completely attracted to a given Milnor attractor,
may be kicked away. Then, the long-term dynamics can
constructed as the successive alternations of the attractio
and the escape from, Milnor attractors. Hence the dynam
is represented by transition over Milnor attractors. This tr
sition is generally asymmetric: when there is a connect
from a Milnor attractor A to a Milnor attractor B, but no
necessarily from B to A. The total dynamics is represen
by the motion over a network, given by a set of direct
graphs over Milnor attractors. In general, the ‘‘order
states’’ in CI may not be exactly Milnor attractors but can
weakly destabilized states from Milnor attractors. Still, t
attribution of CI to Milnor attractor network dynamics
expected to work as one ideal limit.

To make itinerancy over Milnor attractors recurrent
there should be multiple Milnor attractors in the system, a
ownloaded 13 Dec 2004 to 133.11.199.16. Redistribution subject to AIP lic
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with time evolution, Milnor attractors should be visited r
peatedly.

A system with multiple Milnor attractors is easily con
structed by coupling dynamical systems, each of which p
duces a Milnor attractor. Using a CML constructed as su
Tsuda and Umemura investigated the role of Milnor attrac
They discovered that the CML with a system size 5, which
an intermediate case of CML and GCM in its effective co
pling, produces CI via a ‘‘higher order’’ Milnor attractors
while a CML with a larger size produces, if any, only tra
sient CI. Here, global coupling is necessary to produce
via Milnor attractors, while the result also suggests the pl
sibility of the above magic number 762 with respect to
universal observation of Milnor attractors.

The existence of Milnor attractors in CI is not restricte
to coupled map systems. In the neural network model
Tsuda, the Milnor attractor is likely to exist. Indeed, the o
servation of a ‘‘critical circle map’’ in the collective activity
of neurons in the model4,5 is a possible manifestation of it.

V. CLASSIFICATION OF CHAOTIC ITINERANCY IN A
GENERAL CASE

A. With regard to symmetry

In Sec. IV, we discussed CI based on a study of a
namical system with symmetry. In a globally coupled d
namical system of identical elements, there is permutatio
symmetry, while in a lattice system~CML!, there is transla-
tional symmetry. In general high-dimensional dynamical s
tems, such symmetry does not exist. Still, the study with
symmetric case may be relevant to a general case also.

Case I.With some transformation, the system may
mapped into a symmetric case. Let us consider a coup
dynamical system with nonidentical elements. In this ca
with some nonlinear transformation of variables, discuss
for the symmetric case will be applicable. Consider pha
synchronization, for example.17 Elements are not completel
synchronized, but after some transformation of variab
they are regarded to be synchronized. Such generaliza
will be relevant to CI, in particular, for a globally couple
dynamical system with heterogeneous elements, includin
coupled dynamical system consisting of elements with d
ferent time scales.

The paper of Fujimoto and Kaneko studies CI in
coupled dynamical system with distributed time scales~see
also Ref. 18 for CI with distinct time scales!. The model
consists of elements with the same dynamics except t
time scale. It is mapped to identical elements with the tra
formation of time scale by each. This coupled chaotic syst
with multiple time scales exhibits chaotic itinerancy with
mechanism of bifurcation cascade. Fast dynamics suc
sively change slow dynamics, so that correlation is tra
ferred to elements with a huge time scale difference. T
work by Fujimoto and Kaneko opens a way to study chao
itinerancy in frequency space.

The above-mentioned theoretical paper is also con
ered to give a model for dynamic effect of this intermingl
time scale, studied by Kay for neural activity, as will b
discussed in Sec. VII D.
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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Case II: Intrinsically asymmetric case.Generally, invari-
ant subspace is not directly defined by the symmetry. I
typical situation for generating CI in this case, the invaria
set possesses both stable and unstable manifolds~which are
invariant! and the transition between invariant sets can oc
via these invariant manifolds.

B. From hypercycle to chaotic itinerancy

As a transition over low-dimensional invariant sets, h
eroclinic cycles are common with CI, and may be importa
for another possible mechanism of CI. In the heterocli
cycle, an orbit visits successively the neighborhoods of
saddle-type fixed points. Here an orbit approaches a fi
point from the direction of its stable manifold, and after a
proaching close neighborhood of it, the orbit goes out o
through its unstable manifold and then asymptotically
proaches a stable manifold of another fixed point. In ot
words, one unstable manifold of a fixed point is a sta
manifold of another fixed point, and these manifolds form
cycle to switch among fixed points. The existence of su
heteroclinic cycles has been discussed most extensively
class of population dynamics model.19

However, in such a case if the heteroclinic orbits beco
chaotic or not is problematic. Heteroclinic cycles origina
studied are nonchaotic and structurally unstable and are
suitable for a mathematical framework for chaotic itineran
It is possible to introduce chaotic dynamics to it as studi
for example, by Chawanya.20 In the present issue, Ashwi
et al. introduced a model for robust cycling between chao
and equilibrium saddles. They explicitly design a system
robust cycle between invariant sets and saddles. In gener
will be important to study a robust cyclic process, by ‘‘thic
ening’’ connection paths among invariant sets, so that
motion can include high-dimensional chaotic dynami
Such a system gives one prototype of CI.

In general, saddle-type structures in phase space are
portant to chaotic itinerancy. In relation, the saddle-ty
structure in infinite dimensional systems is studied in t
issue by Nishiura, Teramoto, and Ueda. Chaotic itinera
that appears in a dynamical system with continuous sp
and time is analyzed by the interactions of saddle-type st
tures in phase space. A specific saddle-type structure
been discovered and analyzed. They studied a transitory
namics of particle-like patterns in the Ginzburg–Land
equation, the Gray–Scott model, and a three-componen
action diffusion model, and suggest that localized steady
time-periodic saddle-type structures, called scattors, m
play an important role in chaotic itinerancy in many part
differential equation systems.

In this Focus Issue Freeman studies human EEG with
1364 electrode system that is a nontrivial extension of
838 electrode system that he invented for the previous s
ies of animal olfactory bulb. Freeman has discovered a c
ous instability that reveals sudden jumps in phase which
synchronized in a very wide range. Such jumps are as
chronous across the midline separating the left and r
hemispheres and also across the central sulcus separatin
frontal and parietal lobes. The time duration between sud
ownloaded 13 Dec 2004 to 133.11.199.16. Redistribution subject to AIP lic
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jumps changes chaotically. This indicates that chaotic tra
tion between synchronized states occurs in some areas o
cortex and also between asynchronous states in other a
Since a transition is very sharp, this may be related to
transition by the appearance of heteroclinic cycle. If the
istence of heteroclinic orbits is verified, the present findin
of Freeman could provide a new example of CI.

C. Classification by the form of ordered motion

Each motion at an attractor ruin is not necessarily c
otic. In some cases, it can be fixed point, limit cycle,
quasiperiodic. For example, CI observed in the paper of
sukaet al. in the present issue is based on quasiperiodic
frequency locking states. If the fixed point is ordered motio
noise is necessary to make a switching as discussed in
nonequilibrium neural network model by Tsuda.4

The noise may play the role of producing positive me
sure of support of ordered motion which allows the riddl
basin to appear. Kozma treats the KIII model originally i
troduced by Freeman, and discusses a type of ‘‘attra
crowding.’’ Kozma also found a similar noise effect to th
Liljenstrom found in a model of the olfactory system. Ch
otic itinerancy with multiplicative noise that was introduce
in the form of stochastic renewal of neural dynamics w
studied by Tsudaet al. about 15 years ago. Statistics o
bursts from a stationary state by multiplicative noise is a
studied by Nakao and Mikhailov.

A similar transition phenomenon in the system wi
riddled basins has also been found by Grebogiet al.,21 by
introducing additive noise to such a system. In the pres
article Kozma addresses the role of additive noise in
‘‘attractor crowding’’ of the KIII model. He discovered a
stabilization of chaotic orbits by noise and also the appe
ance of maximum in signal to noise ratio in the chaotica
itinerant state.

D. Degree of path

There seem to be several types of ‘‘chaotic itineranc
covered by this general definition for it. One classificati
may be possible according to the degree of correlation
tween the ordered states visited successively. If the paths
the transitions between the ordered states are narrow,
correlation between successive ordered states is high. On
other hand, the correlation is low if the memory on the p
vious states is lost due to high-dimensional chaos during
transition.

1. Cases with strong correlation

If the connectivity among degrees of freedom is spar
the path can often be very much restricted to some spe
portion in the total phase space. For example, conside
system with local coupling in space such as the one typic
realized in a coupled map lattice~CML!. Switching over
several traveling wave patterns is observed in this CML22

where the traveling wave is a global phenomenon cover
all lattice points. Hence, the switching of wave patterns c
be interpreted as an example of chaotic itinerancy. In t
case, although the transition occurs through a chaotic s
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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its dimension is too low to allow for a variety of destination
Indeed, the transition over wave patterns is rather limited
seems that CI in optical turbulence by Ikeda1 also belongs to
this class.

The extreme case for low-dimensional path is hete
clinic cycle, where connections are made only by on
dimensional unstable and stable manifolds. Chaotic itin
ancy realized by ‘‘thickening heteroclinic cycle,’’ a
discussed in Sec. IV B, has still limited path connection, a
belongs to this case with strong correlation.

2. Cases with weak correlation

For the chaotic itinerancy in the GCM, there is a hu
number of invariant sets, given by the clustering conditi
The chaotic itinerancy occurs among such a huge numbe
possible attractor ruins. If the orbit passes through hi
dimensional desynchronized state, and it lasts relatively lo
there remains little correlation between two successive
tractor ruins. The memory of the previous state decays
ing the transition.

3. Cases with medium correlation

In GCM, all elements are connected to all others, wh
make paths rather high-dimensional. By restricting the c
nection, the path has more restrictions. For example, Noz
studied a GCM where the coupling strength among the
ments is not uniform but sparse, by borrowing Hopfield-ty
neural network.23 As a result, the number of ‘‘attractor ruins
is reduced and the paths between such attractor ruins
much limited. Hence there is larger correlation between
patterns before and after a transition. Such restriction in
path is also imposed in Tsuda’s nonequilibrium neural n
work model,2 which leads to long-time hysteresis over r
trieved patterns.

In these chaotic itinerancy models, the unstable manif
of the attractor ruins has a relatively low dimension. In th
respect, the correlation between memory states may d
mine the dimensionality of the transition in such a way tha
strong correlation generates a low-dimensional transi
path, whereas a high-dimensional transition path is gener
in a weak correlation case.

VI. UBIQUITY OF CHAOTIC ITINERANCY IN A
‘‘HIGH’’-DIMENSIONAL SYSTEM

Through numerical studies for a variety of models w
many degrees of freedom, chaotic itinerancy seems to
ubiquitous, when the system is neither too disordered los
correlation among degrees of freedom nor too ordered
tracted to low-dimensional attractors.

One question here remains: How many dimensions
required to be ‘‘sufficiently high-dimensional?’’ How hig
should the connection among degrees of freedom be? O
other words, to what point of the argument so far is dime
sionality or connectivity relevant?

There is no decisive answer as yet, although relevanc
combinatorial complexity is discussed in Ref. 13: As t
number of coupled elementsN increases, the combinatoria
variety of grouping~clustering! of these degrees of freedom
ownloaded 13 Dec 2004 to 133.11.199.16. Redistribution subject to AIP lic
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increases with the factorial order ofN @say (N21)!], while
the volume of phase space expands only exponentia
Hence the combinatorial variety surpasses the increas
phase space volume at someN, beyond which the distance
between an attractor and its basin boundary may drastic
decrease, leading to the increase of fraction of Miln
attractors.24 Now, several attractor ruins are formed, and
may be rather commonly observed.

Let us expand upon the above-presented discussio
little bit. Consider a one-dimensional phase space, and a
sin boundary that separates the regions ofx(1).x* and
x(1),x* , while the attractor in concern exists at arou
x(1)5xA,x* , and the neighboring one at aroundx(1)
5xB.x* . Now consider a region ofN-dimensional phase
spacexA,x( i ),xB . If the region is partitioned by~basin!
boundaries atx( i )5x* for i 51,...,N, it is partitioned into
2N units. Since this partition is just a direct product of th
original partition byx(1)5x* , the distance between eac
attractor and the basin boundary does not change withN.

On the other hand, consider a boundary given by so
condition for (x(1),...,x(N)), represented by a~possibly
very complex! hyperplane C(x(1),...,x(N))50. In the
present system with global couplings, many of the permu
tional changes ofx( i ) in the condition also give basin bound
aries. Often, the condition for the basin can also have c
tering (N1 ,...,Nk), since the attractors are clustered as su
Then the condition obtained by the permutation
C(x(1),...,x(N))50 gives a basin boundary also. The num
ber of such segments of the boundaries increases comb
torially with N, roughly speaking on the order of (N21)!,
when a variety of clusterings is allowed for the bounda
Now theN-dimensional phase space region is partitioned
O((N21)!) basin boundary segments. Recalling that t
distance between an attractor and the basin boundary
mains at the same order for the partition of the order of 2N,
the distance should be drastically decreased if (N21)! sur-
passes 2N. Since forN.5, the former increases drastical
faster than the latter, the distance should decrease drasti
for N.5. Then forN.5, the probability that a basin bound
ary touches with an attractor itself will be increased. Th
argument is applied for any attractors and their basin bou
ary characterized by complex clusterings having combina
rial complexity. Although this explanation may be rath
rough, it gives a hint to why Milnor attractors are so dom
nant forN*(5 – 10). In this sense, the dimension necess
for prevalence of CI could be ‘‘magic number seven pl
minus 2.’’13

As discussed earlier, attractors are sometimes crowde
the phase space if the dimension of the phase spac
‘‘high.’’ Freeman and his colleagues discuss this attrac
crowding, in a model of the olfactory bulb, the so-called K
model. A mesoscopic system in each different hierarchy
studied by Freeman, Kozma, and Kay also in this issue.

VII. CHAOTIC ITINERANCY IN NATURE

A. Hamiltonian system: Relevance to energy
conversion

So far we have discussed CI in a dissipative syste
where attractor concepts are important. To a Hamilton
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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system, the attractor concept is not applicable. Still, itiner
motion over several quasistationary states is often obse
in a Hamiltonian system with many degrees of freedo
There, the system of concern is confined at a state with s
ordered structure over long time span, while chaotic mot
with a small amplitude remains. At this ordered structu
degrees of freedom are separated into groups, and elem
~modes! within each group show highly correlated motio
On the other hand, motions of elements belonging to dif
ent groups are approximately disjointed. After residence
one of such ordered states, degrees of freedoms that
roughly disjointed start to interact, which makes the syst
leave out of the ordered state. There, with mode couplin
stronger chaotic motion appears, which later is replaced
another ordered state suppressing strong chaos and se
tion of degrees of freedom. In this sense, it is fair to ad
the term chaotic itinerancy for such Hamiltonian dynam
also.

This type of CI was first discussed by Konishi an
Kaneko,25 in a globally coupled pendulum system, whi
similar dynamics were soon observed in a self-gravi
system.26

In some sense, one might think that such itinerancy o
several ordered states is just thermal hopping dynamics
energy local minima in a potential landscape, as was tr
tionally discussed. Although both the CI dynamics here a
the standard hopping process are common as transition
nomena over states, the transition in CI is clearly distingui
able from a thermal activation process. CI is due to de
ministic dynamics with several degrees of freedom, and
by random motion from heat bath. In the itinerant motio
the energy is not dissipated to whole degrees of freedom
‘‘heat.’’ This feature may bring about deviation from trad
tional Arrhenius law, i.e., the transition probability wit
exp(2DE/kT) form for the switching from one state to an
other over the energy barrier withDE.

Hence, chaotic itinerancy may give new insight into t
problems so far discussed just as random hopping am
several metastable states over energy barrier. In contra
this standard viewpoint, there can be a directional motion
the switching from one state to another in CI. Itinerant m
tion in molecular dynamics of glass is studied by Shinjo27

from this viewpoint, while molecular dynamics simulation
water again suggests nonrandom itinerancy over severa
herent structures.28 Recently, dynamics of surface atoms pe
etrating into micro-clusters is investigated by Kobaya
et al.,29 where rapid diffusion of atoms is observed as a u
versal feature of small clusters, and is discussed from a vi
point of chaotic itinerancy.

Macromolecules like protein may have complex dyna
ics within, and are also candidates for, a system to exhibit
Indeed, protein folding was discussed from this viewpoint
Matsumoto, while a simpler model for it is included in th
issue by him. He has found unidirectional motions with hi
probability in the folding process, in a Hamiltonian syste
of double-well applied random perturbations. He discove
a dynamical mechanism of the appearance of this nonerg
motion.

Directional motion in CI may also give a robust mech
ownloaded 13 Dec 2004 to 133.11.199.16. Redistribution subject to AIP lic
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nism for energy conversion. This problem is discussed
Nakagawa and Kaneko in the present issue, who desc
conversion of injected energy to a certain directed motion
a model inspired by molecular motor experiments studied
an elementary process of muscle contraction. They simu
a simple Langevin dynamics with several degrees of freed
and have found relevance of transient chaotic behavio
energy conversion.

Both of the two systems are dynamic mesoscopic s
tems in the sense that a macroscopic state cannot be r
sented by a simple order parameter but a certain tim
dependent ordered motion at a mesoscopic level is import
These models suggest that CI plays an essential role in
energy transfer of macromolecular systems by activating
process of conversion from ergodic motion to nonergo
motion. In general, it will be important to study functions
enzyme or molecular motor from the viewpoint of CI.

B. Physico-chemical experiments

A variety of physical and chemical systems with ma
degrees of freedom shows itinerant motion over several q
sistable ordered states, through irregular motions associ
with many degrees of freedom. So far, in the traditional p
ture taken for such phenomena, one assumes each state
‘‘metastable state’’ as in the local minimum of potential lan
scape, and then assume the switching over the states as
dom hopping over barriers triggered by~thermal or other!
noise. However, in recent observations, there are several
nomena that do not fit well with such standard ‘‘static
1 ‘ ‘stochastic’’ picture. These phenomena may be und
stood as chaotic itinerancy.

An example in physics was first presented in optics w
excitations of multiple modes. Indeed, one of the first d
coveries of chaotic itinerancy was due to the theoreti
model of optical turbulence, as mentioned. Later, further
amples are found both theoretically and experimentally.30–32

In the present issue, Otsukaet al. studied the dynamics of a
globally coupled three-mode laser, and observed self-indu
switching over several modes of oscillation.

Global coupling often leads to itinerant dynamics. A
example is given by Nasuno’s experiment on quasi-tw
dimensional gas-discharge system. In the system, locali
luminous spots are formed. With the increase of discha
current, they form a ‘‘molecular-like cluster,’’ which, with
further increase of the current, show switching over seve
quasistable internal structures, with intermittent rearran
ment of mutual positions of spots. Whether this switchi
process is understood as chaotic itinerancy or not is yet o
but this itinerancy, at least, seems rather different from r
dom hopping over the local structures.

One of the most beautiful experimental demonstratio
of globally coupled chaotic systems is an array of coup
electro-chemical oscillators, developed by Kiss a
Hudson.33,34 Previously they showed that the system sho
coherent, ordered, and desynchronized phases, with
change of coupling parameter among arrays, where clus
of elements with mutual coherent oscillations are formed
the paper in the present issue, they showed experime
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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demonstration of chaotic itinerancy, by measuring
precision-dependent clusters and analyzing them as hie
chical cluster trees, as introduced in Ref. 2. Change of ef
tive degrees of freedom is directly computed. Their resu
show remarkable similarity with those observed in globa
coupled maps.

As fluid turbulence provided a variety of examples f
chaos, it can also be an experimental testbed for chaotic
erancy. In a coupled map lattice model for Rayleigh–Ben
convection, switching over several roll patterns is obser
and characterized as chaotic itinerancy.35 There are also cor
responding experimental results, although detailed anal
with regard to chaotic itinerancy is not yet published.
electrohydrodynamic convection of nematic liquid cryst
Sanoet al.36 observed formation and collapse of target p
terns, that may belong to chaotic itinerancy over several
terns also.

At a much larger scale, atmosphere dynamics may
hibit chaotic itinerancy. Indeed, by using an atmosphe
model with realistic topography, Itoh and Kimoto37,38 found
a CI phenomenon, in which the atmosphere system s
within attractor ruins for a long time, moving promptl
among them. They found preferred routes in transitio
among attractor ruins. Interestingly, these characteristics
incide well with those of weather regimes in the real atm
sphere.

C. Biology

A biological system is often composed of many dynam
elements. A multicellular organism consists of cells with
ternal biochemical reaction, while an ecosystem consist
populations of several species. Due to dynamics of eleme
they sometimes synchronize, or form a cluster of synch
nized elements, or differentiate into several clusters. So
times, these dynamics are not stationary, but the clusters
change in time. There CI may appear, and can be releva
dynamic change of mutual relationship, to provide evolvab
ity, and to sustain diversity.39,40 Although decisive experi-
mental demonstrations are not yet available, several theo
ical models are studied, to imply the possible relevance
chaotic itinerancy for evolvability of biochemical reactio
dynamics,41 differentiation from stem cells,42 and diversity in
an ecological system43 ~see also Sec. VIII B!.

D. Brain

Chaotic itinerancy has also been addressed in ne
physiological experiments with animals and even huma
Freeman established the presence of chaotic behavior, it
alization by noise through attractor crowding and its fun
tional significance. The transition between multiple wings
quasiattractors during a motivated perception process
also during learning was interpreted by chaotic itineran
Kay observed an itinerant behavior in local field potential
characterized to be nonstationary transitory dynamics in
animal cognitive and behavioral experiments with rats br
including an entire olfactory system and hippocampus.
cently, Freeman discovered a curious transition phenome
in human EEG. He tries to interpret, in this issue, the sh
ownloaded 13 Dec 2004 to 133.11.199.16. Redistribution subject to AIP lic
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transition in terms of chaotic itinerancy, as we already m
tioned. Kay found a dynamics at three time scales: slow, f
and intermediate modes. Among others, medium time s
events unpredictably change with a strong correlation w
animal performance. Kay proposes in the present issue
folding of different time scales as a mechanism for chao
itinerancy.

Another important finding in physiological experimen
in relation with chaotic itinerancy is chaotic alteration b
tween synchronization and desynchronization of the activ
of neural assemblies. The first finding was made by Gra44

He observed this type of chaotic alteration in cat visual c
tex. It is often observed that integrated electric potential
neuron assemblies strongly correlates and is synchron
between even far separated regions when an approp
stimulus is input. However, this synchronization does not l
for a long time. It changes chaotically to desynchroniz
chaotic states after a few hundred milliseconds. This al
ation looks like chaotic itinerancy. Tsudaet al.45 have pro-
posed a neuronal model with gap junction couplings that
diffusion type of coupling to provide a dynamical mech
nism of this chaotic alteration.

Raffone and van Leeuwen found an alteration betwe
synchronization and desynchronization in a layered netw
model with the three-variable Hindmarsh and Rose mod
They correctly discuss in the present issue the importanc
chaotic transitory process in simultaneous retrieval of mem
ries, taking into account cognitive behaviors. Although th
synchronization and desynchronization observed in ass
blies of model neurons are relative, this seems to represe
rather realistic model.

Han and Postnov found chaotic itinerancy in the diff
sively coupled Morris–Lecar neural system, where the tr
sitory phenomena appear among three unstable states
phase and antiphase synchronized states and small amp
nonfiring state. By their work in the present issue, it turns
that chaotic itinerancy provides a new route to chaos
resonant torus breakdown. The diffusive coupling adopted
Han and Postnov can be interpreted as a representatio
gap junction coupling of neurons which has widely be
observed in animal and human brain, even in the neocor
Their system is relatively low-dimensional, but show a ne
mechanism of chaotic itinerancy which may hold also
high-dimensional systems like gap junction coupled neu
systems.

A neural model for chaotic itinerancy is addressed in
present issue in two directions. One is a numerical study
large scale system that is presented by Nara, and the oth
a mathematical study in a prototype model of a chaotic n
ral network of a small scale that is presented by Kitajim
et al.

Nara has studied an effect of chaotic search in the pr
lem of association of memories. Nara and his colleag
have used a recurrent neural network with limit cycle osc
lations which represent memories. In the present article, N
clarifies that chaotic itinerant behaviors can exhibit high p
formance of memory search, compared with so-called r
dom search, and the performance can be better by lear
because of the change of degree of constraint to access
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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memory pattern even when chaotic search was worse
random search.

Kitajima et al. study one of the possible mechanisms
chaotic itinerancy observed earlier by Aiharaet al. in a net-
work of chaotic neurons. In this article Kitajimaet al. treat
four coupled chaotic neurons with two orthogonal patte
which are stored in the network as a representation
memory. The model was a reduced six-dimensional cha
map which possesses a three-dimensional chaotic subsy
They analyzed the model and found the presence of the
tersection of unstable manifolds of periodic points and c
lapse of in-phase-locked chaos as an essential process o
presence of chaotic itinerancy appeared in the model.

E. Chaotic itinerancy at a psychological and a social
system?

Aiming at a higher behavioral or psychological leve
Ikegami and Morimoto studied a coupled dynamical rec
nizer model. The study is inspired by the dynamics of tu
taking in conversation. The model is a coupled dynami
system, called coupled dynamical recognizer. Here, each
namical system is a recurrent neural network, to play a ga
mutually. The state of neural network represents ‘‘image’’
the strategy of other players. Ikegami and Morimoto us
this framework for a three-person game in which coaliti
pair may be formed or change in time.46 Due to the instabil-
ity in learning dynamics, switching of the coalition pair
found, and is studied as chaotic itinerancy. Although th
may be some gap between the model and the psycholo
experiment at the present stage, it will be promising to d
cuss human psychological process~such as mutual under
standing process! from the viewpoint of CI.

Itinerancy over several quasistationary states is often
served in social system. In human history, there are quies
regimes interspersed by the regime of drastic change
which the term ‘‘revolution’’ is often assigned. Often, in th
transition, order in the ancient regime is replaced by dyna
change of social structure, before novel order is formed.
though it may be too naive at the preset status of researc
discuss social dynamics from the viewpoint of CI, it m
provide a novel standpoint to analyze the social change.

In the study of history, most studies focus on estimat
a chain of causal relationships so far. Chaotic itinerancy m
give a framework to understand a mechanism for the cha
of relationships among elements, for generation and colla
of ordered structure, and for the dynamics of transit
among ordered states. By choosing a problem concer
economics, in particular money, Yasutomi discusses
emergence and collapse of money from dynamical syst
of many agents exchanging goods, in this issue.

VIII. SIGNIFICANCE OF CHAOTIC ITINERANCY

A. Dynamics of relationship

In a biological system, often several elements show c
related motion or work together. Activities of neurons a
often correlated, while a group of genes is sometimes
pressed together. In such case, often it is assumed that
plings are prepared to be strong within these elements fo
ownloaded 13 Dec 2004 to 133.11.199.16. Redistribution subject to AIP lic
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ing correlated motion. Accordingly, the existence of
predefined ‘‘module’’ is often assumed in neuroscience a
in cellular biology.

Still, examples are increasing to suggest that th
groups are not pre-defined, but can change in time. Gro
of neurons or genes that work correlatively often change
time or change depending on external condition.

CI provides a novel viewpoint in such ‘‘dynamic chang
of relationships’’ ~see also, for example, Ref. 45!. In CI,
groups of correlated action are formed at each attractor r
as a result of dynamics, even without predefined strong c
plings among the elements. The connection strength am
elements in each group is not necessarily strong. The c
nection among elements may give restriction for the tran
tion among attractor ruins, but groupings are not necessa
determined by them.

In this sense, CI gives a new insight into how modu
type structures are formed spontaneously, and also on
rules on dynamic change among these structures are ge
ated.

As for a theoretical tool to understand generation of
dered motion with low-dimensional degrees of freedo
‘‘dissipative structure’’47 or slaving principle48 is often
adopted. Chaotic itinerancy gives both the formation of
dered structure and also its collapse, and furthermore gen
tion of flexible rule, for this itinerancy. Here it should b
noted that the itinerancy is a property of each element
namics, but occurs at a macroscopic level defined by col
tive motion given by elements. In this sense, the rule
itinerancy is with regards to a higher level than each elem
dynamics.

B. Evolvability and stability

A biological system consists of a huge number of e
ments, say chemical species for a cell, species for ecosys
How such high-dimensional dynamical systems keep sta
ity is one of the key questions in a biological system. F
thermore, a biological system, although it is stationary o
some time span, can also change in a longer time span, a
common in developmental dynamics and in evolution. A b
logical system satisfies both recursiveness to maintain
macroscopic state and changeability to a novel state as
lution. Here, the time regimes for recursiveness and evo
tion are sometimes separated, as seen in metamorphos
development, and as discussed as punctuated equilibrium
evolution. Chaotic itinerancy gives a theoretical mechani
to stability for a recursive state and also to evolution. Sta
ity of ecosystem is discussed with population dynamics o
variety of species43 in relationship with CI, while recursive
production of biochemical states and their evolution are st
ied with itinerant dynamics.41

C. Energy conversion

As discussed in Sec. VII A, CI may provide a robu
mechanism for energy conversion within fluctuating enviro
ment. If the conversion occurs through ‘‘heat,’’ mechanic
energy given by a few degrees of freedom is once absor
into many degrees of freedom. CI also gives switching
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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tween low- and high-dimensional dynamics. In CI, howev
itinerancy occurs through restricted paths within the to
phase space. Hence the conversion may occur more rob
and efficiently within a limited time span. Deviation from
Arrhenius law for crossing energy barrier discussed by N
kagawa and Kaneko may suggest such relevance of CI
namics to energy conversion.

D. Searching process

Searching process within high-dimensional phase sp
is often important in optimization and information proces
ing. Since orbits in CI take only restricted regions in t
phase space, the search process with CI may be more
cient than random searching process, if the dynamics in
phase space are chosen properly. An example for such a
cation was discussed by Nozawa,23 as a use of CI for the
traveling salesman problem.

E. Information processing

Since in chaotic itinerancy ‘‘neutral’’ stable modes a
immanent, which are realized in the successive transiti
between ordered modes via chaotic motion, the decay of
autocorrelations and mutual information due to chaotic m
tion is very slow; usually in power decays. In such a ca
according to Matsumoto and Tsuda,49–51an information mix-
ing appears, thereby the information input to a certain e
ment of the network could propagate to other elements
fore decaying. By the information mixing property, th
information possesses a similar structure to hologram
other words, each digit contains the content of whole inf
mation, though there is a quantitative difference. By t
property, the input information is maintained within the ne
work. The difference from the hologram is the way of ma
tenance of information: in a static manner in hologram,
in a dynamic one in chaotic itinerancy. Indeed, such glo
information cascade in CI is studied by using a bit space,
a GCM.6

Furthermore, another significance of chaotic itineran
in information processing lies in the use of temporal dev
opment. As Raffone and van Leeuwen show in the pres
issue, and Tsudaet al.52 and Nicolis and Tsuda53 also show
elsewhere, the motion of chaotic itinerancy could realize
multiplexing time series. This is particularly important whe
we consider a pattern association with the help of associa
memory. When some patterns pop up in our mind, this m
not kill other memorized patterns. When such a pattern
appears from our mind, another pattern should pop up
information processing. It turns out by the present work
Raffone and van Leeuwen that this is realized by neural
works exhibiting chaotic itinerancy that is chaotic alternati
between synchronization and desynchronization even
learning process.

Generation of various time scales in chaotic dynam
may allow for information propagation in modes with diffe
ent time scales. CI, through correlations of ordered mo
and chaotic dynamics, may lead to such information pro
gation to modes with far distant time scales. Indeed, in b
logical system, modes with different time scales are in
ownloaded 13 Dec 2004 to 133.11.199.16. Redistribution subject to AIP lic
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mingled. Furthermore, in ‘‘memory,’’ fast time-scale chang
are embedded into much slower modes. Papers by Fujim
and Kaneko and Kay discuss this issue.

The significance of chaotic itinerancy in the brain a
cognition has widely been discussed by Tsuda a
colleagues.54 Among others, related to this issue, the sim
taneous processing of learning and retrieval of memorie
highlighted. In the appearance of chaotic itinerancy, the s
tem which exhibits chaotic itinerancy can retrieve mem
rized patterns while learning. In usual neural network mo
els, this simultaneity has been difficult to realize, beca
without chaotic itinerancy only currently retrieved memo
is object to be learned and such excess learning avoids
renewal of retrieval of memories.

Freeman55 addressed a perceptual drift as a possible c
tribution of chaotic itinerancy to the level of perception a
cognition. Perceptual drift is necessary particularly for p
tern recognition and classification that we naturally expe
ence in our daily life. This is a category formation in a
extensive sense. For category formation, both identifica
of different patterns by finding similarity and differentiatio
of similar patterns by finding difference45 are prerequisites
In order to make these processes compatible, perceptual
is used to work at the cognitive level. Freeman’s findi
addressed in the present issue is new evidence of perce
drift. Since perceptual drift is deeply related to the way
formation of memories, especially episodic memories,
propagation and nonstationary transition of the activity of
entire olfactory system and hippocampal formation w
multiple time scales described by Kay may give a dynami
mechanism of perceptual drift underlying the formation
memories.
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