
CHAOS VOLUME 13, NUMBER 3 SEPTEMBER 2003

D

Energy conversion by autonomous regulation of chaos: Dynamical
mechanism of loose coupling
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Inspired by recent experiments of molecular motors, a dynamical systems model for a flexible
machine is proposed which converts injected energy to output directional motion. The output
amount is distributed broadly, and thus the coupling between input energy and output motion is
loose, as in the experiments. This energy conversion is shown to be robust against the change of
surrounding environment. Stability analysis on the fixed point solutions of the model is presented,
which suggests that transient chaotic motion, induced by temporal three-body motion, is relevant to
the energy conversion. ©2003 American Institute of Physics.@DOI: 10.1063/1.1594511#
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How is energy converted from one form to another in
order for a molecular machine to work? This question
was addressed by Oosawa, who proposed that the cou
pling from chemical energy to mechanical work is not
tightly fixed, but rather loose, in order that the molecular
machine works under large thermal fluctuations although
the amount of input energy is as small as an order of
thermal fluctuations. Inspired by this problem, we pro-
pose a fluctuating flexible machine described by a dy-
namical system with a few degrees of freedom, compose
of a head with internal degrees of freedom, and a lattice.
By numerical simulations of this simple model, we find
that after excitation of some part of the system, energy is
stored for some time, and is used step by step, allowing
the head to move directionally along the lattice. The sys-
tem can adjust the timing for its motion by itself, by tak-
ing advantage of internal dynamics. The obtained results
provide a theoretical description for dynamics of the
above ‘‘loose coupling’’ mechanism. The head motion
along the lattice by crossing over an energy barrier is
achieved by changing effective degrees of freedom au
tonomously, as studied in chaotic itinerancy. Although we
use a specific model, the proposed mechanism is expecte
to be rather general and is applicable to other energy
conversion problems on molecular scales, including nano
machines or biological processes at such scales.

I. INTRODUCTION

Living systems often reveal rapid adaptation to fluctu
ing environment without any external control. Such ada
ability is one characteristic feature distinguishing a livi
system from most man-made machines which function i

a!Electronic mail: nah@mx.ibaraki.ac.jp
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given environment under external operation by supervis
For a system without external operations to work, adapta
to a variety of conditions should emerge through its se
organized dynamics. A dynamical systems mechanism all
ing for such autonomous, flexible systems should
searched for.

In microscopic biological processes such as biochem
reaction, thermal fluctuations of the configuration of biom
ecules are so large that they are of the same order of
input energy. Indeed, the input energy necessary for mole
lar motors to work is as small as several times ofkBT with
Boltzmann constantkB and temperatureT, belonging to the
thermal energy regime. This is in strong contrast to a so
macroscopic machine where the input energy is much la
than the microscopic thermal fluctuations. In addition, ea
part of a machine also changes by itself in a biological s
tem. For example, proteins fluctuate their own shapes slo
Such a ‘‘flexible’’ machine which functions under large flu
tuations is expected to have a different mechanism fr
macroscopic solid machines, and the mechanism should
identified. To clarify such mechanism in terms of dynamic
systems, we introduce a Langevin dynamical systems mo
~with weak damping and noise! which allows us to explore a
mechanism to function under large fluctuations of configu
tion.

The present paper is organized as follows. In Sec. II,
review a basic concept for such flexible machines, i.e., lo
coupling between the input energy and output motion.
Sec. III, a dynamical system model is proposed for su
loose coupling, inspired by some of the recent experime
on molecular motors. Numerical results demonstrating dir
tional motion are reviewed in Sec. IV, with a broad st
distribution of outputs that is consistent with the experime
tal data. Dynamical process achieving such directional m
tion is reported in Sec. V. To give a basis to resolve
2 © 2003 American Institute of Physics
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behavior of the model, fixed point solutions and their bifu
cations are obtained in Sec. VI, and the linear stability ana
sis for such solutions is given in Sec. VII. Using these
sults, the mechanism that enables the directional motio
proposed, by noting dynamical changes of effective degr
of freedom, and crossing over a saddle point by trans
chaos. Discussion is given in Sec. VIII, with the relationsh
of the present dynamics with chaotic itinerancy.

II. LOOSE COUPLING

The concept of a flexible machine that works under la
thermal fluctuations was proposed by Oosawa in 1986
loose coupling,1,2 to interpret experimental data of bacteri
flagellar. There, it is proposed that the conversion of che
cal energy to mechanical work does not occur all at once,
step by step. Conversion from chemical to mechanical
ergy is not tightly determined, but its rate changes event
event, and the amount of output work is distributed. T
relevance of such loose coupling to flexible response of p
teins under fluctuating environment is discussed.

Recent experiments of molecular motors, such as Ac
Myosin systems, demonstrate this loose coupling. Th
conversion of chemical energy to mechanical one is car
out as a directional motion coupled to ATP hydrolysis f
microscopic transport. Using advanced techniques in sin
molecule measurements, it is found that output directio
motion of biomotors is a few steps per one ATP hydrolys3

and that this output is distributed. The result shows clea
that the mechanical output hasloose couplingto the input
chemical reaction.

The single molecule analysis also sheds light on adap
function of biomotors for the selection of force to carry
load. For a light load, the motor moves a few steps per
ATP hydrolysis, whereas it moves at most one step fo
heavy load.4 This indicates that the biomotor can control t
force to carry the load and the amount of steps by itself. T
is in contrast to the solid machine like a gear, where the in
energy and the output work are both quantized and h
one-to-one correspondence.

Simultaneous observation of the binding of ATP and
motion of myosin head suggests that the input energy fr
ATP is stored in the protein for a long interval before it
used for the directional motion.5 The stored time scale eve
reaches subseconds in some cases, that is anomalously
compared with the scale of vibrational mode in protein. Bo
the storage time and the step size of directional motion~cor-
responding to the number of functional cycles! have broad
distributions. The energy storage might imply flexible ada
tation of proteins, since the protein could wait for a suita
timing and fluctuation during the stored state, to realize fu
tion.

As discussed so far, a system with loose coupling w
easily adapt to changes in external conditions, and will
robust to fluctuations. In this paper, we construct an exp
example of such system with self-organized dynamics, to
the abstract concept of the loose coupling into shape.
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III. MODEL

To construct a flexible machine, we refer to a molecu
motor system with a motor protein and a chain of rail pr
teins. Here we introduce a dynamical system composed
several degrees of freedom. The system has an ‘‘input p
to which energy is injected, and an ‘‘output part’’ from whic
directional motion~mechanical work! can be extracted. Tem
poral evolution of the system is given by a set of equatio
with nonlinear dynamics with damping and noise comi
from a heat bath. From numerical simulations, it is shown
following sections that a directional motion is extracte
among all the degrees of the system, with neither exte
control nor specific control as to the timing or direction
input.

At first, we note that the present study is not direc
intended to give a realistic and detailed model for molecu
machine, although the study is inspired by recent exp
ments on protein motors, a possible relationship to wh
will be discussed later. Rather, in this paper, we intend
propose a dynamical description of loose coupling and
tonomous energy transduction, in general. The mode
adopted to give a simple illustration of the proposed mec
nism.

The model system consists of a motor that interacts w
a chain composed ofN-lattice sites, positioned atxi with
index i . The motor consists of a ‘‘head’’ of positionxh and
one internal degree of freedom in the form of a ‘‘pendulum
represented byu. The injection of energy into the system
represented by the transfer of energy to this pendulum a
instantaneous increase of kinetic energy toE0 . The interac-
tion potentialV(xh2xi ,u) between the chain and the head
spatially asymmetric and its form depends on the angle
the pendulum~see Fig. 1!. The periodic lattice is adopted a
the chain, to study directional motion in an asymmetric p
riodic potential, as is often studied in the study of therm
ratchets. Every degree of freedom, except for the inter
pendulum, is in weak contact with a heat bath, described
a Langevin equation.

The equations of motion for this system are chosen a

mcẍi52g ẋi1A2gTj i~ t !2KcH ~xi2 iL !

1S xi2
xi 211xi 11

2 D J 2
]V~xh2xi ,u!

]xi
,

mhẍh52g ẋh1A2gTjh~ t !2(
i

]V~xh2xi ,u!

]xh
, ~1!

muü52(
i

]V~xh2xi ,u!

]u
,

whereT is the temperature,g is a friction coefficient, and
ja(t) represents Gaussian white noise. Here, we use the u
Boltzmann constantkB51. Kc andL are the spring constan
and the natural interval between two neighboring lattice s
in the chain. To observe directional motion of the head,
chain is also connected to a fixed ground via a spring wit
constantKc . Here,mc , mh , andmu are mass of the respec
tive degrees of freedom,mc5mh51 andmh50.01.
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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The inertia is not ignored, as small friction coefficientg
is adopted. This is in contrast to most studies where biom
tors are usually treated as overdamped systems, consid
that for a small object that moves with a slow time sca
water is highly viscous fluid~Reynolds number,1024). We
introduce inertia term, since several experimental results
Yanagida’s group may not necessarily match with this st
dard view.3–8 First, several single-molecule experiments su
gest that the fluctuations in the slow time scale as millis
ond or second. For instance, Ishijimaet al.5 showed
anomalously long-term energy storage in molecular mot
There the chemical energy from ATP hydrolysis is stored
the motor for 0.1–1 s and then the energy is used for
directional motion gradually. If one assumes overdamp
motion, such excited energy should be damped within
nanosecond or so. On the other hand, the stepping motio
protein itself~say Kinesin! could occur even in nanosecon
order7 while the waiting time before stepping is millisecond
Compared with very slow time scales, the dynamics to re
ize directional motion is considerably rapid. If the wat
around a protein is treated just as macroscopic water,
rapid motion of the motor~for instance 10 nm by 1 ns!
suggests the Reynolds number 0.1 or so, while it is not s
if the nature of water around the molecules could be j
treated as such, and the effective Reynolds number coul
much higher. To sum up, it is still open if the motion
molecular motor should be totally overdamped, and there
it is interesting to consider a system with inertia theoretica

Furthermore, each degree of freedom we used in
model does not necessarily represent an atomistic mo
Rather, it may represent a collective variable consisting o
large number of atoms. For example, a protein include
large number of atoms. To understand energy transduc
with such a large molecule, it is important to use a redu
model with a smaller number of degrees of freedom rep
senting a collective mode consisting of a large number
atoms. It should be noted that the present scheme for
energy transduction is not necessarily restricted to a Ha
tonian system~with weak damping and noise!, but it is hoped
that a model with overdamped dynamics will be construc
that realizes energy transduction with loose coupling by
present scheme.

The potential form is asymmetric in space as shown
Fig. 1, where the characteristic decay length of the inter
tion is set at a smaller value thanL, so that the interaction is

FIG. 1. Profile of the model. The form of potentialV depends on the value
of u, where the solid curve represents the form foru50 ~the equilibrium
state foru!, and the dotted curve foru5p. The latter value appears upo
excitation, consisting of the instantaneous increase toE0 of the kinetic en-
ergy for the pendulum. In the simulation of this paper, the chain consist
40 lattice sites with periodic boundary condition.
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confined mostly to the nearest lattice sites. Here we adop
following potential form:

V~Dx,u!5Kh

tanh~p~Dx2r !!1~12cosu!/2

cosh~dDx!
,

where the parametersp andr determine the degree of asym
metry, whileKh andd21 give the coupling strength and de
cay length of the interaction, respectively. Specific choice
this form is not important. We have simulated our mod
choosing several other potential forms with asymmetry,
instance V(Dx,u)5Kh(12cosu)/(exp(pDx)1exp(2dDx)),
and obtained qualitatively the same results with regards
the directional motion. In this paper, the parameters for
potential are fixed atp510, r 50.3, Kh50.2, and d21

50.25.
The pendulum mode without direct coupling to the he

bath is adopted here just as one representation of long-
storage of energy9 experimentally suggested in molecul
motors.5 This specific choice, i.e., pendulum without dire
damping, is just an examplefor a long-living mode, that
interacts gradually with other degrees of freedom. As long
there exists such slow relaxation mode, our results follo
Any mode realizing slow relaxation can be adopted inste

IV. DIRECTIONAL MOTION WITH A LOOSE
COUPLING TO INPUT ENERGY

In this section, we state results of the numerical integ
tion for Eq. ~1!, mostly from the viewpoint of the ensembl
average.

In thermal equilibrium, the head diffuses along the cha
while obeying Arrhenius’ law, and no directional motion
possible on average. However, when energy is imported
the pendulum and the system is out of equilibrium, dire
tional motion is observed on its way in the relaxation
thermal equilibrium. The degree of thermal fluctuations
the system depends on flexibilityKc besides temperatureT,
which is larger for smallerKc or higherT.

For a given value ofE0 , we computed the distribution o
the number of steps as displayed in Fig. 2, where one
means the displacement of the head for one lattice site a
the chain. Here, the distribution was obtained by taking 10
samples with arbitrarily chosen different configurations
the system at the moment of energy injection, while satis
ing thermal equilibrium, and also by taking different rando

ofFIG. 2. Frequency distribution of the displacement~number of steps! of the
head positionxh per excitation.Kc50.5, T50.02, andE050.4.
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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sequencesja(t). This distribution shows that the hea
moves directionally along the chain on average, and that
output number of steps, in which its peak value is two ste
has loose coupling to input energy. This distribution form
steps is similar to that observed in experiments
biomotors.3

The resulting distribution forms a rather broad sha
although the input energyE0 is identical for all the samples
The difference in the output step comes from difference
the configuration at the event of excitation, intrinsic chao
dynamics of the system, and random noise from the h
bath. Here we examine orbital instability~by transient chaos!
as follows: Take two identical initial configurations, and p
input energy whose magnitude differs slightly for each oth
The temporal evolution from these samples is simulated
choosing identical random noise~i.e., sequence of random
number!. Then, the evolution of these systems with tiny d
ference in input results in quite different number of outp
steps~see Fig. 3!. Such difference also appears from the ti
difference in initial configurations. Now, it is impossible
predict or control the number and the direction of steps fr
the configuration of the system at the excitation, includ
the direction of the rotation of the pendulum. On the oth
hand, the directional motion appears rather independentl
the configuration and, therefore, the energy conversion of
system is robust against thermal fluctuations in configu
tion, and fluctuations in the input event.

The output directional motion is also robust again
changes in the environmental temperature, while higher t
perature brings larger fluctuations to the system. Furth
more, the average number of steps increases monotoni
with the amount of injected energy.10 In other words, the
more input energy, the more it is used for the output moti
The system can adjust itself to the change of input ene
through its internal dynamics, even under large fluctuati
in configuration. To make this energy conversion possible
is important that the chain be sufficiently flexible and
fluctuated in large range thermally or excitedly. If the spri
constantKc is too large or too small, directional motion o
the head is scarcely generated~see Fig. 4!. This feature is

FIG. 3. Sensitivity of the dynamics to small disturbances. Three time se
of the head positionxh are plotted, using the identical initial condition an
common random sequence for the noise, and changing only slightly
value of excitation of the pendulum att ime50, asE050.55, 0.5511010,
0.551231010. In the simulation, the system was prepared in thermal eq
librium before excitation withT50.01 andg50.01. The tiny difference at
the excitation event is amplified to large difference of the motion of the h
xh .
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The condition for the flexibility in the spring will be revisite
later from the viewpoint of stability analysis.

V. DIRECTIONAL MOTION WITH THE USE OF EXTRA
DEGREES OF FREEDOM

Now, we discuss how energy conversion to the dire
tional motion is carried out, by closely examining the d
namics of the model. Figure 5 displays a typical time s
quence of the headxh , a few lattice sitesxi around it, and
the kinetic energyTu of the pendulum after an event of ex
citation att ime50. We here introduce characteristic beha
ior of the system depicted as~a!–~d! at the time sequence in
Fig. 5. The configuration of the system at each stage is s
matically represented in Fig. 6.

s

e

i-

d

FIG. 4. Dependence of the average displacement^Dxh& on Kc for T
50.01 with three values ofE0 . Directional motion is most prominent in a
particular range of stiffness of the chain (Kc'0.5), where the fluctuations o
the lattice are slightly larger than those of the head. The directional mo
is suppressed both for larger values ofKc , where the magnitude of lattice
fluctuations decreases, and for smaller values ofKc . The latter suppression
appears, because the head interacts not only with the lattice site at wh
is positioned, but also with neighboring sites, resulting in a stronger ef
tive potential experienced by the head.

FIG. 5. A typical relaxation process following excitation of the pendulu
Kc50.5. In the simulation, the system was prepared in thermal equilibr
with T50.02 andg50.01, and the pendulum was excited att ime50 with
E050.4. With the temperature used here, the head remains at one lattic
for a very long time in thermal equilibrium. Upper panel: Time series of
positions of the headxh ~bold line! and a few neighboring lattice sitesxi

(21< i<3; dotted line!. Lower panel: Time series of the kinetic energy
the internal pendulum (Tu). In the upper panel, the index~a!–~d! corre-
sponds to each stage schematically shown in Fig. 6.
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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When the pendulum motion is fast, and is essentia
decoupled from the head motion, the head and the nea
lattice site bind strongly and they exhibit highly correlat
vibration @at stage~a!#. This correlation is especially remark
able in a weak spring case whereKc is small compared to the
coupling by the potentialV. There, the motion of the hea
and the nearest site is governed mainly by a two-body in
action betweenxh and x0 , via the attractive potentialV(xh

2x0), which induces this coherent vibration. The compl
consisting of the head and the lattice site 0 behaves as if
are a single particle that is heavier than other sites~i.e.,
moves with a slower time scale motion!. Indeed, this ‘‘par-
ticle,’’ consisting of the lattice site and the head, is coupled
the neighboring sites, and they show roughly periodic os
lation. Here, the motion of the head and lattice sites are
combinations of two-body vibrational motions.

Since the pendulum interacts with the other degrees
freedom, it does not rotate completely freely, even thou
the rotation is fast. As the rotation is slowed, the pendul
motion starts to influence the head motion, due to the n
linearity of the potentialV(xh2xi). The pendulum motion is
no longer decoupled from the rest of the system, and
pendulum, the head, and the corresponding lattice site c
to exhibit three-body motion. As shown in Fig. 3, the moti
of the system starts to show highly chaotic motion, wh
induces irreversible relaxation.11 At this stage, the energy
from the pendulum is not immediately diffused to other l
tice sites, and is localized at the head and the binding lat
site for a certain interval. As a result, the vibration amplitu
of the complex of the head and the site becomes larger
the energy transfer from the pendulum@stage~b!#.

With the increase of the vibration amplitude, the coh
ent motion of the head and the corresponding lattice sit
lost and they start to vibrate in antiphase@stage~c!#, as the
interaction with other degrees of freedom~i.e., the pendulum
and neighboring lattice sites! are no longer negligible. The
growth of the antiphase mode betweenxh andx0 is shown in
Fig. 7~a!, where the large amplitude appears for a few pe
ods before the head moves to the next site. With the los
coherence betweenxh and x0 , the head interacts mor
strongly with the neighboring lattice sites to the original. T
interaction that the head experiences here is highly asym
ric, i.e., repulsive with the left lattice site (x21) and attrac-
tive with the right (x1), as given in the potentialV(xh2xi)
in Fig. 1 ~for the interaction with the left site seexh2xi

;L and for the right seexh2xi;2L). At this stage, the
head motion becomes occasionally synchronized with tha

FIG. 6. Schematic representation on the directional motion. The refer
index ~a!–~d! corresponds to each stage shown in the time sequenc
Fig. 5.
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the next site to the left. Because the interaction between
head and the left lattice site is repulsive, the head boun
back eventually to the next site to the right, after a few p
riods of vibration@stage~d!#. Attractive interaction with the
right site also enhances this bouncing-back. Through
process, the head absorbs energy from the chain, so th
can cross over the energy barrier to the next site to the ri
The timing of this crossing is spontaneously determined
the interaction among the head, pendulum, and lattice si

For the present mechanism to function, energy must
localized within the head and neighboring lattice sites fo
while.10,12 This condition is not satisfied, for example, whe

ce
in

FIG. 7. ~a! Plot of an orbit projected in the two-dimensional space (xh ,x0),
from an event of excitation to the step motion. At first, the head and
lattice vibrate almost synchronously, as shown by the distributed po
along the linex05xh . In contrast to a relatively large motion of their cent
of mass along the diagonal line, vibration of the two-body motion (h–O) is
kept small, as shown in the vibration along the antidiagonal direction. As
pendulum loses energy, the amplitude of the relative motion betweenx0 and
xh grows, as is demonstrated by a few periods of large amplitude vibra
parallel to the linexh1x050. This corresponds to stage~c! in Fig. 5. After
this swing motion of the head, the head moves to the next lattice site~b!
Eigenmode expansion of the time series of the head around the two-
solution (h–O). N57, Kc50.5, E050.35, T50.005, andg50.05. The
first column gives the relaxation of excited energyEu of the pendulum. The
second one shows original time sequence ofxh . The third and fourth col-
umns give the component of thev1 and v3 mode for the time seriesxh ,
respectively, while the bottom column gives the sum of the component
other modes. The vertical axes are in the range21,xh ,xh(v),1.
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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the spring is stiff~i.e., whenKc is large!. In that case, energy
rapidly diffuses from the binding site to other sites, and
present energy conversion does not work. As a result,
directional motion is suppressed for large values ofKc , as
shown in Fig. 4. To sum up, the localization of energy a
few lattice sites near the head over some time allows
effective energy conversion, which results in directional m
tion. It is interesting to note that in real molecular motor, t
directional motion is suppressed when the stiffness of a
filament is increased by attaching proteins to it.13

VI. FIXED POINT ANALYSIS

In this section, we analyze stationary states~i.e., fixed
points! of Eq. ~1! as a step to understand the dynamics d
cussed in Sec. V. For the sake of the analysis, here the e
tation of the pendulum and coupling to the heat bath
removed from the model. The number of the lattice sites
reduced to beN53 with adopting a periodic boundary con
dition. This number is a minimum for the head to exhib
directional motion, while maintaining a common featu
with that of larger systems. Then, the system to analyze
five degrees of freedom, i.e., head, three lattice sites, and
pendulum. Here we study bifurcation of the fixed poin
against the change of the stiffnessKc of the chain, while
fixing other parameters at the values used in Sec. III. I
also noted that equivalent stationary states exist even
larger systems withN.3, as a periodic repetition of th
solution atN53.

First, as derived from Eq.~1!, the pendulum is stable fo
u50 and unstable foru5p, independently of the configu
ration of the other degrees of freedom. Hence, among
five degrees of freedom, the fixed point condition foru is
separated out only to these two cases. We hereafter a
stationary states atu50 ~stable case!.

In Fig. 8, the three lattice points (R,O,L) and the head
position (h) of the fixed point solutions are plotted with th

FIG. 8. Fixed point configuration of the head and the neighboring lat
sites, plotted as a function of the parameterKc . Each fixed point solution is
derived from the model equations~1! for each value ofKc . Here~s! or ~d!
shows the positions of lattice points (R,O,L) and ~3! or ~1! that of the
head. Here~s! and ~3! display those of stable fixed points, and~d! and
~1! those of unstable fixed points. In branch~a!, there are two bifurcation
points aroundKc.0.3 andKc.0.5.
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change ofKc . There are two branches of the solutions. Ea
branch is shown in Figs. 8~a! and 8~b!, respectively. Here,
the upper case~a! undergoes bifurcation, while the othe
does not@Fig. 8~b!#. Compare the head position with th
lattice points in~a!. Since xh;xO , the configuration Fig.
8~a! corresponds to a binding state with the head and the
O, while the configuration changes with the value ofKc . We
call this two-body binding-state solution, or two-body sol
tion in short. It is remarkable that this binding-state soluti
between the headh and the siteO is stable within a wide
range ofKc , as shown in the lower branch satisfyingxh

;xO in Fig. 8~a!. The branch disappears aroundKc;0.3,
and it does not exist below the value. On the other hand
the rangeKc<0.49, there is another~upper! sub-branch in
Fig. 8~a!, whereh is betweenR andL, which are located at
closer distances. We call this a three-body binding-state
lution (O–h–R), since the head and the sitesO andR form
a stable binding state.

For large Kc , the two-body solution (h–O) gives a
ground state, energetically speaking, that stays at a minim
in potential energy, while it is replaced by the three-bo
solution (O–h–R) for smaller values ofKc . In the configu-
ration of the three-body state, elastic energy of the spri
gets much larger than that of the two-body binding st
(h–O), since the siteO is very close to the siteR and far
from the siteL. However, if the spring constant is suffi
ciently small, the repulsive force from the springs is compe
sated, by the attractive interaction between the head and
site R via V(xh2xR), and it is negligible.

In branch~a!, there is another unstable fixed-point sol
tion around 0.3,Kc,0.5, which coexists with two stable
solutions. It is a saddle point dividing the two stable so
tions.

The stationary solution of the branch~b! is unstable over
the whole range ofKc displayed in Fig. 8~b!. It is a saddle
point to divide two translationally invariant solutions, th
exists due to the spatially periodic structure of the mo
equations. This is easily understood by considering the s
ation with a largeKc limit, where lattice sites are almos
fixed to the periodic pointxi5 iL . Then dynamical behavio
of the system is determined solely by the motion of the he
which is located in a periodic potential. The head is stable
the point of global minimum for the potential aroundxh

5 iL , and unstable at a saddle point withini ,xh, i 11. The
difference between the potential energies at the saddle p
and at the ground state gives us a measure of the en
barrier for the head to shift to the next lattice site. This c
responds to activation energy for the head to move along
chain. Indeed, the energy barrier estimated here, for e
value of Kc , is consistent with the values defined from th
Arrhenius law for the diffusion of the head, which is ob
tained by the numerical simulation at thermal equilibriu
condition.

The bifurcation point for the emergence of the thre
body solution (O–h–R) is important. As is seen in Fig. 4
the average step of the head takes the largest value ar
this bifurcation point inKc . It is suggested that the dynamic
to generate the three-body motion (O–h–R) is correlated
with the directional motion to go across the energy barr
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Relaxation near the bifurcation point generally gets slow
Hence the motion of the head and lattice points gets slo
near the bifurcation point ofKc . During this slow relaxation,
characteristic energy flow between various modes is indu
in the system, which lead to an effective energy transfer fr
the pendulum to the head and the lattice points, sufficien
go across the energy barrier.

VII. LINEAR STABILITY ANALYSIS

As a next step to understand the dynamics of the pre
system, linear stability analysis around the stationary so
tions is carried out. We study frequencies of linearized m
tion around each fixed point, to see how switching from
motion around one fixed point to another is possible.

Since we analyze a system with five degrees of freed
the linearized solution around each fixed point solution
five pairs of eigenvalues. Indeed, the two stable state
branch ~a! are elliptic points with five pairs of imaginar
eigenvalues. On the other hand, the unstable solution
branches~a! and~b! are a saddle with one pair of real eige
values and four pairs of imaginary eigenvalues. Each ima
nary eigenvalue gives a frequency of a corresponding vib
tional mode. Here, as mentioned in Sec. VI, the station
state of the pendulum mode is determined independentl
the configuration of the other degrees of freedom. Hence
focus on the remaining four~for the stable solution! or three
~for a saddle! frequencies except the pendulum mode. Th
frequencies are plotted in Fig. 9.

Figure 9~a! displays four~or three! angular frequencies
for each solution in branch~a!. Three frequencies depicted a
v1 , v2 , andv3 possess common properties for all the so
tions. The fastest frequencyv1 is kept far from others and
v1.3 over the whole range ofKc . By examining its eigen-

FIG. 9. Eigenfrequencies for each eigenmode around each fixed point. I~a!
four eigenvalues for the solutions in the branch~a! of Fig. 8 are displayed,
while in ~b! those for the branch~b! are shown.~s! and ~d! show the
frequencies around stable~elliptic! fixed points and unstable~saddle! points,
respectively. Over the range ofKc , the relationshipsv2;A2Kc/3 andv3

;AKc/4 are approximately maintained, which correspond to the mode
lattice vibrations. The resonance point at the crossing of the freque
curves appears aroundKc.0.5 ~a bifurcation point! for the solution in
branch~a!, and aroundKc.0.75 in branch~b!.
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vector, this mode is found to correspond to the vibrati
between the two body, the head and the nearest lattice sit
Schematic representations for each eigenvector are show
Fig. 10, where one can see the phase relationship betw
each motion~i.e., in-phase or antiphase relation! from the
relative directions of arrows. In contrast, the frequenciesv2

and v3 are modes of lattice vibration, which increase pr
portionally toAKc. The slowest modev3 corresponds to the
collective, translational mode of all degrees of freedom
phase.~Since each lattice is attached to a fixed, periodic p
tential, the Goldstone mode does not exist, and the eig
value is not zero. Still, it is small.! These two lattice modes
are maintained for all solutions, even in the saddle solut
in branch~b! as shown in Fig. 9~b!. Again, by examining
their eigenvectors, it is shown that there are two eig
vectors for the solution~b!, corresponding to those forv2

andv3 in ~a!.
In the vicinity of each stationary state, the dynamics a

represented by superposition of these eigenmodes. Fo
stance, the lattice vibration observed in stage~a! in Fig. 5
mainly comes fromv3 , which is the longest collective mod
with the largest amplitude of vibration, while the fast, sma
amplitude vibration between the head and the latticeO at the
stage~a! comes from the eigenmode forv1 , whose ampli-
tude increases with the inflow of energy from the pendul
as seen at stage~c! in Fig. 5 and Fig. 7~a!.

To see how each mode contributes to the directional m
tion of the head, we expand it into the eigenmodes, by p
jecting the head motion into each mode. Temporal chang
the component of each mode is plotted in Fig. 7~b!. Before
the inflow of the energy from the pendulum, the mode ofv3

shows a large-amplitude vibration. This is natural, since
mode ofv3 corresponds to a two-body binding state (h–O).
As the pendulum loses energy, the amplitude forv1 in-
creases, and it becomes of a comparable order with tha
v3 . This shows the appearance of antiphase vibration. U
this stage@i.e., up to time;400 in the example of Fig. 7~b!#,
the components of other modes remain small, and do
affect much the behavior of the head.

Then, instability in the two-body solution (h–O) brings
about breakdown of the binding state between the head
the siteO. At stages~c! and ~d! in Fig. 5, the system is
excited from the ground state, and approaches the sadd
the branch~b!. As seen in Fig. 10, all vibrational modes o
the saddle point are in-phase motion between the head
the siteO. Such vibration modes support the synchronizat
observed in the repulsive interaction at stage~c!. Here com-

f
cy

FIG. 10. Schematic representations of each eigenmode corresponding
eigenfrequenciesv1 , v2 , v3 , andv4 . The direction of each arrow indi-
cates relative direction of the components of each eigenvector.
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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ponents from other modes are slightly increased, as show
Fig. 7~b!, right before the step motion of the head.

As the head is occasionally deviated to the right nei
boring siteR, the configuration becomes similar to that
the three-body binding state (O–h–R) in branch~a!, which
exists at the range ofKc allowing for the effective directiona
motion. Then, to escape from such temporal three-body b
ing state, and to make a shift of the head to the next s
antiphase relationship between the head and the siteR is
important. Here, such motion is given by the eigenmode
v4 , where the siteR moves to the opposite direction to bo
the head and the siteO ~see Fig. 10!. At the saddle solution
in branch~a!, the eigenmode corresponding tov4 in Fig. 9
takes a real eigenvalue, whose eigenmode gives the uns
direction of the saddle. Along the stable direction of t
saddle, the head and the sitesR and O are first combined,
and later, along the unstable direction, the siteR is departed
from the binding state of the head and the siteO. In other
words, the system is attracted to the three-body binding s
(O–h–R), and then it is repelled from the state. This cor
sponds to stage~d! in Fig. 5. In the time series in Fig. 5, th
head is shifted to the next site successively, following t
attraction. The temporal attraction to the three-body state
exit from it through the saddle is important to understa
how the head goes across the energy barrier to make a d
tional motion.

Here it is difficult to find out the growth of the modev4

at the stage~c! or ~d!, by measurement of the components
in Fig. 7~b!. We could detect the increase of the modes ot
than v1 and v3 , as a total, but direct observation of th
increase ofv4 mode is not easy, even if we adopt the mo
expansion around the three-body solution (O–h–R). There
can be two possible reasons here. First, the head crosse
energy barrier through the saddle within a short time sc
and the mode is too difficult to be detected. Second, aro
the saddle of a three-body motion, chaotic~transient! motion
is generally expected, following the resonance overlappin14

Indeed, to fully understand the dynamics, the linear anal
is not sufficient, of course. To close the section, we brie
discuss the resonance overlapping.

Note that frequenciesv2 and v4 are close around the
bifurcation point ofKc in branch~a!. Also, for the saddle
point in branch~b!, v4 shows a remarkable decrease with t
increase ofKc , and crosses withv2 at a certain value ofKc ,
as shown in Fig. 9. When these two frequencies get clo
there appears resonance between the modes, due to non
terms in the original equation. In general, in a three~or more!
body motion with the resonance overlap, stochastic laye
formed around the saddle point that separates two diffe
binding states. Along the stochastic layer, chaotic motion
generated. This stochastic layer is expected to be thicke
as v4 and v2 get closer, as has been generally studied14

Hence, with the resonance overlap, the motion to go ac
the saddle would be facilitated.

In our problem, it is rather difficult to demonstrate d
rectly that chaotic motion is due to resonance overlapp
since the motion appears only as a transient motion with
short time scale. However, orbital instability as well as
regular motion is observed around the stage~c! and~d!, i.e.,
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between the beginning of inflow from the pendulum and
shift of the head.12 This instability is not solely due to the
inflow of energy, since the index for the instability, given b
~finite-time! Lyapunov exponent, is kept constant even af
the first inflow of energy finishes. Recalling generality of t
resonance overlap mechanism for chaos,14 it is rather natural
to assume the existence of resonance overlapping here.

The above-presented linear analysis is argued for a
cial caseu50. After an excitation, the pendulum rotates a
the value ofu is distributed. It should be noted that both th
bifurcation point ofKc and the resonant points ofKc for v2

with v4 are shifted to smaller values ofKc , for u.0. To
sum up, around 0.3,Kc,0.75, the stochastic layer to g
across the saddle would be broader and the crossing o
energy barrier would be easier. The chaotic dynamics aro
the saddle would destroy the correlation between the h
and lattice sites, and would be relevant to induce directio
motion. In relationship, it should be noted that the avera
shift of the head tends to have a peak around this regio
Kc ~see Fig. 4!.

VIII. SUMMARY AND DISCUSSION

In the present paper, we have analyzed a dynamical
tems model for energy transduction, inspired by recent
periments on molecular motors. Using Langevin dynam
~with inertia!, it is shown that the injected energy to one
the degrees of freedom is successively converted to di
tional motion, under the thermal fluctuations of configur
tion. Before the injection of energy, the system is in equil
rium, where the stationary state is approximately decoup
into two-body motions~given by the binding state betwee
the head and the lattice!. As the stored energy into one of th
degrees of freedom is dissipated, several degrees of free
start to interact. Then, the original stationary state is dest
lized, and is replaced by chaotic transient. Now the bind
state between the head and the lattice is destabilized
schematically shown in Fig. 6, the head starts to interact w
the neighboring site strongly. Then, through asymmetry
the potential, directional output motion results.

One consequence of this chaotic~transient! dynamics is
loose coupling between injected energy and output mot
as demonstrated by the broad step distribution. Indeed
distribution reproduces the observation in the experimen
molecular motors rather well. In general, loose coupling
tween the input and output motion, demonstrated by
broad distribution of output motion, is an inevitable cons
quence of the chaotic dynamics during the course of cros
over the potential barrier.

The present result also implies robustness of the ene
transduction process. Recall that our mechanism does
rely on any specific resonance. Rather, at the crossing of
potential barrier, three~and later more! degrees of freedom
are involved. Note that in Hamiltonian systems with a fe
degrees of freedom, the stochastic layer is formed as a re
of resonance overlap. Chaotic motion arises along the
chastic layer, and an orbit crosses the saddle point with
motion, while this chaotic motion brings about a broad ba
of frequencies. In the present example also, stochastic
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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tion appears to cross over the saddle point. Accordingly,
crossing behavior is robust against the change of other
rameters such as the injected energy, in contrast to sim
resonance, where the parameter and injected energy ha
be tuned finely to satisfy the resonance condition.

As a theoretical model for molecular motors, thermal~or
other! ratchets have been extensively studied.15–17 In the
ratchet model, input of energy is represented in the form
either temperature difference, switching of potential, or s
cific colored noise. These are external processes that the
tem of concern cannot change autonomously. In the pre
model, the temporal evolution is given only by autonomo
dynamics, once the energy is injected. The input energy d
not need to take a specific value, and is injected at any tim
in the evolution of the system. Depending on the amoun
input energy, the timing for the stabilization of the two-bo
binding state changes, as a result of autonomous dynami
internal degrees of freedom. As a result, the timing for cro
ing the energy barrier is also adjusted so that the directio
motion results on average. Indeed, the average of output
motion increases with the input energy, implying that t
injected energy is not wasted out.

To close the paper, we discuss the relationship of
present dynamics with chaotic itinerancy. In chaotic itin
ancy ~CI!, residence at low-dimensional ordered states
switching to a new ordered state through higher dimensio
chaos are repeated. Here, change of effective degrees of
dom is essential to this itinerancy. Switching process fr
one ordered state to another is neither tightly determined
random. Indeed, these characteristics are nothing but the
tures that make the robust energy conversion possible in
model.

In the present example, switching from one binding st
between the head and a lattice site to another binding s
appears through the change of effective degrees of freed
Each binding state is a low-dimensional ordered state, wh
is destabilized under the influence of other degrees of f
dom. In the present model without the coupling to the p
dulum mode, the head and the lattice maintain the bind
state. Only when the pendulum mode starts to interact ef
tively, the coherent motion between the head and the lat
is destabilized. Hence with the increase of effective degr
of freedom, the coherent motion is replaced by chaotic m
tion. Then, the head starts to interact with the neighbor
lattice sites, leading to the further increase of the effect
degrees of freedom. The head shows strongly chaotic mo
then. With this ‘‘high-dimensional’’ transient motion, th
head moves to a next site~or to a farther site!, and eventually
it forms a binding state with the lattice sites, and the coher
motion is recovered. In other words, transition from one
dered state to another occurs through the change of effe
degrees of freedom for the head motion. This autonom
change of effective degrees of freedom here is nothing
that discussed in the study of CI.

When the head moves along the lattice directionally
crosses over the energy barrier, passing through the re
around a saddle point. There, three- or four-body motion
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involved, and the orbit shows chaotic motion presuma
along a stochastic layer formed by the resonance over
Then, the orbit crosses the barrier, taking advantage of
motion along the stochastic layer. Thus, the crossing fr
one binding state to another is neither random nor tigh
determined. Recall that such transition between sta
through chaotic motion is an important factor of chaotic iti
erancy.

In the mechanism by ratchet models, random noise gi
a trigger to the transition between states. The orbit sho
Brownian motion in the phase space. On the other hand
the present mechanism, the orbit is restricted in stocha
layer around a saddle point, which facilitates the directio
motion. Detailed analysis on how the transition by t
present mechanism differs from the standard thermal act
tion process is left for future studies.

One may note that there is one difference between
present dynamics and CI. In contrast to CI, transition amo
ordered states is not repeated indefinitely in the present c
Still, other features are common, and in this sense, us
‘‘transient’’ CI for energy conversion should be serious
pursued in the future. Indeed, the application of the pres
mechanism is not necessarily restricted to the problem
biomotor, but the mechanism can be applied in general
system with the energy conversion using internal dynam
such as to the function of enzymes, protein folding, a
chemical reaction process.18
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