CHAOS VOLUME 13, NUMBER 3 SEPTEMBER 2003

Energy conversion by autonomous regulation of chaos: Dynamical
mechanism of loose coupling

Naoko Nakagawa?®
Department of Mathematical Sciences, Ibaraki University, Mito, Ibaraki 310-8512, Japan

Kunihiko Kaneko
Department of Pure and Applied Sciences, College of Arts and Sciences, University of Tokyo,
Tokyo 153-8902, Japan

Teruhisa S. Komatsu
Department of Physics, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588, Japan

(Received 18 February 2003; accepted 1 June 2003; published 22 Augugt 2003

Inspired by recent experiments of molecular motors, a dynamical systems model for a flexible
machine is proposed which converts injected energy to output directional motion. The output
amount is distributed broadly, and thus the coupling between input energy and output motion is
loose, as in the experiments. This energy conversion is shown to be robust against the change of
surrounding environment. Stability analysis on the fixed point solutions of the model is presented,
which suggests that transient chaotic motion, induced by temporal three-body motion, is relevant to
the energy conversion. @003 American Institute of Physic§DOI: 10.1063/1.1594511

How is energy converted from one form to another in  given environment under external operation by supervisors.
order for a molecular machine to work? This question  For a system without external operations to work, adaptation
was addressed by Oosawa, who proposed that the cou- to a variety of conditions should emerge through its self-
pling from chemical energy to mechanical work is not organized dynamics. A dynamical systems mechanism allow-
tightly fixed, but rather loose, in order that the molecular  ing for such autonomous, flexible systems should be
machine works under large thermal fluctuations although  searched for.
the amount of input energy is as small as an order of In microscopic biological processes such as biochemical
thermal fluctuations. Inspired by this problem, we pro-  reaction, thermal fluctuations of the configuration of biomol-
pose a fluctuating flexible machine described by a dy- ecules are so large that they are of the same order of the
namical system with a few degrees of freedom, composed jnput energy. Indeed, the input energy necessary for molecu-
By numerical simulations of this simple model, we find  goltzmann constarit; and temperatur&, belonging to the
that after excitation of some part of the system, energy is  thermal energy regime. This is in strong contrast to a solid
stored for some time, and is used step by step, allowing - macroscopic machine where the input energy is much larger
the head to move directionally along the lattice. The Sys- a1 the microscopic thermal fluctuations. In addition, each
fcem cdan adjust t?? tlmm? (1;0r Its T“Ot'g?] by k;tsglf, gy takl- part of a machine also changes by itself in a biological sys-
ng a dvantzi?]e N Lntelr ng yr_1atr_n|cs+ 3 0 ta|_ne rm?stlri 'S tem. For example, proteins fluctuate their own shapes slowly.
p[)ow eula eore 'C? “escrlphlon_ or Tgnahmlcz 0 t'e Such a “flexible” machine which functions under large fluc-
above '100se coupling™ mechanism. € head molion 4 ations is expected to have a different mechanism from
along the lattice by crossing over an energy barrier is . : . .
) . . macroscopic solid machines, and the mechanism should be
achieved by changing effective degrees of freedom au- . o . L .
o e identified. To clarify such mechanism in terms of dynamical
tonomously, as studied in chaotic itinerancy. Although we : . .
o o systems, we introduce a Langevin dynamical systems model
use a specific model, the proposed mechanism is expected ~”7 . . :
(with weak damping and nois&vhich allows us to explore a

to be rather general and is applicable to other energy . . . .
conversion problems on molecular scales, including nano- r_nechamsm to function under large fluctuations of configura-
machines or biological processes at such scales. tion . .

The present paper is organized as follows. In Sec. II, we
review a basic concept for such flexible machines, i.e., loose
|. INTRODUCTION coupling between the input energy and output motion. In

Sec. lll, a dynamical system model is proposed for such

Living systems often reveal rapid adaptation to fluctuat-pose coupling, inspired by some of the recent experiments

ing environment without any external control. Such adapton molecular motors. Numerical results demonstrating direc-
ability is one characteristic feature distinguishing a living tional motion are reviewed in Sec. IV, with a broad step
system from most man-made machines which function in jistribution of outputs that is consistent with the experimen-
tal data. Dynamical process achieving such directional mo-
dElectronic mail: nah@mx.ibaraki.ac.jp tion is reported in Sec. V. To give a basis to resolve the
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behavior of the model, fixed point solutions and their bifur-111. MODEL

cations are obtained in Sec. VI, and the linear stability analy- T truct a flexibl hi fer t lecul
sis for such solutions is given in Sec. VII. Using these re- 0 construct a flexible machin€, we refer 1o a molecular

sults, the mechanism that enables the directional motion igqptor system with a motor protein and a chain of rail pro-

proposed, by noting dynamical changes of effective degree@ms' Il-lzre we intfrcf>ducde a d_mamic? syf]tem cour.npOfed ?f
of freedom, and crossing over a saddle point by transientc - cral degrees ot freedom. 1he system has an input par

chaos. Discussion is given in Sec. VIII, with the relationshipgq Wht',Ch elnefgty IS |nje(r:1ted., aTd an HOUtprt patrt" f':ocrjn _\I'_VhICh
of the present dynamics with chaotic itinerancy. irectional motionmechanical workcan be extracted. Tem-

poral evolution of the system is given by a set of equations
with nonlinear dynamics with damping and noise coming
from a heat bath. From numerical simulations, it is shown in
following sections that a directional motion is extracted,
Il. LOOSE COUPLING among all the degrees of the system, with neither external
control nor specific control as to the timing or direction of

The concept of a flexible machine that works under larggnpt,
thermal fluctuations was proposed by Oosawa in 1986 as At first, we note that the present study is not directly
loose coupling to interpret experimental data of bacterial intended to give a realistic and detailed model for molecular
flagellar. There, it is proposed that the conversion of chemimachine, although the study is inspired by recent experi-
cal energy to mechanical work does not occur all at once, buytents on protein motors, a possible relationship to which
step by step. Conversion from chemical to mechanical enyjj| pe discussed later. Rather, in this paper, we intend to
ergy is not tightly determined, but its rate changes event by,rgpose a dynamical description of loose coupling and au-
event, and the amount of output work is distributed. Thejonomous energy transduction, in general. The model is
relevance of such loose coupling to flexible response of proagopted to give a simple illustration of the proposed mecha-
teins under fluctuating environment is discussed. nism.

Recent experiments of molecular motors, such as Acto-  The model system consists of a motor that interacts with
Myosin systems, demonstrate this loose coupling. Therey chain composed dfl-lattice sites, positioned at; with
conversion of chemical energy to mechanical one is carrieghgexi. The motor consists of a “head” of positiox, and
out as a directional motion coupled to ATP hydrolysis for gne internal degree of freedom in the form of a “pendulum”
microscopic transport. Using advanced techniques in Si”g|?epresented by. The injection of energy into the system is
molecule measurements, it is found that output directiona}epresemed by the transfer of energy to this pendulum as an
motion of biomotors is a few steps per one ATP hydrolysis, instantaneous increase of kinetic energyEtp The interac-
and that this output is distributed. The result shows clearlyjqp, potentialV(x,,— X; , #) between the chain and the head is
that the mechanical output h&sose couplingto the input  spatially asymmetric and its form depends on the angle of
chemical reaction. the pendulun(see Fig. 1 The periodic lattice is adopted as

The single molecule analysis also sheds light on adaptivene chain, to study directional motion in an asymmetric pe-
function of biomotors for the selection of force to carry a jggic potential, as is often studied in the study of thermal
load. For a light load, the motor moves a few steps per ongaichets. Every degree of freedom, except for the internal
ATP hydrolysis, whereas it moves at most one step for gendulum, is in weak contact with a heat bath, described by
heavy load" This indicates that the biomotor can control the 5 Langevin equation.

force to carry the load and the amount of steps by itself. This  The equations of motion for this system are chosen as
is in contrast to the solid machine like a gear, where the input
energy and the output work are both quantized and have M5 = — vk V29T E (D) — KA (x—iL
one-to-one correspondence. T Y PTG —Ke| (6 =iL)
Simultaneous observation of the binding of ATP and the

motion of myosin head suggests that the input energy from + x— Xi-1tXi+1 J_ N =X ’9)'
ATP is stored in the protein for a long interval before it is 2 IXi
used for the directional motichThe stored time scale even N(Xp—Xi ,0)

reaches subseconds in some cases, that is anomalously long, mpi,=— yX,+ V2yT&p(t) — > ——————=, (1)
. . . . . i (9Xh
compared with the scale of vibrational mode in protein. Both
the storage time and the step size of directional motomm- N (Xp—X; , 6)
. . y: 1

responding to the number of functional cyglémve broad my6= —Z 8
distributions. The energy storage might imply flexible adap- '
tation of proteins, since the protein could wait for a suitablewhere T is the temperaturey is a friction coefficient, and
timing and fluctuation during the stored state, to realize func<,(t) represents Gaussian white noise. Here, we use the units
tion. Boltzmann constaritg=1. K. andL are the spring constant

As discussed so far, a system with loose coupling willand the natural interval between two neighboring lattice sites
easily adapt to changes in external conditions, and will ben the chain. To observe directional motion of the head, the
robust to fluctuations. In this paper, we construct an explicithain is also connected to a fixed ground via a spring with a
example of such system with self-organized dynamics, to putonstant.. Here,m., m,,, andm, are mass of the respec-

the abstract concept of the loose coupling into shape. tive degrees of freedonm,=m,=1 andm,=0.01.
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FIG. 1. Profile of the model. The form of potentildepends on the value - 0 N ) L ) )
of 6, where the solid curve represents the form fr0 (the equilibrium 4 2 0 2 4 6 8
state for6), and the dotted curve fof=m. The latter value appears upon Axy, /L

excitation, consisting of the instantaneous increasgtof the kinetic en-

ergy for the pendulum. In the simulation of this paper, the chain consists of|G, 2. Frequency distribution of the displacemémimber of stepsof the
40 lattice sites with periodic boundary condition. head positionx,, per excitationK.=0.5, T=0.02, andEy=0.4.

The inertia is not ignored, as small friction coefficient confined mostly to the nearest lattice sites. Here we adopt the
is adopted. This is in contrast to most studies where biomofollowing potential form:

tors are usually treated as overdamped systems, considering
that for a small object that moves with a slow time scale,  y/ax 6):Khtanr(p(Ax—r))+(1—cosH)/2
water is highly viscous fluidReynolds numbex 10~ %). We ' coshidAx) ’

introduce inertia term, since several experimental results bynere the parametepsandr determine the degree of asym-
Yanag_ida’s_grqup may not _necessarily match wi_th this Sta”metry, whileK,, andd~* give the coupling strength and de-
dard view? ®First, several single-molecule experiments sug-cay length of the interaction, respectively. Specific choice of
gest that the fluctuations in the slow time scale as milliseCspis form is not important. We have simulated our model
. ey 5 -

ond or second. For instance, Ishijimetal” showed  cnoosing several other potential forms with asymmetry, for
anomalously Iong—term energy storage in moI(_achar momﬁnstance V(AX, 6) = K;,(1— cos6)/(exp(PAX) +exp(—dAx)),
There the chemical energy from ATP hydrolysis is stored ingng optained qualitatively the same results with regards to

the motor for 0.1-1 s and then the energy is used for thene girectional motion. In this paper, the parameters for the
directional motion gradually. If one assumes overdampe%otemim are fixed ap=10, r=0.3, K,=0.2, andd~!

motion, such excited energy should be damped within a_q o5
nanosecond or so. On the other hand, the stepping motion of e pendulum mode without direct coupling to the heat

protein itself(say Kinesin could occur even in nanosecond path is adopted here just as one representation of long-term

order while the waiting time_ before stepping is milliseconds. storage of enerdyexperimentally suggested in molecular
Compared with very slow time scales, the dynamics to realygiors5 This specific choice, i.e., pendulum without direct

ize directional motion is considerably rapid. If the Waterdamping isjust an exampléor a long-living mode, that
around a protein is treated just as macroscopic water, thgyeracts gradually with other degrees of freedom. As long as
rapid motion of the motor(for instance 10 nm by 1 BS  there exists such slow relaxation mode, our results follow.

suggests the Reynolds number 0.1 or so, while it is not surgny mode realizing slow relaxation can be adopted instead.
if the nature of water around the molecules could be just

treated as such, and the effective Reynolds number could be
much higher. To sum up, it is still open if the motion of V. DIRECTIONAL MOTION WITH A LOOSE

molecular motor should be totally overdamped, and thereforgOUPLlNG TO INPUT ENERGY

it is interesting to consider a system with inertia theoretically.  In this section, we state results of the numerical integra-
Furthermore, each degree of freedom we used in th&on for Eq. (1), mostly from the viewpoint of the ensemble
model does not necessarily represent an atomistic motioraverage.
Rather, it may represent a collective variable consisting of a  In thermal equilibrium, the head diffuses along the chain
large number of atoms. For example, a protein includes avhile obeying Arrhenius’ law, and no directional motion is
large number of atoms. To understand energy transductiopossible on average. However, when energy is imported to
with such a large molecule, it is important to use a reducedhe pendulum and the system is out of equilibrium, direc-
model with a smaller number of degrees of freedom repretional motion is observed on its way in the relaxation to
senting a collective mode consisting of a large number othermal equilibrium. The degree of thermal fluctuations of
atoms. It should be noted that the present scheme for thihe system depends on flexibility, besides temperatufg,
energy transduction is not necessarily restricted to a Hamilwhich is larger for smalleK. or higherT.
tonian systentwith weak damping and noigebut it is hoped For a given value oE,, we computed the distribution of
that a model with overdamped dynamics will be constructedhe number of steps as displayed in Fig. 2, where one step
that realizes energy transduction with loose coupling by theneans the displacement of the head for one lattice site along
present scheme. the chain. Here, the distribution was obtained by taking 1000
The potential form is asymmetric in space as shown inrsamples with arbitrarily chosen different configurations of
Fig. 1, where the characteristic decay length of the interacthe system at the moment of energy injection, while satisfy-
tion is set at a smaller value than so that the interaction is ing thermal equilibrium, and also by taking different random
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time =0.01 with three values df,. Directional motion is most prominent in a
FIG. 3. Sensitivity of the dynamics to small disturbances. Three time seriegarticular range of stiffness of the chaik &~0.5), where the fluctuations of
of the head positiox, are plotted, using the identical initial condition and the lattice are slightly larger than those of the head. The directional motion
common random sequence for the noise, and changing only slightly thgs suppressed both for larger valueskaf, where the magnitude of lattice
value of excitation of the pendulum &ime=0, asE,=0.55, 0.55- 10", fluctuations decreases, and for smaller valuek of The latter suppression
0.55+ 2% 10'. In the simulation, the system was prepared in thermal equi-appears, because the head interacts not only with the lattice site at which it
librium before excitation withT =0.01 andy=0.01. The tiny difference at is positioned, but also with neighboring sites, resulting in a stronger effec-
the excitation event is amplified to large difference of the motion of the headive potential experienced by the head.
Xp -

o commonly observed against the change of other parameters.
sequencest,(t). This distribution shows that the head 4 condition for the flexibility in the spring will be revisited
moves directionally along the chain on average, and that th%ter from the viewpoint of stability analysis.

output number of steps, in which its peak value is two steps,
has loose coupling to input energy. This distribution form of
steps is similar to that observed in experiments ofy. DIRECTIONAL MOTION WITH THE USE OF EXTRA
biomotors? DEGREES OF FREEDOM

The resulting distribution forms a rather broad shape,
although the input energdl, is identical for all the samples.
The difference in the output step comes from difference o

Now, we discuss how energy conversion to the direc-
1Iional motion is carried out, by closely examining the dy-

the configuration at the event of excitation, intrinsic chaotic"@mics of the model. Figure 5 _d|spl_ays a typlcal_ time se-
dynamics of the system, and random noise from the hea uence qf the head,, a few lattice sites; around it, and
bath. Here we examine orbital instabiliyy transient chags t-e I§|net|c .energ)ﬂ'g of the pgndulum after an eye_nt of ex-
as follows: Take two identical initial configurations, and put citation attime=0. We here introduce characteristic behav-

input energy whose magnitude differs slightly for each other;g.r of the SySte”.“ deD'.Cted 49)-(d) at the time sequence in
The temporal evolution from these samples is simulated b¥n'g'.5' The conﬂgura’uqn O.f the system at each stage is sche-
choosing identical random noigee., sequence of random atically represented in Fig. 6.

numbeyj. Then, the evolution of these systems with tiny dif-
ference in input results in quite different number of output
steps(see Fig. 3 Such difference also appears from the tiny
difference in initial configurations. Now, it is impossible to
predict or control the number and the direction of steps from
the configuration of the system at the excitation, including
the direction of the rotation of the pendulum. On the other
hand, the directional motion appears rather independently of
the configuration and, therefore, the energy conversion of the
system is robust against thermal fluctuations in configura-
tion, and fluctuations in the input event.

The output directional motion is also robust against
changes in the environmental temperature, while higher tem-
perature brings larger fluctuations to the system. Further- o
more, the average number of steps increases monotonically 0
with the amount of injected enerdy.In other words, the 300 400
more input energy, the more it is used for the output motion. _ _ , o
The system can adjust itself to the change of input energ)IZIG:.OS;SAItyplcal_relax;_ltlon process following excﬂatlpn of the penc_il_JIu_m.

o ) ) «=0.5. In the simulation, the system was prepared in thermal equilibrium
through its internal dynamics, even under large fluctuationsith T=0.02 andy=0.01, and the pendulum was excitectimhe=0 with
in configuration. To make this energy conversion possible, iEy=0.4. With the temperature used here, the head remains at one lattice site
is important that the chain be sufficiently flexible and beforz_;\_very long time in thermallequilibrium. Upper pane_l: Time_serigs of the
fluctuated in large range thermallyor exciedly. Ifthe spring?®5 = e "7 b0 o0 w1 e regierng e ses
constantK,, is too large or too small, directional motion of e internal pendulumT,). In the upper panel, the indeje)—(d) corre-
the head is scarcely generateste Fig. 4 This feature is  sponds to each stage schematically shown in Fig. 6.
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FIG. 6. Schematic representation on the directional motion. The reference )
index (a)—(d) corresponds to each stage shown in the time sequence in 0.5 L L L -
Fig. 5. 05 -025 0 025 05
Xn
(b) T T
When the pendulum motion is fast, and is essentially 0.35 1
decoupled from the head motion, the head and the nearest E,
lattice site bind strongly and they exhibit highly correlated
vibration[at stagg@)]. This correlation is especially remark- 0 . . T
able ina weak spring case whe{e is small cpmpared to the Xn AL o .nHJL]
coupling by the potential/. There, the motion of the head W”VWVU”“"VWWWVU

and the nearest site is governed mainly by a two-body inter- | y

action betweerxy, andxg, via the attractive potentiaV(xy X (1) I ' w
—Xg), Which induces this coherent vibration. The complex e T 7
consisting of the head and the lattice site 0 behaves as if they

are a single particle that is heavier than other siies, ' ' NU
Py

moves with a slower time scale motjorindeed, this “par- Xp{mg) W\/‘v“va“vAvAv“v"v"v"v"v“vvvVUvU

ticle,” consisting of the lattice site and the head, is coupled to
the neighboring sites, and they show roughly periodic oscil- ' y
lation. Here, the motion of the head and lattice sites are just Xq (0 ) A
combinations of two-body vibrational motions.

Since the pendulum interacts with the other degrees of 1 L
freedom, it does not rotate completely freely, even though 200 400
the rotation is fast. As the rotation is slowed, the pendulum time
motion starts to influence the head motion, due to the nonE!G. 7. (a) Plot of an orbit projected in the two-dimensional spacg, o).
ineary of the potentia (x,— x;). The pendulum motion is 27, event of exctar (o e step mton, 4 frst, e heed s e
no longer decoupled from the rest of the system, and thgiong the linex,=x, . In contrast to a relatively large motion of their center
pendulum, the head, and the corresponding lattice site comg mass along the diagonal line, vibration of the two-body motiea®) is
to exhibit three-body motion. As shown in Fig. 3, the motion kept small, as shown in the vibrati_on along the ant_idiagon‘al direction. As the
of the system starts to show highly chaotic motion, whichPendulum loses energy, the amplitude of the relative motion betwgand
. . . . . Xn grows, as is demonstrated by a few periods of large amplitude vibration
induces irreversible relaxatidh.At this stage, the energy parallel to the linex,+x,=0. This corresponds to stage) in Fig. 5. After
from the pendulum is not immediately diffused to other lat-this swing motion of the head, the head moves to the next lattice(kjte.
tice sites, and is localized at the head and the binding latticEigenmode expansion of the time series of the head around the two-body
site for a certain interval. As a result, the vibration amplitude0ution 0-0). N=7, K;=0.5, E,=0.35, T=0.005, andy=0.05. The

. . first column gives the relaxation of excited enefgyof the pendulum. The

of the complex of the head and the site becomes larger wit econd one shows original time sequencexpf The third and fourth col-
the energy transfer from the penduliystage(b)]. umns give the component of the, and w; mode for the time series;, ,

With the increase of the vibration amplitude, the coher-respectively, while the bottom column gives the sum of the components of
ent motion of the head and the corresponding lattice site i§ther modes. The vertical axes are in the rarge<xy ,Xn(w) <1.
lost and they start to vibrate in antiphdsgage(c)], as the
interaction with other degrees of freeddne., the pendulum
and neighboring lattice sitesre no longer negligible. The the next site to the left. Because the interaction between the
growth of the antiphase mode betwegnandx, is shown in  head and the left lattice site is repulsive, the head bounces
Fig. 7(a), where the large amplitude appears for a few peri-back eventually to the next site to the right, after a few pe-
ods before the head moves to the next site. With the loss afods of vibration[stage(d)]. Attractive interaction with the
coherence betweem;, and Xy, the head interacts more right site also enhances this bouncing-back. Through this
strongly with the neighboring lattice sites to the original. Theprocess, the head absorbs energy from the chain, so that it
interaction that the head experiences here is highly asymmetan cross over the energy barrier to the next site to the right.
ric, i.e., repulsive with the left lattice sitex(;) and attrac- The timing of this crossing is spontaneously determined by
tive with the right &,), as given in the potentidl(x,—X;) the interaction among the head, pendulum, and lattice sites.
in Fig. 1 (for the interaction with the left site seg,—x; For the present mechanism to function, energy must be
~L and for the right see,—x;~ —L). At this stage, the localized within the head and neighboring lattice sites for a
head motion becomes occasionally synchronized with that ofvhile. 1%? This condition is not satisfied, for example, when
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NSRS I——. change oK. There are two branches of the solutions. Each
R (@) branch is shown in Figs.(8 and 8b), respectively. Here,
h the upper casda) undergoes bifurcation, while the other
o does not[Fig. 8b)]. Compare the head position with the
lattice points in(a). Sincex,~Xg, the configuration Fig.
L L 8(a) corresponds to a binding state with the head and the site
x - — O, while the configuration changes with the value<gf. We
L R (b) call this two-body binding-state solution, or two-body solu-
tion in short. It is remarkable that this binding-state solution
ol o _ between the heall and the siteO is stable within a wide
sz arerrenno W range ofK., as shown in the lower branch satisfying
M = | ~Xg in Fig. 8@). The branch disappears aroukg~0.3,
: and it does not exist below the value. On the other hand, in

04 06 08 1 the rangeK.<0.49, there is anotheuppe) sub-branch in
Ke Fig. 8@a), whereh is betweerR andL, which are located at
FIG. 8. Fixed point configuration of the head and the neighboring IatticeCIQSer distances. \_Ne call this a three'bOd.y binding-state so-
sites, plotted as a function of the parameter. Each fixed point solutionis  1Ution (O—h—R), since the head and the sit®sandR form
derived from the model equatiofis) for each value oK. Here(O) or (@) a stable binding state.
shows the positions of lattice point®,O,L) and (X) or (+) that of the For largeK., the two-body solution {—O) gives a
head. Herg O) and (X) display those of stable fixed points, af®) and ' . . L
(+) those of unstable fixed points. In bran@), there are two bifurcation ground St_ate’ energetlce_llly _Sp_eakmg’ that stays at a minimum
points arounck ,=0.3 andK ,=0.5. in potential energy, while it is replaced by the three-body
solution ©—h—-R) for smaller values oK. . In the configu-
ration of the three-body state, elastic energy of the springs

the spring is stiffii.e., whenK is large. In that case, energy gets much larger than that of the two-body binding state
rapidly diffuses from the binding site to other sites, and th h—0), since the siteD is very close to the sit® and far

present energy conversion does not work. As a result, thgom the siteL. However, if the spring constant is suffi-
directional motion is suppressed for large valueskef as  jently small, the repulsive force from the springs is compen-

shown in Fig. 4. To sum up, the localization of energy at asa1eq, by the attractive interaction between the head and the
few lattice sites near the head over some time allows fOEiteR via V(x,—xg), and it is negligible.

effective energy conversion, which results in directional mo- |, branch(a), there is another unstable fixed-point solu-
tion. It is interesting to note that in real molecular motor, then around 0.3 K.<0.5, which coexists with two stable

directional motion is suppressed when the stiffness of aCti'%olutions. It is a saddle point dividing the two stable solu-
filament is increased by attaching proteins t&it. tions

The stationary solution of the brandh) is unstable over
the whole range oK. displayed in Fig. &). It is a saddle

In this section, we analyze stationary states., fixed point to divide two translationally invariant solutions, that
pointy of Eq. (1) as a step to understand the dynamics dis-exists due to the spatially periodic structure of the model
cussed in Sec. V. For the sake of the analysis, here the exaéquations. This is easily understood by considering the situ-
tation of the pendulum and coupling to the heat bath aration with a largeK. limit, where lattice sites are almost
removed from the model. The number of the lattice sites ifixed to the periodic poink;=iL. Then dynamical behavior
reduced to b&N=3 with adopting a periodic boundary con- of the system is determined solely by the motion of the head,
dition. This number is a minimum for the head to exhibit which is located in a periodic potential. The head is stable at
directional motion, while maintaining a common featurethe point of global minimum for the potential aroung
with that of larger systems. Then, the system to analyze hasilL, and unstable at a saddle point withikix,<i+ 1. The
five degrees of freedom, i.e., head, three lattice sites, and th#fference between the potential energies at the saddle point
pendulum. Here we study bifurcation of the fixed pointsand at the ground state gives us a measure of the energy
against the change of the stiffneks of the chain, while barrier for the head to shift to the next lattice site. This cor-
fixing other parameters at the values used in Sec. Ill. It igesponds to activation energy for the head to move along the
also noted that equivalent stationary states exist even fazhain. Indeed, the energy barrier estimated here, for each
larger systems wittN>3, as a periodic repetition of the value ofK,, is consistent with the values defined from the
solution atN=3. Arrhenius law for the diffusion of the head, which is ob-

First, as derived from Ed1), the pendulum is stable for tained by the numerical simulation at thermal equilibrium
0=0 and unstable fop= 7, independently of the configu- condition.
ration of the other degrees of freedom. Hence, among the The bifurcation point for the emergence of the three-
five degrees of freedom, the fixed point condition #bis  body solution O—h—R) is important. As is seen in Fig. 4,
separated out only to these two cases. We hereafter argtiee average step of the head takes the largest value around
stationary states at=0 (stable case this bifurcation point irk. . It is suggested that the dynamics

In Fig. 8, the three lattice pointx(O,L) and the head to generate the three-body motio®{h—R) is correlated
position () of the fixed point solutions are plotted with the with the directional motion to go across the energy barrier.

VI. FIXED POINT ANALYSIS
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3t i (b) FIG. 10. Schematic representations of each eigenmode corresponding to the

eigenfrequencie®,, w,, w3, andw,. The direction of each arrow indi-
cates relative direction of the components of each eigenvector.

imai

vector, this mode is found to correspond to the vibration
04 06 08 1 between the two body, the head and the nearest lattice site O.
Ke Schematic representations for each eigenvector are shown in
Fig. 10, where one can see the phase relationship between
FIG. 9. Eigenfrequencies for each eigenmode around each fixed poiat. In each motion(i.e., in-phase or antiphase relatjofftom the
four eigenvalues for the solutions in the brarfehof Fig. 8 are displayed, re|ative directions of arrows. In contrast, the frequen&i@s

while in (b) those for the brancliib) are shown.(O) and (@) show the - - . . .
frequencies around stabelliptic) fixed points and unstablsaddle points, and wg are modes of lattice vibration, which increase pro-

respectively. Over the range #f,, the relationshipso,~ 2K/3 and wg portion_ally toVKe. _The slowest mode; corresponds to the _
~JKJ4 are approximately maintained, which correspond to the mode ofcollective, translational mode of all degrees of freedom in
lattice vibrations. The resonance point at the crossing of the frequencphase (Since each lattice is attached to a fixed, periodic po-
curves appears arounid.=0.5 (a bifurcation poink for the solution in tential, the Goldstone mode does not exist, and the eigen-
branch(a), and around;=0.75 in branchb). ! oy e
value is not zero. Still, it is smajl.These two lattice modes
are maintained for all solutions, even in the saddle solution

Relaxation near the bifurcation point generally gets slowerin branch(b) as shown in Fig. @). Again, by examining
Hence the motion of the head and lattice points gets slowe€ir eigenvectors, it is shown that there are two eigen-
near the bifurcation point df. . During this slow relaxation, Vectors for the solutiorib), corresponding to those fab,
characteristic energy flow between various modes is induce@nd @3 in @-_ _ _ _

in the system, which lead to an effective energy transfer from [N the vicinity of each stationary state, the dynamics are

the pendulum to the head and the lattice points, sufficient téePresented by superposition of these eigenmodes. For in-
go across the energy barrier. stance, the lattice vibration observed in stdgein Fig. 5

mainly comes fromws, which is the longest collective mode
with the largest amplitude of vibration, while the fast, small-
amplitude vibration between the head and the latficat the

As a next step to understand the dynamics of the preserstage(a) comes from the eigenmode far;, whose ampli-
system, linear stability analysis around the stationary solutude increases with the inflow of energy from the pendulum
tions is carried out. We study frequencies of linearized mo-as seen at stage) in Fig. 5 and Fig. 7).
tion around each fixed point, to see how switching from the  To see how each mode contributes to the directional mo-
motion around one fixed point to another is possible. tion of the head, we expand it into the eigenmodes, by pro-

Since we analyze a system with five degrees of freedomjecting the head motion into each mode. Temporal change of
the linearized solution around each fixed point solution hashe component of each mode is plotted in Fi¢h)7 Before
five pairs of eigenvalues. Indeed, the two stable states ithe inflow of the energy from the pendulum, the modevgf
branch (a) are elliptic points with five pairs of imaginary shows a large-amplitude vibration. This is natural, since the
eigenvalues. On the other hand, the unstable solutions imode ofw; corresponds to a two-body binding state-©).
branchega) and(b) are a saddle with one pair of real eigen- As the pendulum loses energy, the amplitude éor in-
values and four pairs of imaginary eigenvalues. Each imagiereases, and it becomes of a comparable order with that of
nary eigenvalue gives a frequency of a corresponding vibraes. This shows the appearance of antiphase vibration. Up to
tional mode. Here, as mentioned in Sec. VI, the stationaryhis stagdi.e., up to time~400 in the example of Fig.(B)],
state of the pendulum mode is determined independently dhe components of other modes remain small, and do not
the configuration of the other degrees of freedom. Hence waffect much the behavior of the head.

VII. LINEAR STABILITY ANALYSIS

focus on the remaining foufor the stable solutionor three Then, instability in the two-body solutiorh-O) brings
(for a saddle frequencies except the pendulum mode. Thesabout breakdown of the binding state between the head and
frequencies are plotted in Fig. 9. the siteO. At stages(c) and (d) in Fig. 5, the system is

Figure 9a) displays four(or threg angular frequencies excited from the ground state, and approaches the saddle in
for each solution in brancta). Three frequencies depicted as the branch(b). As seen in Fig. 10, all vibrational modes on
w1, wy, andw, possess common properties for all the solu-the saddle point are in-phase motion between the head and
tions. The fastest frequenay; is kept far from others and the siteO. Such vibration modes support the synchronization
w1=3 over the whole range d€.. By examining its eigen- observed in the repulsive interaction at stége Here com-
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ponents from other modes are slightly increased, as shown imetween the beginning of inflow from the pendulum and the
Fig. 7(b), right before the step motion of the head. shift of the head? This instability is not solely due to the

As the head is occasionally deviated to the right neighinflow of energy, since the index for the instability, given by
boring siteR, the configuration becomes similar to that of (finite-time) Lyapunov exponent, is kept constant even after
the three-body binding stat®©h—R) in branch(a), which  the first inflow of energy finishes. Recalling generality of the
exists at the range &€ allowing for the effective directional resonance overlap mechanism for ch¥uisjs rather natural
motion. Then, to escape from such temporal three-body bindo assume the existence of resonance overlapping here.
ing state, and to make a shift of the head to the next site, The above-presented linear analysis is argued for a spe-
antiphase relationship between the head and theRsite  cial cased=0. After an excitation, the pendulum rotates and
important. Here, such motion is given by the eigenmode fothe value ofé is distributed. It should be noted that both the
w,, where the sit®R moves to the opposite direction to both bifurcation point ofK; and the resonant points &f. for w,
the head and the si®® (see Fig. 10 At the saddle solution With w, are shifted to smaller values &, for 6>0. To
in branch(a), the eigenmode correspondingdg in Fig. 9  sum up, around 08K.<0.75, the stochastic layer to go
takes a real eigenvalue, whose eigenmode gives the unstatsieross the saddle would be broader and the crossing of the
direction of the saddle. Along the stable direction of theenergy barrier would be easier. The chaotic dynamics around
saddle, the head and the site@sand O are first combined, the saddle would destroy the correlation between the head
and later, along the unstable direction, the tes departed and lattice sites, and would be relevant to induce directional
from the binding state of the head and the €teIn other ~ motion. In relationship, it should be noted that the average
words, the system is attracted to the three-body binding sta@hift of the head tends to have a peak around this region of
(O—h-R), and then it is repelled from the state. This corre-K. (see Fig. 4.
sponds to stagéd) in Fig. 5. In the time series in Fig. 5, the
head is shifted to the next site successively, following this
attraction. The temporal attraction to the three-body state an
exit from it through the saddle is important to understand  |n the present paper, we have analyzed a dynamical sys-
how the head goes across the energy barrier to make a dire@ms model for energy transduction, inspired by recent ex-
tional motion. periments on molecular motors. Using Langevin dynamics

Here it is difficult to find out the growth of the mode,  (with inertia), it is shown that the injected energy to one of
at the stagéc) or (d), by measurement of the components asthe degrees of freedom is successively converted to direc-
in Fig. 7(b). We could detect the increase of the modes othetional motion, under the thermal fluctuations of configura-
than v, and w3, as a total, but direct observation of the tion. Before the injection of energy, the system is in equilib-
increase ofw, mode is not easy, even if we adopt the moderium, where the stationary state is approximately decoupled
expansion around the three-body soluti@h—R). There into two-body motionggiven by the binding state between
can be two possible reasons here. First, the head crosses the head and the lattiteAs the stored energy into one of the
energy barrier through the saddle within a short time scaledegrees of freedom is dissipated, several degrees of freedom
and the mode is too difficult to be detected. Second, aroungtart to interact. Then, the original stationary state is destabi-
the saddle of a three-body motion, chadtiansient motion  lized, and is replaced by chaotic transient. Now the binding
is generally expected, following the resonance overlapping. state between the head and the lattice is destabilized. As
Indeed, to fully understand the dynamics, the linear analysischematically shown in Fig. 6, the head starts to interact with
is not sufficient, of course. To close the section, we brieflythe neighboring site strongly. Then, through asymmetry in
discuss the resonance overlapping. the potential, directional output motion results.

Note that frequencies, and w, are close around the One consequence of this chaoticansient dynamics is
bifurcation point ofK, in branch(a). Also, for the saddle loose coupling between injected energy and output motion,
point in branch(b), w, shows a remarkable decrease with theas demonstrated by the broad step distribution. Indeed this
increase oK, and crosses with, at a certain value df, distribution reproduces the observation in the experiment of
as shown in Fig. 9. When these two frequencies get closaemnolecular motors rather well. In general, loose coupling be-
there appears resonance between the modes, due to nonlinéaeen the input and output motion, demonstrated by the
terms in the original equation. In general, in a thfeemore  broad distribution of output motion, is an inevitable conse-
body motion with the resonance overlap, stochastic layer iguence of the chaotic dynamics during the course of crossing
formed around the saddle point that separates two differerdver the potential barrier.
binding states. Along the stochastic layer, chaotic motion is  The present result also implies robustness of the energy
generated. This stochastic layer is expected to be thickenddansduction process. Recall that our mechanism does not
as w, and w, get closer, as has been generally studfed. rely on any specific resonance. Rather, at the crossing of the
Hence, with the resonance overlap, the motion to go acrogsotential barrier, thre¢and later morgdegrees of freedom
the saddle would be facilitated. are involved. Note that in Hamiltonian systems with a few

In our problem, it is rather difficult to demonstrate di- degrees of freedom, the stochastic layer is formed as a result
rectly that chaotic motion is due to resonance overlappingpf resonance overlap. Chaotic motion arises along the sto-
since the motion appears only as a transient motion within @hastic layer, and an orbit crosses the saddle point with this
short time scale. However, orbital instability as well as ir- motion, while this chaotic motion brings about a broad band
regular motion is observed around the stégeand(d), i.e.,  of frequencies. In the present example also, stochastic mo-

IIl. SUMMARY AND DISCUSSION
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tion appears to cross over the saddle point. Accordingly, thévolved, and the orbit shows chaotic motion presumably
crossing behavior is robust against the change of other palong a stochastic layer formed by the resonance overlap.
rameters such as the injected energy, in contrast to simpl€hen, the orbit crosses the barrier, taking advantage of the
resonance, where the parameter and injected energy havenmtion along the stochastic layer. Thus, the crossing from
be tuned finely to satisfy the resonance condition. one binding state to another is neither random nor tightly
As a theoretical model for molecular motors, therftal  determined. Recall that such transition between states
othey ratchets have been extensively studigd’ In the  through chaotic motion is an important factor of chaotic itin-
ratchet model, input of energy is represented in the form okrancy.
either temperature difference, switching of potential, or spe-  In the mechanism by ratchet models, random noise gives
cific colored noise. These are external processes that the syes-trigger to the transition between states. The orbit shows
tem of concern cannot change autonomously. In the prese®rownian motion in the phase space. On the other hand, in
model, the temporal evolution is given only by autonomousthe present mechanism, the orbit is restricted in stochastic
dynamics, once the energy is injected. The input energy dodayer around a saddle point, which facilitates the directional
not need to take a specific value, and is injected at any timinghotion. Detailed analysis on how the transition by the
in the evolution of the system. Depending on the amount opresent mechanism differs from the standard thermal activa-
input energy, the timing for the stabilization of the two-body tion process is left for future studies.
binding state changes, as a result of autonomous dynamics of One may note that there is one difference between the
internal degrees of freedom. As a result, the timing for crosspresent dynamics and CI. In contrast to Cl, transition among
ing the energy barrier is also adjusted so that the directionadrdered states is not repeated indefinitely in the present case.
motion results on average. Indeed, the average of output stegtill, other features are common, and in this sense, use of
motion increases with the input energy, implying that the“transient” Cl for energy conversion should be seriously
injected energy is not wasted out. pursued in the future. Indeed, the application of the present
To close the paper, we discuss the relationship of thenechanism is not necessarily restricted to the problem of
present dynamics with chaotic itinerancy. In chaotic itiner-biomotor, but the mechanism can be applied in general to a
ancy (Cl), residence at low-dimensional ordered states andystem with the energy conversion using internal dynamics,
switching to a new ordered state through higher dimensionauch as to the function of enzymes, protein folding, and
chaos are repeated. Here, change of effective degrees of freghemical reaction process.
dom is essential to this itinerancy. Switching process from
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