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SPATIOTEMPORAL CHAOS IN ONE- AND TWO-DIMENSIONAL COUPLED 
MAP LATFICES 
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Coupled map lattices are investigated as a model for spatiotemporal chaos. Pattern dynamics in diffusivel~y coupled logistic 
lattice is briefly reviewed with the use of power spectra, domain distribution, a~d Lyapunov spectra. Mechanism of pattern 
selection with the suppression of chaos is discussed. Pattern dynamics on a 2-dimensional lattice is shown, in a weak coupling 
regime, a similarity with the one-dimensional case is found; frozen random pattern, pattern selection, Brownian motion of a 
chaotic string, and intermittent collapse of the pattern with selective flicker noise. In a strong coupling regime, frozen pattern 
is found to be unstable by the surface tension, which is in contrast with the one-dimensional case. Convective coupling model 
is introduced in connection with the fluid turbulence of Navier-Stokes type. Soliton turbulence and vortex turbulence in the 
model are reported. Physical implications of coupled map lattices are discussed. 

1. Introduction 

Modelling and characterization of complex phe- 
nomena in space-time is important in the study of 
turbulence in a general sense, not only in fluid 
dynamics but also in solid-state physics, optics, 
chemical reaction with diffusion, and possibly in 
biology. This kind of phenomena is called as 
"spatiotemporal chaos", in an attempt to under- 
stand it on the basis of knowledge on dynamical 
systems theory, especially, chaos. 

The author has been investigating spatiotempo- 
ral chaos under the following strategy: 

(1) proposition of a simple and essential model 
for spatiotemporal chaos; 

(2) global search of qualitative pattern dynamics 
using various visualization techniques [4] and ex- 
ploration of the universal scenario for pattern 
dynamics [1]; 

(3) quantitative description of the change of 
pattern dynamics x~th the use of spatiotemporal 
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power ~pectra, domain distribution as order pa- 
rameters, Lyapunov spectra and vectors, co-mov- 
ing Lyapunov spectra, and so on [1]; 

(4) construction of a theory for spatiotemporal 
chaos based on the statistical mechanics for chaos 
and for a system with many degrees of freedom 
(e.g., spin systems), including an attempt towards 
a marriage between Perron-Frobenius operator 
and mean field theory; 

(5) application to physical, chemical and biolog- 
ical s~stems: e.g., Btnard convection, convection 
in liquid crystals, Taylor vortex, open flow in fluid 
systems, chemical reaction with diffusion, some 
solid-state systems such as Josephson junction ar- 
ray, charge density wave, spin wave turbulence, 
spinc:lal decomposition, and possibly some bio- 
logica~ networks. 

Here we mainly focus on (2) and (3) and briefly 
refer to (4) and (5). The model we use here is a 
coupled map lattice (CML), which has been intro- 
duced in the reasons listed in [1-4], and has been 
investigated in various contexts recently [5-12]. 

A CML is a dynamical system with a discrete 
time, discrete space, and continuous state [1-5] 
(see also, [7-12]). A modeUmg of physical phe- 
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nomena by CML is based on the following steps: 
(A) Decompose the phenomena into indepen- 

dent units (e.g., convection, reaction, diffusion, 
and so on). 

(B) Replace each unit by the possible simplest 
parallel dynamics on a lattice: the dynamics con- 
sists of a transformation on each lattice point or a 
coupling term among suitably chosen neighbors. 

(C) Carry out each unit dynamics ("procedure") 
successively. 

The following diffusively coupled model has 
been frequently investigated: 

xn+,(i ) = (1 -¢)f(xn(i)) 

+,/2[f(xn(i + 1)) + f(x (i- 1))], 
(1) 

where n is a discrete time step and i is a lattice 
point ( i =  1 ,2 . , . . . ,N=system size) with aper i -  
odic boundary condition. Extensions to a higher- 
dimensional lattice and to a model of a different 
type of coupling ("convective coupling") will be 
studied in sections 4 and 5. Here the mapping 
function f ( x )  is chosen to be the logistic map: 

f ( x )  = 1 - (2) 

In this model, the independent procedures in 
(B) are local transformation (eq. (2)) and the 
diffusion process (eq. (1)), which are separated 
parallel procedures. The model consists of the 
sequential repetition of these two procedures. This 
argument leads to the following equivalent form 
with the above model: 

the tridiagonal matrix for diffusive coupling: 

x ' ( j )  = E ( 1 / N ) E  exp(2ik r(l-j)/N) x(l) 
t t, 1 - 2c sin 2 k,tr/N 

- Za j t x ( l ) .  (4) 
! 

The second process is just x" ( j )= f - l ( x ' ( j ) ) ,  
where f - l ( x )  is inverse function of f(x),  (for the 
logistic map (2) it is given by + ~ ( 1 - x ) / a ) .  
Thuz the preimages are given by x , _ l ( j ) =  
f-x(Y'.tajtx,(l)). This simple procedure for the 
preimages is essential in the construction of staffs- 
tical mechanics by Perron-Frobenius operator. 

Another important feature in this model is as 
follows: if a state x 7 is a stable periodic cycle for 
a single map x '  = f (x) ,  then the homogeneous 
solution x(i) = x~ is also stable, for "physical" c 
values, i.e., c < 2/3. If we took other coupling 
forms, tins stability of a homogeneous p, dodic 
state would not be guaranteed. 

A perturbation theory to derive a CML from a 
coupled ordinary differential equation was carried 
out by Yamada and Fujisaka [7], which leads to a 
model (1) within a certain condition. Another 
derivation of CML from a partial differential 
equation is the use of interaction term F(x(r)) × 
~ , , 8 ( t -  n), as is frequently used in the derivation 
of standard mapping from a Hamiltonian system 
[13]. 

A construction of a toy model for fluid dynam- 
ics using this separation of procedures is intro- 
duced in section 5 where successive procedures are 
convection, diffusion, and damping. 

= f ( 0  
+e/2(x.(i  + 1) + 1))). (3) 2. Brie¢ review on pattern dynamics 

The separation of procedure makes it possible 
to obtain inverse images of the dynamics. The 
preimages of our dynamics is constructed as fol- 
lows: Note that the inverse process is just the 
combination of (1l) the inverse of spatial average 
and (2) the inverse images of local dynamics. The 
first process is just a calculation of the inverse of 

Here we briefly review phases of the one-dimen- 
sional logistic lattice (1). For detailed accounts see 
[1]. The essential change of a spafiotemporal pat- 
tern in our model with the increase of nonlinearity 
is (i) frozen random state, (ii) pattern selection 
and (iii) fully developed spafiotemporal chaos (see 
fig. 1 of [i] for the phase diagram). Change of each 
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Table I 
Characterization of phases by the quantifiers. See text for 

X•antifiers Temporal Spatial 
power power 

Phase ~ spectra spectra 

Frozen peaks + broad exp ( - corst, x k) 
random band noise (fig. 2(a)) 
pattern (fig. l(a)) 

the detail. 

Pattern Pattern Dynamical 
distribution entropy entropy 
Q( k ) Sp Sa 

Q( k ) * 0 large 0 
for many k's  (almost 
(fig. 3(a)) constant) 

Pattern peaks + broad few peaks 
selection band noise (+ noise) 

(fig. t(b, c)) (fig. 2(b)) 

Lyapunov KS 
spectra entropy 

Fully broad band exp ( - const, x k 2) 
developed noise (fig. 2(d)) 
turbulence (fig. l(d)) 

small stepwise positive 
structure 

few Q(k)'s * 0 small 0 large stepwise small 
Q(I) = 0 for l > lc (decreasing) structure (decreasing) 
(fig. 3b)) (or O) 

Q(k) oc large large smooth large 
exp ( -  const, x k) (increasing) Sd ---- S r, function (increasing) 
(fig. 3(c)) 

state is characterized by power spectra, distribu- 
tion of domains, entropy, and Lyapunov spectra. 
Results are summarized in table I and figs. 1-3. 

Here temporal power spectra are the power of 
Fourier transform of a time series of x(i): 

e ( o , )  = l( 
2 

E x,,(J) e2"i"'° ; (5) 
n ~ t 0 

For a frozen random pattern, the peak at oa = 1/2 
is seen as is expected (fig. la), since a single 
logistic map exhibits a period-2 band motion for 
this parameter range. In the pattern selection 
regime, still the peak (and some other peaks for 
some parameters) is observed (fig. l(b, c)), which is 
due to the regular motion by the pattern selection 
mechanism. (Note that in this parameter value of 
a, a single logistic map cannot show the motion of 
period-2 band.) In the fully developed regime, the 
peak no more exists and is replaced by some 
Lorentzian band noise around it and ~.round 0~ = 0 
(fig. l(d)). 

Spatial power spectra are obtained by spatial 
Fourier transform of a pattern: 

= (( ( l / N )  ,~1 x"(J)e>~t 'J/N " (6) 

In the frozen random phase, they show roughly 
e x p ( - c o n s t . x  k) (fig. 2(a)), which is due to the 
domain distribution with a long tail. In the selec- 
tion regime, a diffuse peak at k =  kp appears, 
corresponding to the inverse of the selected do- 
main size (fig. 2(b)). As the nonlinearity is in- 
creased the broad band around k - - 0  develops 
(fig. 2(c)), till they show the form given by random 
generation of domains (fig. 2(d)) in the fully devel- 
oped regime. 

Domain size is defined as the length of spatial 
sequence in which ( x n ( i ) -  x*) has the same sign 
[1], where x* is an unstable fixed point of the 
logistic map, which separates the two-band mo- 
tion: x* = (~/1+ 4a - 1)/(2a). The distribution 
function Q(k) of domains is a probability distri- 
bution of the domain size sampled over the total 
lattice. For a frozen random pattern, there are a 
lot of possible domain sizes (fig. 3(a); maximum 
domain size (43 in the figure) increases with the 
increase of total lattice size), while only few do- 
main sizes are possible in the pattern selection 
regime (fig. 3(b); note that for domain sizes larger 
than 12, the distribution vanishes, which is 
invafiant with the change of system size). In the 
fully developed regime, Q ( k )  behaves as 
exp ( -  const. × k), which clearly illustrates the 
random generation of domains (fig. 3(c)). 



K. Kaneko / Spatiotemporal chaos in coupled map lattices 63 

It) ~ .- ........................... ~ ............ ~ .......................................... 

i 

I 

i 
i + . d ~  .... -! ............... 

- ! : . . . .  +. ! 

t :' ' ! 

10 - -  .2 ~, . 5  

10~ P(~) ....................................................... 

! . . . . . . . . . . . .  , . . . . . . . . .  + . . . . . . . . . . .  ~ . . . .  + . . . . . . .  . . . . . . . . . .  

+ ! 
! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
! + I , 
1 i ~ ' 

r . . . . . . . . . .  ~ i . . . . . .  i ' , 

+ i 2 

O.1 

0 ~ ..5 

P(,~) 

P 

i i 
~P 

i 
10 ~ ' . . . . . . .  ++ + . . . . . .  i 

1 
10 a 

d 

0 . I  L 

0 . 5  0 .2 

Fig. 1. Semilog plot of temporal power spectra P(~o) for the model (1.1L with ~ = 0.3, N = 256, and starting with a random initial 
condition. CMculated from 4096 time step averages after discarding 10000 transients. Averaged from 64 lattice points. (a) a = i+53" 
(b )  a = 1 .58;  (c )  a = 1.7; (d)  a = 1.83.  
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Fig. 2. Semilog plot of spatial power spectra S(k)  for the model (1.1), with ¢ = 0.3, N = 4096, and starting with a random initial 
con~ t ion .  Calculated from 10000 time step averages after discarding 101300 transients. (a) a = 1.53; (b) a = 1.69; (c) a = 1.74; (d) 
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As usual, pattern entropy is defined by 
- EQ(k ) log (Q( k )), which characterizes a variety 
of possible static patterns. The dynamical entropy 
is defined by the mutual information between two 
successive patterns with a given time interval (see 

[11). 
In a frozen random phase, pattern entropy is 

rather large, and takes almost a constant value. As 
the nonlinearity is increased, it shows a remark- 
able decrease at the pattern selection, and again 
increases in the fully developed regime,, A dynami- 
cal entropy vanishes at the frozen random and 
pattern selection regimes. It increases in the fully 
developed regime. 

Lyapunov spectra are calculated from the eigen- 
values of products of Jacobi matrices [6]. From 
the sum of positive exponents, Kolmogorov-Sinai 
(KS) entropy is estimated. In our lattice system 
the density of KS entropy is a more relevant 
quantifier, wlfich is calculated by the division by 
the system size N. A salient feature in the pattern 
selection regime is the decrease of KS entropy 
with the increase of nonlinearity. 

Interesting phenomena occur at the transition 
from (i) to (ii) and from (ii) to (iii) [1]. The former 
is treated in the next section, while the latter is 
known to belong to a class of phenomena called 
"spatiotemporal intermittency" (for spatiotempo- 
ral intermittency see [2, 4, 15, 16, 17, 11, 1]). Here 
we note that an experiment of a Bdnard convec- 
tion in an annulus shows a similar behavior with a 
pattern competition intermittency in our model, in 
its spatiotemporal pattern, power-law distribution 
of the cluster at the onset, and temporal/spatial 
power spectra [20]. This may not be surprising, 
since our model is one of the simplest which has 
local chaotic motion and diffusion. A possible 
relation of spatiotemporal intermittency with tran- 
sient turbulence [21] is discussed in [22]. 

3. Pa~ern selection: glass-crystal h'ansifion? 

Here we study the mechanism of pattern selec- 
tion in a little more detail. 

The phenomena which occur at the pattern se- 
lection regime are summarized as follows: 

(1) decrease of possible domain sizes: for a < ap 
--1.54, domains of larger sizes appear as the 
system size is increased. For a > ap, there exists 
an upper bound of domain size It(a) independent 
of a system size, such that domains larger than 
ic(a) cannot exist, it(a) depends on a and de- 
creases with the increase of a. See fig. 3(b, c) for 
examples of domain distribution. Decrease of the 
variety of domain size is e!e~!y seen in the de- 
crease of static pattern entropy. Onset of decrease 
at a = a p is clearly seen in fig. 4. 

(2) Suppression of chaos by pattern selection: 
this is seen in the decrease of KS entropy at 
a > ap [1]. This suggests that the chaos is sup- 
pressed by the pattern selection process. A way of 
viewing the temporal process of the decrease of 
chaos is the use of local space-time Lyapunov 
exponents, introduced by Umberger and the au- 
thor [23]. Local space-time Lyapunov exponents 
are calculated by the products of Jacobi matrices 
for a given subsystem (size 2L + 1) over finite 
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Fig. 4. Pattern (static) entropy as a function of a, neat the 
pattern selection transition: Note the onset of decrease of 
entropy at a = %. c = 0.3, N = 10000 and starting with ran- 
dom initial conditions. Calculated from Q(k) obtained through 
1000 steps sampled per 8 time steps, after 10000 transients. 
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time steps T (which are fixed). To be precise, the 
local space-time Lyapunov exponent at time = n, 
cite = j  is calculated by the products of Jacobi 
matrices for [x,, ,(j- L), x,,,(j - L + 1),. . . ,  Xm( j 
+L-1 ) ,Xm( j+L) ]  for m = n , n + l , . . . , n + T  
- 1, where the boundary effect a t  Xm( j -L)  and 
x,,,(j + L) is neglected, that is, we calculate the 
product of Jaeobi matrices: 

(2) Is the transition sharp? Is there any diver- 
gence of some quantity at the transition point?: 

Although the decrease of entropy at a v shows 
the behavior typical in the second-order phase 
transition, we are not yet sure if our transition is 
with some singularity. We have not yet had a 
quantity which diverges at a = ap. One possibility 

n+T-1 

H 

( 1 - ¢ ) f ' ( x m ( j - L ) )  

,.)) 

p 

~ f ( x m ( j - L + l ) )  
E p 

(1 - - ¢ ) f ' ( X m (  j -  L + 1 ) )  "~f (Xm( j -  L + 2 ) )  

E p 

0 "~ f (Xm(J+L-1  ) 

0 

( 1 - c ) f ' ( x m ( j + L ) )  

(7) 

In fig. 5, maximum local space-time Lyapunov 
exponent is plotted in space-time for L = 1 and 
T = 8. For a < a p, the decrease of KS entropy 
stops in few steps and domain structures do not 
move any more• For a > at,, the region with large 
positive exponents disappears successively in time 
(fig. 5(b,c)), tiU a region with negative exponents 
is dominated. 

Following questions remain to be unanswered: 
(1) What causes the pattern selection? Is it 

related with band merging in a single logistic 
map?: 

If a state in e~:a domain were approximated by 
a spatially homogeneous value in it, the condition 
of collapse of a large domain would be given by 
the band merging for a single logistic map which 
occurs at a :~ 1..,=,., since ~¢~¢~ with x > x* and 
x < x* can mix in the absence of period-2 band. 
Our critical value a p iS very close to this value. In 
fact, the state in each domain is not homogeneous, 
of course, but is chaotically modulated. The above 
approximate agreement of a p and the band merg- 
ing point suggests that this modulation can be 
neglected for the collapse of a large domain at 
least for a first-order apprordmation. 

is that this pattern selection transition is similar to 
the spin-glass transition. The shnilarity of our 
transition with the glassy state and transition is 
that (i) there exists a cusp in a change of some 
physical quantities as a function of parameter, (ii) 
the frozen state has a large number of attractors 
(exponentially large te the system size), and that 
(iii) there is a frozen random_less in the state. 

(3) Why is chaos suppressed? What sizes of 
patterns are selected?: 

A conjecture to these questions is that a pattern 
with a smaller Lyapunov exponent is selected. We 
have calculated Lyapunov exponents for various 
domain sizes by t ~ g  a small lattice size (2-10). 
Numerical results show that the domain sizes se- 
lected by the pattern selection has smaller Lya- 
punov exponents. A -'---" . . . . .  -~---: UOIRLUetUt uo tuahq  s~ge t .^-  uet~ a 

smaller (sometimes negative) Lyapunov exponent. 
One possible interpretation for the above con- 

jecture is that a domain with larger positive expo- 
nents is easily collapsed by the boundary effect 
from the neighboring domains, while a domain 
with smaller (or negative) exponents extubits a 
more regular motion and is stable against a 
boundary effect from other domains. 
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4. Pattern dynamics in a 2-dimensiona| lattice 

Extension of our CML with diffusive coupling 
to a two-dimensional lattice in space is quite 
straightforward. Here we consider the simplest 
east, i.e., nearest-neighbor coupling on a square 

lattice (see also [24]). The model is given by 

xn+l(i,j) 
=(1-c) f (x , , ( i , j ) )  

+c/4[f(x.(i  + 1, j)) + f (xn( i -  1, j)) 
j + 1)) j -  1))]. (8) 

.." ° .  

a b 

e d 

Fig. 6. S n a p s h o t  pa t te rn  for 2-d imensional  lattice on a latt ice po in t  (i ,  j )  a square with a length proport ional  to (x, , ( i ,  j )  - 0.2) is 

dep ic t ed  if  x , , ( i ,  j ) >  0.2. Otherwise  it is left blank. (a) a = 1.5, c = 0.1, size = 64 × 64, at  t ime step 1000: (b) a = 1.85, c = 0.1, 

size = 6,* X 64, at  t ime step 2000. (c) a = 1.901, c = 0.1, size = 64 × 64, at  time step 91500;  (d) a = 1.901, c = 0.1, size = 64 × 64, at 

t ime s tep  9 2 2 0 0 ;  (e) a = 1.903, c = 0.1, size = 64 x 64, at t ime s tep  100000;  (f) a = 1.6, c --- 0.2. size = 32 × 32, at t ime step !?.00: (g) 

a --- 1.95, c = 0.2, size = 32 X 32, at t ime s tep 570000; (h) a = 1.94, ¢ = 0.18, size = 64 × 64, at  t ime step 8000: (i) ~: = 193 ,  ¢ = 0.15, 

size = 64 × 64, a t  t ime step 18000;  (j) a = 1.6, c = 0.5, size = 32 x 32, at time step 5000. 
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where n is a discrete time step and i, j denotes a 
2-dimension lattice point (i, j = 1, 2, . . . .  N = 
system size) with a periodic boundary condition. 
Here the mapping function f ( x )  is again chosen 
to be the logistic map f ( x )  = 1 - ax z. 

Examples of snapshots are shown in fig. 6. 
For small c, we have again observed the transi- 

tion sequence from (i) frozen random state to (fi) 
pattern selection and to (iii) fully developed spa- 
tiotemporal chaos via spatiotemporal intermit- 
tency. 

4.1. Checkerboard pattern selection, chaotic string, 
and intermittent collapse 

For c = 0.1, a frozen random pattern is ob- 
served for a < 1.75 (fig. 6(a)). Checkerboard pat- 
tern is selected for 1.75 < a _< 1.9 (note that this 
range of parameters for the pattern selection agrees 
with the range for pattern selection in a 1-d lattice 
for the same value of coupfing ~). See fig. 6(b) for 
an example. After some iterations (104 for a lat- 
tice 64 x 64), a single checkerboard pattern covers 
the whole lattice if the size is even. The selection 
process is regarded as the pattern formation, since 
two antiphased checkerboard domains are sepa- 
rated by a string, which moves chaotically in time 
and moves around space, and disappears by colli- 
sions. 

In fig. 7, only the regions are depicted which do 
not belong to a checkerboard pattern. We can see 
the pattern formation process by the Brownian 
motion of chaotic string. Here we call the motion 
as Brownian, since the motion there obeys the 
normal diffusive behavior triggered by random 
walk [18]. The reason why we call it chaotic string 

[ r l a [  I,l~le I I l O ~ , l O i l  111 ~. 5 U - l U ~  ~ l l U W b  ~t l . l ~ ; t ~ l l l l l l l l a U k ,  

chaotic motion in the sense of positb,,e Lyapunov 
exponent, as can be seen in the calculafie~ of the 
following Lyapunov exponent. 

The chaos of a string is quantitatively measured 
by taldng a system of odd size (e.g., 7 x 7), where 
a single chaotic string which separates two anti- 

phased checkerboards always exists. In fig. 8(a) 
the maximum Lyapunov exponent and KS en- 
tropy density for 8 × 8 lattice and 7 × 7 lattices 
are shown. The discrepancy between the two is 
seen for 1.75 < a < 1.9, where a checkerboard pat- 
tern stably exists. Positive exponents for 7 x 7 
lattice show the chaotic motion of a string clearly. 

At a = a c = 1.901, the checkerboard pattern col- 
lapses spontaneously. Defects are created sponta- 
neously from a checkerboard pattern. For a--- 
1.901, these defects are not percolated. As a is 
increased further, they propagate and interact with 
other defects (percolate [19]) and form the spa- 
tiotemporal intermittency. The spatiotemporal 
pattern there is understood as the intermittent 
transition between checkerboards and random 
patterns (see fig. 6(e) for a snapshot). 

Still, the lifetime of cueckerboard pattern is very. 
long if a is close to a~. Followir, g the results in 
the one-dimensional case [11, 1], we calculated the 
dynamical form factor P(kx, ky, ~), power of the 
Fourier transform in space and time. As in the 1-d 
case, it shows the selective flicker noise I l l ,  1] for 
the wavenumber of a checkerboard pattern, Le., 

P(k,,= 1/2, k~,= 1/'2,~o) = ~ -° (9) 

( a = 1 . 9 )  while neither the spectrum P(kx= 
1/2 ,  ky ~ 0, ~)  nor P(k  x -- O, ky=  0, ~)  does show 
the divergence of low-frequency parts (see fig. 
9(a, b, c)). 

To sum up, the pattern dynamics for c = 0.1 is 
essentially understood as the extension of pattern 
dynamics in the 1-dimensional logistic lattice as 
fo~ the transition sequence, zigzag (checkerboard) 
pattern selection, Brownian motion of defects 

lected pattern. 
Recently Nasuno et al. I25] have performed a 

beautiful experiment on the collapse of a grid 
pattern in the electric convection of liquid crystal. 
They have found the intenrfittent collapse of the 
grid pattern and the selective flicker noise for the 
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Fig. 7. Brownian mot ion  of  chaoti~ string: Only a lattice point which does  not belong to a checkerboard pattern is depicted. Lattice 
size = 128 × 128: a = 1.8, c = C.t. (a) Time step = 96; (b) 416; (c) 18912. 

wave°umber for the grid pat°err, (with a = 1.9). 
Our observations in 1-d and 2-d logistic lattices 
show a good similarity with their restdts. 

4.2. 2 x 1 pattern selection 

For e = 0.2, we have again seen the frozen ran- 
dom pattern (fig. 6(f)), pattern selection, and fully 
developed spatiotemporal chaos. Here the selected 
pattern is a 2 x 1 unit (see fig. 6(g)). In the selec- 
tion of 2 ".'. 1 unit, the transient time necessary for 

the pattern formation is much longer than that for 
a checkerboard pattemo Indeed, in fig. 6(f), after 
570000 steps, still a single domain has not yet 
covered the whole lattice, and a domain boundary 
is slowly moving. This slow pattern formation 
pr~ , ' , ~ee  ;e d . ~  ~ *h~  A _ f ~ l d  c l ~ o o n ~ r ~ o v  n f  n t t r n ~ t n r  

( t w o  types of phase of oscillation, and horizontal 
or perpendicular roll struct~re). The formation 
process is a competition among the 4 types of 
domains. This kind of pattern was first noted in a 
phase transition in 2-dimensional stochastic cellu- 
lar automata [30]. 
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Here again, chaos is suppressed by the pattern 
selection process. See fig. 10 for the change of 
maximum Lyapunov exponent and KS entropy 
density. Suppression of chaos is seen in the KS 
entropy density more clearly than in the maximum 
Lyapunov exponent. This is because the pattern 
selection is not complete. In fact, the motion of a 
boundary between two different 2 x 1 domains 
gives some positive Lyapunov exponents, which 
masks the decrease of maximal Lyapunov expo- 
nent. The number of positive exponents, on the 
other hand, is reduced drastically by the pattern 
selection, since the motion within a cluster of 
2 x 1 with the same phase and direction is 
quasiperiodic (or with a slight chaotic modulation). 
Thus the KS entropy density is reduced by the 
selection. 

As the nonlinearity is increased, collapse of the 
pattern by spatiotemporal intermittency again oc- 
curs. Here we note that the existence of 4-fold 
degeneracy strongly suggests the first order transi- 
tion, which is true in a 2-dimensional stochastic 
cellular automaton [30]. 

In the coupling between 0.1 and 0.2 (e.g., 0.15), 
the competition between the checkerboard and 
2 x 1 is seen, which leads to the intermittent col- 
lapse of the two patterns (pattern competition 
intermittency) (fig. 6(h)) or to the formation of 
chaotic string with 2 x 1 structure in the checker- 
board cluster (fig. 6(i)). These are again similar to 
the observation in a 1-d lattice. 

We note that the experiment by Nasuno et al., 
mentioned in the last subsection, also shows the 
competition of checkerboard ("grid") and 2 x 1 
structure [25]. 

Fig. 8. KS ent ropy density (a) and maximal Lyapunov expo- 
nent (b) as a funct ion of a for 2-dimev.sional logistic lattice of 
~ " ~  ° ! , .  v ~ v p  V,A'.,.'L ~ ~ . ~ .  u,,. slzc 7 x 7 x"X'v J ""'n'a 8 v Q ~ ,,~,h, _--_ n 1 Note the discrep- 
ancy for 1.74 _< a _< 1.90, where a checkerboard pattern is se- 
lected. For  the lattice of 7 x 7, there is a chaotic sning which 
~eparates the two neighboring domains out of ph~tse, which 
gives addit ional  positive Lyapuaov exponents. Note that the 
motion of checkerboard is pe, iodic or quasiperiodic for 1.74 < 
a _< 1.81. In the following figures Lyapunrw exponents are 
calculated through the products of Jacobi matrices ¢,f the time 
step 2000 to 2500, starting from the random initial conditions. 

4.3. Absence of a frozen pattern for stronger 
coupling 

For larger couplings such as ~ > 0.3, we have 
observed neither a frozen ~andom pattern nor a 
pattern selection. A domain is unstable and a 
domain boundary moves in time till a single do- 
main covers the whole lattice (fig. 60)). 
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Change of Lyapunov exponents with the pa- 
rameter a is smooth (fig. 11). Lyapunov spectra 
have a smooth shape for all a (fig. !2). From a!! of 
'these results we can conclude that there are no 
pattern changes for strong coupling regimes in a 
2-dimensional lattice (see also [27]). 

The reason for the absence of frozen pattern is 
thought to be as follows: By the diffusive cou- 
pling, the domain boundary between two frozen 

patterns has a tendency of ,diffusive motion. On 
the other haad, the motion in a domain is more 
stable than the bounda~  (recall the," x(i ,  j )  at a 
domain boundary takes a value around the unsta- 
ble fixed point of a logistic map), which leads to 
the tendency towards the preservation of a do- 
main and the: pirating of a boundary. The ratio of 
the former tendency to t~e .~.,.,~ increases with e 
and with the dimension of a lattice. Here the 
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Fig. 10. KS entropy density (e) and maximal Lyapunov expo- 
nent (,x) as a function of a for 2-dimensional logistic lattice of 
the size 10 × 10 with c -" 0.2. In the parameter region between 
the arrows, pattern selection of 2 × 1 occurs. 
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Fig. 12. KS entropy density (@) and maximal Lyapunov expo- 
nent (zx) as a function of a for 2-dimensional logistic lattice of 
the size 10 x 10 with ¢ = 0.4. Note the smooth increase with a, 
which is different from the results for c = 0.1 ~ d  c = 0.2. 
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Fig. 11. Lyaptmov spectra for the 2-dimensional logistic lat- 
tice of the size 10 × 10 with c = 0.4, a -- 1.55, 1.65, 1.75, 1.85, 
and 1.95 from the bottom to top. 

est imate  of the former boundary effect can be 

carried out as in the usual estimate of surface 

tension,  which leads to M ~ -  1/a~ for a domain  of 

size M, for a d-dimensional  lattice. For d > 1, a 

smal ler  domain has a smaller stability. Thus for a 

lattice with a d imens ion  _> 2, it is expected that 

a frozen random pattern or frozen pattern selec- 

t ion is unstable, for a stronger coupling. From our 

numerical  results, i;. can be concluded that this 

threshold coupl ing lies around c---0.35 for our 

2-dimensional  lattice with a nearest-neighbor cou- 

pling. 

This fca~urc ( i - s tabi l i ty  of frozen ra~d~,~ 27'. 

tern and nonexistence  of  frozen pattern selection) 

distinguishes the behavior in a 2-d lattice from 

that in 1-d. 

S. Designing fluid dynamics  wit~ CML? 

One  difference between Nav ier -S tokes - type  

equation and our diffusively coupled map lattice 
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lies in that the nonlinearity in the former arises 
from the coupling term as is typically seen in the 
convective term in Navier-Stokes equation, while 
in the diffusively coupled map, the coupling term 
acts as a smoothing effect. Here we consider a 
model with nonlinear coupling, which has some 
similarity with a turbulent behavior in Navier- 
Stokes-type equation. 

5.1. Soliton turbulence in a convective coupling 
model 

Recalling the success of separation of procedure 
in the diffusively coupled map lattice model, we 
consider a model which consists of the following 
three procedures: 

(1) Convective couplh-lg (corresponding to the 
- ( o V  )v term in Navier-Stokes equation). 

(2) Diffusion-type spatial average, which takes 
the same form as the diffusively coupled map 
lattice (corresponding to the rV2v term in 
Na" :er-Stokes equation). 

(3) Cut-off for high velocity: If we use only the 
above two procedures, (1) and (2), the system 

exhibits a divergent behavior to infinity or, other- 
wise, is attracted to a trivial behavior like a fixed 
point. In order to remove this divergence and to 
take into account of the dissipation, we introduce 
a cut-off procedure. This is easily accomplished by 
x ' ( i )= f ( I x ( i ) l ) . x ( i )  with monotonically de- 
creasing function f ( x )  with f(0) = 1 and f(oo) = 
0. Here we take f ( x ) =  exp(-x2/c) .  

Combining these three procedures, our coupled 
map lattice is given by 

(i) 

(n) 

(m) 

. ' ( i )  = x . ( i )  + ( x . ( i -  1) 

- x . ( i + l ) ) x . ( i ) ,  (10) 

~"(i)  = (1 - , ) x ' ( i )  + , / 2 ( x ' ( ~ -  1_) 
+ x ' ( i  + 1)), (11) 

~.+~(~) -- ~xp ( -  ~"(~)~/~)x"(~).  (1~) 

The evolution x.(i) ~ x.+l(i, j)  consists of the 
successive operation of the procedures (I), (II), 
and (III). 

This model includes two parameters, c and c, 
corresponding to the cut-off (related to the inverse 

J 
T I 

space (i) " space (i) 

Fig. 13. Temporal evolution of pattern for the 1-dimensional convective coupling model with periodic boundary, condition: c = 300, 
= 0.01, ~ =  100, starting ~vith a random initial condition, x,(~ ) four 100'0-5000 (left), 5000-9000 (fight) time steps is plotted per 16 

steps. 
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of damping) and diffusion. As c is increased, the 
system starts to explore a region with larger non- 
linearity. 

As c is increased, the following change occurs 
(for periodic boundary condition): 

(1) The attractor is a "dead" state (i.e., x ( i )  = 0 

for all i). 
(2) The model exhibits a very long transient as 

"soliton turbulence" and finally is attracted to a 
dead state. If the size is larger this transient can be 
longer [28, 21, 22]. Also an addition of a small 
amount of noise makes this transient much longer. 

(3) Soliton turbulence: We can see intermittent 
change among dead state, travelling of a localized 
wave ("soliton") and chaotic bursts as an attrac- 
tor. Soliton turbulence has first been found in a 
class of cellular automata [28, 29] and a coupled 
circle lattice [14, 4]. 

(4) Developed turbulent state: For larger c, no 
simple structure is observed. 

The soliton turoulence here consists of the fol- 
lowing r, rocesses (see fig. 13 for a temporal, evolu- 
tion of a pattern and fig. 14 for spatial derivative 
plots): 

(1) Chaotic nucleus: By the nonlinear process 
(I), i:ahomogeneity in space is enhanced and then 

hits the cut-off and decays. This process repeats 
chaotically (recall that the chaos is generated by 
a process of stretching and some saturation 
(folding)). Here we call it "nucleus", since this 
localized structure is a nucleus which emits some 
solitons. 

(2) Irregular emission of solitons from the 
chaotic nucleus. 

(3) Travelling of solitons: In our model, the 
velocity of a soliton depends on its amplitude of 
solitons and its direction of the propagation is 
determined by the sign of x( i)  of a soliton. Since 
our model includes the cut-off for high velocity, 
the soliton loses its velocity and amplitude gradu- 
ally. 

(4) Collisions of solitons: By a collision two 
solitons form a chaotic nucleus or pass through or 
show the absorption, depending on their ampli- 
tudes and phases of collisions. If two colliding 
solitons have different directions, a pair-annihila- 
tion is also possible. 

In our model we have seen the intermittent 
change between chaotic nucleus and a quiescent 
state (x = 0), in a wide parameter range. The time 
series at a giver~ lattice point shows the intermit- 
tent change between a quiescent state and chaotic 

I I 

:. I 

I 

' ' 

~. . . . . .  a _  .~,',_i k..!,._.. 

2 0 0 0  

I l l  • I I 

: ', ~', 't l ; ~ ~.~,~.~lr.~. '~ t , • k ', 

• , ~; ~ '  ~ ' . ~ I ' ~ ' ,  ~ ', ' , ' \  .IJ~- 

: ml BI I . I I~ I i I 

~II| II L I • ~ ! ( I ,,, , , - ,  ' , , '! ' .  

' i l  i ' ' ' ' :  ' " ' . . . .  

, ' , ~ ~ ~ ,  , , ~  ~ ,  !~ , , • 

', ~t'2!~, '. t r a in  ',}, ', i ' |  
I I , ~ & i ! i ,  ~: I I 

k__._LL£LL__ _ S - - - ~ J - ~ ' ; A  J,-~--.--L . . . .  k _ J  
. .  

t ime ( per  32 steps ) | ~ O 0 0  

Fig. 15. Same figure as fig. 14 except the boundary condition: Here fixed boundary to x(0) = 10.0 at k i t  end, and free at right end 
x( 3r + l) = x (N) .  e = 0.01, c = 250. For 2000- i 8 (~00 time st~ps plotted per 32 steps. 
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oscillation. 
We note that the mechanism of the turbulence 

here consists of the formation of chaotic nucleus 
by the amplification of a small disturbance from a 
homogeneous state, its saturation by the damping 
and return to a homogeneous state. A similar 
mechanism for turbulence has recently oeen pro- 
posed as homoe!imc excursions for a two-dimen- 
sional forced, damped, nonlinear Schr~dinger 
equation [31]. 

If we use a fixed boundary condition at one end 
and a free boundary at the other end, we can 
construct a situation similar to an open flow ex- 
periment. In this case, some solitons are emitted 
to downflow from the chaotic region at the upper 
flow. The chaotic region changes its size with time, 
and behaves like a boundary layer in a fluid flow 
(see fig. 15). 

5.2. 2-dimensional flow 

The model (I)-( lI l )  is straightforwardly ex- 
tended to a flow in a two-dimensional system, by 
taking a two-dimensional vector v(i, j )  = 
(x(i, j), y(i, j)) instead of the scalar quantity on 
a 2-dimensional lattice; (i, j ) .  The procedure (i) is 
replaced by 

0 9  j )  = j) + 1, j) 

j -  a) 

j +  

(v) j )  j )  + j )  

,,( 4 j )  -x.~i 1, j ) ) y . . : ( , .  

+ ( y . ( i , j - 1 )  

-x.(i ,  j + 

while (II) is replaced by 

(II') x"(i,  j ) -averageof  x'(i, j} 

= for 13 neighbors ((i  + 1, ] _+ 1), 

( i±2 ,  j ) , ( i , j + 2 ) } ,  

L ,, 

- . .  , , . .  . . . .  . . . . . . . . . .  , . . . . . . . . .  .~ X ,~ ~ I 
- - , ~ , ,  . . . . . . . . . . . . . . . . . . . . . . . . . . .  " ,  . . . . . . . . . .  l t ~ x ~ . x x x .  
.'~xx_~/' ' , ) t, .... ~-- ........ ,/,, ',, ¢,- ..... -~-~---~-~w ~ 1 
- 2~ ~ } - ~ " : = ' - ; ' > / / l  11 I 1 | • ~ ' ' ~ : "  ....... ' ~ t l l ~ ' "  " - ' ' " ' - " " - " %  

. . . .  "~ '~ ' I ,  z~xX,~"~.N: ' " ~ ' ~ ' ~  " ~ . "  ' ~ ~ t , "  . . . . . . .  ~, ,...=.-,~ .... .'~";.-¢ " ~  . ~ ' . ~ "  t " , ~ , , "  ....... ~.~{ 

. ~ z ~  - x  ~ ' ~  , ~ x x _  , - x  b , ' ~ " , , ~ , , "  . . . . . . . . .  " - - ' - - "  ~ I: 

--- "~ ~-'-~ I . zz , - , x .~ - , , ' , - , , - , ,  , -- ,,Ill ">" ~'~"~'" "'{-~,'~I -" ;;~-,] r, > :~.~. '::,' ~ ,~ ~::-:~: ",t~:::: . . . .  ).~. >.~.>.,.,' ,~.-- 
:~1t ''-r'': tl '''~" ''" '-;"" . . . . . . . .  ;"I""- . . -z  ,.,',~x~'.~ , . z z z , :  " , ' , "  ~ "  , , ' ,  " . . . .  " ' - ~  t, ~ -  

, ~ (.( .... , ' ,  ,.i,~<_= ' rz: ,- , . , . :~ z . II ,. ¢ :~,,-,- ,, .~ ~- ~ . , . . ~  

_Z' ,, ,,'.~,~,",,~.~.~ \ ' ~ . ~ x  .) z , '~ ' , , , , -e~,/[  } .~XS;.kll T [ [ ~  

, ., ~.;..::.~,~.~ -,-.., 

, , ,  ~,. :zz ~ ' . , ,  . t l  ~ :  

"~ " ' , 2 ~ t t ~  

' h*. / . / . - z z ~ t .  . 

--4::.  z ~ r=<- -<  
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~ _  ~ ~.~' 
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. . . . . . . . . . . . . . . .  '~:. t ~ "  q: -':W .~'~" ~ . . .  :..: ...... :: ~-':z v-,~.~: ----=~<zz,"-- 

k,. . . . . .  :: i" 

Fig. 16. Snapshot  for the 2-dimensional convective coupling 
model  ( I ' ) - ( I I I ' ) :  Left  b o u n d a r y  is fixed at ( r E , 0 )  and right 

b o u n d a r y  is free. Top and bo t tom art, rigid, i.e., (x, y )  = (0,0). 

Lat t ice  size is 63 x 48. (a) v L = 3.0, c =  150, t ime step = 609: 

(b) v e = 2.2, c =  3q0, t ime step = J281. 

and (III) by 

(Equation for y(i ,  j )  is just similar.)* 
Examples of snapshotr are shown in fig. i6, 

where the boundary condition is fixed at the !eft 
end and free at the right end, wifile it is fixed to 
zero at the top and bottom. We car:, see the 

*The division by 2 in x.-'~-'~, is just  a mat ter  e f  convent ion,  since 

the factor can be scaled out  and be absorbed into the cu tog  c. 
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formation of shocks, vortices, sinks, and sources 
(since we have not imposed the "incompressibil- 
ity" condition in our model). The time series of a 
flow at a given lattice point shows the intermittent 
behavior, leading to the flicker-like temporal pow- 
erspectra near the onset of chaotic motion. 

decays to the fixed point or diverges to the 
infinity. Our cut-off procedure is a brute-force to 
suppress the divergence and preserve these "non- 
trivial stages as attractors. In a real fluid, this 
critical state is thought to be preserved not by this 
artificial method but via the conservation law [33]. 

5.3. Drawbacks 

We have to admit that the model (I ')-(III ')  is 
still a premature attempt towards the modelling of 
hydrodynamics, compared with the expanding field 
of lattice gas hydrodynamics [32]. Drawbacks in 
our model are the existence of artificial cut-off 
term (III) and a very rough treatment of the 
conservation law. In fact, .our model has a conser- 
vation law only in the limit of small diffusion 
(c ~ 0) and c ~ oo (see fig. 14(b) for a case with 
very small c and large c). One possible refinement 
of our model is to introduce another quantity 
corresponding to the density and to take into 
account a discrete version of the equation of con- 
tinuity. 

The strategy we have adopted here is to con- 
struct an artificial fluid dynamics model based on 
simple units corresponding to the convective term, 
diffusion, and damping. The existence of shocks, 
vortices, sinks, and sources inthe present model 
suggests that the existence of these objects does 
net depend on the details of the equation, but just 
on the existence of the above units. We have not 
seen, however, a global parameter range in which 
the model exhibits the power-law for co.elation 
function, as is seen in the inertial range in real 
fluid. This drawback is thought to come from the 
lack of conservation law. To proceed a realistic 
construction of fluid dynamics model, a detailed 
consideration on this point is required. 

T -  ~ i . l _  • 1 • .I  

x~ rue CUt-Off is nOt mcluflefl,  o u r  m o d e l  s h o w s  a 

trivial fixed poh~t state (constam roy,, in the case 
of open flow boundary) or divergence to infinity, 
depending on the parameter. Near the critical 
point between these two phases, a state exhibits 
the soliton turbulence (for l-d) or vortex turbu- 
lence (for 2-d) in a transient time regime, ~nd then 

6. Summary and future problems 

Pattern dynamics in a one-dimensional diffu- 
sively coupled map lattice is reported, with the 
emphasis on the transition between a frozen ran- 
dom pattern and a pattern selection. In a 2-dimen- 
sional lattice, the pattern dynamics has turned out 
to be quite similar to the 1-dimensional case if the 
coupling is small, while no frozen pattern is seen 
in the strong coupling regime. 1 ~ s  is thougm to 
be due to the dominancy of the diffusion effect at 
the domain boundary, which is simply estimated 
as M ox-1/d) for a dimension d and a domain of 
size M. Thus it is expected that a frozen pattern is 
much harder to appear in a 3-dimensional lattice 
Of course, more elaborated argument analogous to 
the Peierls' in an equilibrium pkase transition 
should be made in future. 

Our results in 1-d and 2-d lattices show a re- 
markable similarity with recent experiments on 
B~nard convection [20], electrical convection in 
liquid crystal, [25], and Faraday instability in wa- 
ter wave [26]. (see also [34-36] for experiments on 
the spatiotemporal ,chaos which may have some 
connections with our simulation here). The simi- 
larity may not be surprising if we think that our 
model is just a prototype of a system with chaotic 
mechanism and ~pa~ia! diffusion. In future, quan- 
titative comparison wi~' -'nr model and their ex- 
periments should be made. 

in section 5, we have considered some models 
with convective coupling. The ;~oexistence of soli- 
tons nr vortices and turbulent burst is noted irL the 
transition parameter range, where the intermktent 
change among these patterns is observed. This 
give~ us a hope, that, if suitably refined, ~,;ome 
coupled map lac.ice for hydrodynamics may be 
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constructed. This construction is of interest not 
only from a dynamical system theoretical but also 
from a practical viewpoint (note that all the simu- 
lations here are carried out by SUN-computer, not 
by CRAY). 

Use of coupled map lattice for physical phe- 
nomena have just been started. One of the best 
success in this application has been carried out by 
Oono and Puri for the problem of spinodal de- 
composition [37]. Indeed, their medel gives a much 
faster simulator than the comentional Monte 
Carlo method. A similar modell~ag is possible in 
the roll formation in convection, crystal growth, 
complex Ginzburg-Landau equation, and so on. 
Also the use of coupled circle lattice for the 
Josephson array and charge density wave will be 
promising. For the application, our guiding princi- 
ple is to decompose the dynamics into some parts 
and separate the procedure to local parts and 
spatial coupling parts. 

Up to now there is no relevant theory on spa- 
tiotemporal chaos. The argument on the preim- 
ages in sect ion 1 makes the use of 
Perron-Frobenius operator possible [38]. With the 
use of the standard argument of the decomposi- 
tion into subsystem and heat bath, we can con- 
struct a mean-field-type approximation on the in- 
variant measure [39].~It is also important to search 
for a statistical mechanical theory based on this 
operator as has been successful in a low-dimen- 
sional chaos [40, 41]. 

Through this statistical mechanical study, we 
hope to understand the transition among pattern 
dynamics in spatiotemporal chaos. 
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