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Coupled map lattices are investigated as a model for spatiotemporal chaos. Pattern dynamics in diffusively coupled logistic
lattice is briefly reviewed with the use of power spectra, domain distribution, and Lyapunov spectra. Mechanism of pattern
selection with the suppression of chaos is discussed. Pattern dynamics on a 2-dimensional lattice is shown. In a weak coupling
regime, a similarity with the one-dimensional case is found; frozen random pattern, pattern selection, Brownian motion of a
chaotic string, and intermittent collapse of the pattern with selective flicker noise. In a strong coupling regime, frozen pattern
is found to be unstable by the surface tension, which is in contrast with the one-dimensional case. Convective coupling model
is introduced in connection with the fluid turbulence of Navier-Stokes type. Soliton turbulence and vortex turbulence in the

model are reported. Physical implications of coupled map lattices are discussed.

1. Introduction

Modelling and characterization of complex phe-
nomena in space—time is important in the study of
turbulence in a general sense, not only in fluid
dynamics but also in solid-state physics, optics,
chemical reaction with diffusion, and possibly in
biology. Tius kind of phenomena is called as
“spatiotemporal chaos”, in an attempt to under-
stand it on the basis of knowledge on dynamical
systems theory, especially, chaos.

The author has been investigating spatiotempo-
ral chaos under the following strategy:

(1) oroposition of a simple and essential model
for spatiotemporal chaos;

(2) global search of qualitative pattern dynamics
using various visualization techniques [4] and ex-
ploration of the universal scenario for pattern
dynamics [1};

(3) quantitative description of the change of
pattern dynamics with the use of spatiotemporal
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power <pectra, domain distribution as order pa-
rameters, Lyapunov spectra and vectors, co-mov-
ing Lyapunov spectra, and so on [1];

(4) consuuction of a theory for spatiotemporal
chaos based on the statistical mechanics for chaos
and for a system with many degrees of freedom
(e.g., spin systems), including an attempt towards
a marriage between Perron-Frobenius operator
and mean field theory;

(5) application to physical, chemical and biolog-
ical systems: e.g., Bénard convection, convection
in liquid crvstals, Taylor vortex, open flow in fluid
systems, chemical reaction with diffusion, some
solid-state systems such as Josephson junction ar-
ray, charge density wave, spin wave turbulence,
spincdal decomposition, and possibly some bio-
logicai networks.

Here we mainly focus on (2) and (3) and briefly
refer to (4) and (5). The model we use here is a
coupled map lattice (CML), which has been intro-
duced in the reasons listed in [1-4], and has been
investigated in various contexts recently [5-12].

A CML is a dynamical system with a discrete
time, discrete space, and continuous state [1-5]
(see also, [7-12]). A modelling of physical phe-
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nomena by CML is based on the following steps:

(A) Decompose the phenomena into indepen-
dent units (e.g., convection, reaction, diffusion,
and so on).

(B) Replace each unit by the possible simplest
parallel dynamics on a lattice: the dynamics con-
sists of a transformation on each lattice point or a
coupling term among suitably chosen neighbors.

(C) Carry out each unit dynamics (“ procedure”)
successively.

The following diffusively coupled model has
been frequently investigated:

Xpe1(i) = (1 =€) f(x,(i))
+e/2[ f(x,(i +1)) + f(x,(i = 1))],
(1)

where n is a discrete time step and i is a lattice
point (i=1,2,..., N=gsystem size) with a peri-
odic boundary condition. Extensions to a higher-
dimensional lattice and to a model of a different
type of coupling (“convective coupling”) will be
studied in sections 4 and 5. Here the mapping
function f(x) is chosen to be the logistic map:

f(x)=1-ax2 (2)

In this model, the independent procedures in
(B) are local transformation (eq. (2)) and the
diffusion process (eq. (1)), which are separated
parallel procedures. The model consists of the
sequential repetition of these two procedures. This
argument leads to the following equivalent form
with the above model:

Xns1(1) =F((1 =~ €)x, (i)
+e/2(x, (i +1) +x,(i — 1))). (3)

The separation of procedure makes it possible
to obtain inverse images of the dynamics. The
preimages of our dynamics is constructed as fol-
lows: Note that the inverse process is just the
combination of (1) the inverse of spatial average
and (2) the inverse images of local dynamics. The
first process is just a calculation of the inverse of

the tridiagonal matrix for diffusive coupling:

. exp (2ikw(/—j)/N)
()=T/mE HEEI) ()

= ;aﬂx(l)- (4)

The second process is just x”(j)=f"Yx'(j))
where f~1(x) is inverse function of f(x), (for the
logistic map (2) it is given by + m ).
Thuz the preimages are given by x,_,(j)=
f~'Z,a;x,(1)). This simple procedure for the
preimages is essential in the construction of statis-
tical mechanics by Perron~Frobenius operator.

Another important feature in this model is as
follows: if a state x* is a stable periodic cycle for
a single map x’=f(x), then the homogeneous
solution x(i) = x* is alsc stable, for “physical” ¢
values, ie., € <2/3. If we took other coupling
forms, this stability of a homogeneous pciiudic
state would not be guaranteed.

A perturbation theory to derive a CML from a
coupled ordinary differential equation was carried
out by Yamada and Fujisaka [7], which leads to a
model (1) within a certain condition. Another
derivation of CML from a partial differential
equation is the use of interaction term F(x(r)) X
3.,8(¢ — n), as is frequently used in the derivation
of standard mapping from a Hamiltonian system
[13]

A construction of a toy model for fluid dynam-
ics using this separation of procedures is intro-
duced in section 5 where successive procedures are
convection, diffusion, and damping.

2. Brief review on pattern dynamics

Here we briefly review phases of the one-dimen-
sional logistic lattice (1). For detailed accounts see
[1]. The essential change of a spatiotemporal pat-
tern in our model with the increase of nonlinearity
is (i) frozen random state, (ii) pattern selection
and (iii) fully developed spatiotemporal chaos (see
fig. 1 of [1] for the phase diagram). Change of each
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Table I
Characterization of phases by the quantifiers. See text for the detail.
Quantifiers Temporal Spatial Pattern Pattern Dynamical
power power distribution entropy entropy Lyapunov KS
Phase spectra spectra Q(k) S, Sa spectra entropy
Frozen peaks + broad  exp(—corst.Xk)  Q(k)#0 large 0 small stepwise  positive
random band noise (fig. 2(a)) for many k’s (almost structure
pattern (fig. 1()) (fig. 3(a)) constant)
Pattern peaks + broad  few peaks few Q(kYs#0 small 0 large stepwise small .
selection band noise (+ noise) Q()=0for!/>1, (decreasing) structure (decreasing)
(fig. 1(b,c)) (fig. 2(b)) (fig. 3b)) (or 0)
Fully broad band exp(—const. X k 2y Qk« large large smoo.th lme )
developed noise (fig. 2(d)) exp(—const. X k) (increasing) S§4=S, function (increasing)
turbulence (fig. 1(d)) (fig. 3(c))

state is characterized by power spectra, distribu-
tion of domains, entropy, and Lyapunov spectra.
Results are summarized in table I and figs. 1-3.
Here temporal power spectra are the power of
Fourier transform of a time series of x(i):

2

P(w) =

( 5 xa(i)emine| | ) (5)

n=ty

For a frozen random pattern, the peak at w=1/2
1s seen as 1s expected (fig. 1la), since a single
logistic map exhibits a period-2 band motion for
this parameter range. In the pattern selection
regime, still the peak (and some other peaks for
some parameters) is observed (fig. 1(b, ¢)), which is
due to the regular motion by the pattern selection
mechanism. (Note that in this parameter value of
a, a single logistic map cannot show the motion of
period-2 band.) In the fully developed regime, the
peak no more exists and is replaced by some
Lorentzian band noise around it and ~round w =0
(fig. 1(qQ)).
Spatial power spectra are obtained by spatial
Fourier transform of a pattern:
) -

2
j=N

(I/N) X x,(j)erV

i=1

|

In the frozen random phase, they show roughly
exp (—const. X k) (fig. 2(a)), which is due to the
domain distribution with a long tail. In the selec-
tion regime, a diffuse peak at k=kp appears,
corresponding to the inverse of the selected do-
main size (fig. 2(b)). As the nonlinearity is in-
creased the broad band around k=0 develops
(fig. 2(c)), till they show the form given by random
generation of domains (fig. 2(d)) in the fully devel-
oped regime.

Domain size is defined as the length of spatial
sequence in which (x,(i) — x*) has the same sign
[1], where x* is an unstable fixed point of the
logistic map, which separates the two-baid mo-
tion: x*=(v1+4a —1)/(2a). The distribution
function Q(k) of domains is a probability distri-
bution of the domain size sampled over the total
lattice. For a frozen random pattern, there are a
lot of possible domain sizes (fig. 3(a); maximum
domain size (43 in the figure) increases with the
increase of total lattice size), while only few do-
main sizes are possible in the pattern selection
regime (fig. 3(b); note that for domain sizes larger
than 12, the distribution vanishes, which is
invariant with the change of system size). In the
fully developed regime, Q(k) behaves as
exp(—const. X k), which clearly illustrates the
random generation of domains (fig. 3(c)).
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Fig. 1. Semilog plot of temporal power spectra P(w) for the model (1.1), with ¢ = 0.3, N = 256, and starting with a random initial
condition. Calculated from 4096 time step averages after discarding 10000 transients. Averaged from 64 lattice poinis. (a) @ = 1.53:
(b) a=1.58; (¢) a=1.7; (d) a=1.83.
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Fig. 2. Scmilog plot of spatial power spectra S(k) for the model (1.1), with € = 0.3, N = 4096, and starting with a random initial
conditicn. Calculated from 10000 time step averages after discarding 10000 transienis. (a) a = 1.53; (b) a=1.69; (¢) a = 1.74; (d)
a=1.94
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Fig. 3. Semilog plot of pattern distribution function Q(k) for the model (L.1) with ¢ = 0.3, ¥ = 1000 and starung wrzm r;xftt?!isvjz
initial conditions. Q(k) is calculated from “he average for 8000 steps sampled per 8 time steps, after 10000 transients () o = S48,
(N =1000); (b) a=1.57 (N =1000); (c) +=1.88 (N =4096).
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As usual, pattern entropy is defined by
—¥0(k)log(Q(k)), which characterizes a variety
of possible static patterns. The dynamical entropy
is defined by the mutual information between two
successive patterns with a given time interval (see
13)2

In a frozen random phase, pattern entropy is
rather large, and takes almost a constant value. As
the nonlinearity is increased, it shows a remark-
able decrease at the pattern selection, and again
increases in the fully developed regime. A dynami-
cal entropy vanishes at the frozen random and
pattern selection regimes. It increases in the fully
developed regime.

Lyapunov spectra are calculated from the eigen-
values of products of Jacobi matrices [6]. From
the sum of positive exponents, Kolmogorov-Sinai
(KS) entropy is estimated. In our lattice system
the density of KS entropy is a more relevant
quantifier, which is calculated by the division by
the system size N. A salient feature in the pattern
selection regime is the decrease of KS entropy
with the increase of nonlinearity.

Interesting phenomena occur at the transition
from (i) to (ii) and from (ii) to (iii) [1]. The former
is treated in the next section, while the latter is
known to belong to a class of phenomena called
“spatiotemporal intermittency” (for spatiotempo-
ral intermittency see [2, 4, 15, 16, 17, 11, 1]). Here
we note that an experiment of a Bénard convec-
tion in an annulus shows a similar behavior with a
pattern competition intermittency in our model, in
its spatiotemporal pattern, power-law distribution
of the cluster at the onset, and tempora!/spatial
power spectra [20]. This may not be surprising,
since our model is one of the simplest which has
local chaotic motion and diffusion. A possible
relation of spatiotemporal intermittency with tran-
sient turbulence [21] is discussed in [22].

3. Pattern selection: glass—crystal transition?

Here we study the mechanism of pattern selec-
tion in a little more detail.

The phenomena which occur at the pattern se-
lection regime are summarized as follows:

(1) decrease of possible domain sizes: for a <a,,
= 1.54, domains of larger sizes appear as the
system size is increased. For a>a,, there exists
an upper bound of domain size / (a) independent
of a system size, such that domains larger than
I .(a) cannot exist. /(a) depends on a and de-
creases with the increase of a. See fig. 3(b,c) for
examples of domain distribution. Decrease of the
variety of domain size is clearly seen in the de-
crease of static pattern entropy. Onset of decrease
at a =a,, is clearly seen in fig. 4.

(2) Suppression of chaos by pattern selection:
this is seen in the decrease of KS entropy at
a>a, [1}. This suggests that the chaos is sup-
pressed by the pattern selection process. A way of
viewing the temporal process of the decrease of
chaos is the use of local space-time Lyapunov
exponents, introduced by Umberger and the au-
thor [23]. Local space-time Lyapunov exponents
are calculated by the products of Jacobi matrices
for a given subsystem (size 2L + 1) over finite

Static Pattern Entropy 5,
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Fig. 4. Pattern (static) entropy as a function of a, neai the
pattern selection transition: Note the onset of decrease of
entropy at a=aj. €=0.3, N=10000 and starting with ran-
dom initial conditions. Calculated from Q(k) obtained through
1000 steps sampled per 8 time steps, after 10000 transients.
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Fig. 5. Spatiotemporal Lyapunov exponent diagram: Local space~time Lyapunov exponent for each lattice point and time is shown.
In each space-time pixel, a box is plotted whose length is proportional to the corresponding local Lyapunov exponent only if 1t is
posiiive, othierwise the pixely is left blank. Laitice size = 100. For iime steps § 10 200 X 8. Local lyapunov exponent is caiculaied by a
subspace size 3 ( L = 1) and time steps 8. (a) a = 1.54, ¢ = 0.3; here maximum of the exponent in the figure is 0.400 and the minimum
is --0.686. (b) a =1.58, ¢=0.3; here maximum of the cxponent in the figure is 0.474 and the minimum is —1.126. (¢) «=1.70.

(1) aouds

K. Kaneko / Saptiotemporal chaos in coupled map lattices

::

SR HE ST s
WAL % 35 EAR AN SER
oS SRR

L s ._.‘::.

EL R

coped— iy e

0 time ( per 8 steps ) 82

L L L

i iyt

zith2g)

) aoeds

time ( per 8 steps ) 8x200 0 time ( per 8 steps )

¢ = 0.3; here maximum of the exponent in the figure is 0.534 and the minimum is —1.208.



68 K. Kaneko / Spatiotemporal chaos in coupled map lattices

time steps T (which are fixed). To be precise, the
local space-time Lyapunov exponent at time = n,
cite=j is calculated by the products of Jacobi
matrices for [x,(j—L),x,(j—L+1),...,x,(J
+L-1),x,(j+L)] for m=n,n+1,...,n+T
— 1, where the boundary effect at x,,(j— L) and
x,,(j+ L) is neglected, that is, we calculate the
product of Jacobi matrices:

(1= ) f(xuli~L))  5F(xn(j=L+1)

m=n

In fig. 5, maximum local space-time Lyapunov
exponent is plotted in space-time for L=1 and
T=8. For a<a,, the decrease of KS entropy
stops in few steps and domain structures do not
move any more. For a > a, the region with large
positive exponents disappears successively in time
(fig. 3(b,¢)), till a region with negative exponents
is dominated.

Following questions remain to be unanswered:

(1) What causes the pattern selection? Is it
related with band merging in a single logistic
map?:

If a state in eaca domain were approximated by
a spatially homogeneous value in it, the condition
of collapse of a large domain would be given by
the band merging for a single logistic map which
occurs at a = 1.542, since states with x > x* and
X <x* can mix in the absence of period-2 band.
Our critical value a,, is very close to this value. In
fact, the state in each domain is not homogeneous,
of course, but is chaotically modulated. The above
approximate agreement of a, and the band merg-
ing point suggests that this modulation can be
neglected for the collapse of a large downain at
least for a first-order approximation.

n+T-1 %f’(xm(..’_l‘)) (1_€)f'(xm(j—L+1)) %f’(xm(j_L-"z)) 0

(2) Is the transition sharp? Is there any diver-
gence of soms quantity at the transition point?:

Although the decrease of entropy at a, shows
the behavior typical in the second-order phase
transition, we are not yet sure if our transition is
with some singularity. We have not yet had a
quantity which diverges at a = a,,. One possibility

%f’(xm(j.+ L-1) (A-&f(x.(j+L))

7

is that this pattern selection transition is similar to
the spin-glass transition. The similarity of our
transition with the glassy state and transition is
that (i) there exists a cusp in a change of some
physical quantities as a function of parameter, (ii)
the frozen state has a large number of attractors
(exponentially large te the system size), and that
(iii) there is a frozen random.ess in the state.

(3) Why is chaos suppressed? What sizes of
patterns are selected?:

A conjecture to these questions is that a pattern
with a smaller Lyapunov exponent is selected. We
have calculated Lyapunov exponents for various
domain sizes by taking a small lattice size (2-10).
Numerical results show that the domain sizes se-
lected by the pattern selection has smaller Lya-
punov exponenis. A dominant domain size has a
smaller (sometimes negative) Lyapunov exponent.

One possible interpretation for the above con-
jecture is that a domain with larger positive expo-
nents is easily collapsed by the boundary cffect
from the neighboring domains, while a domain
with smaller (or negative) exponents exhibits a
more regular motion and is stable against a
boundary effect from other domains.
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4. Pattern dynamics in a 2-dimensional lattice lattice (see also [24]). The model is given by
Xp+ 1(’ ’ .’ )
Extension of our CML with diffusive coupling =1 -)f(x,(i, j))
to a two-dimensional lattice in space is quite "
straightforward. Here we consider the simplest +e/8[ f(x, (i + 1, j)) +f(x,(i - 1, )
case, i.e., nearest-neighbor coupling on a square +f(x,(6, j+ 1)) +f(x, (6, j-1))],  (8)
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Fig. 6. Snapshot pattern for 2-dimensional lattice on a lattice point (4, j) a square with a length proportional to (x,(i. j)—0.2) is
depicted if x,(i, j)> 0.2. Otherwise it is left blank. (a) a=1.5, €=0.1, size = 64 X 64, at time step 1000; (b) a=1.85, ¢=01,
size = 64 X 64, at time step 2000. (c) a =1.901, €= 0.1, size = 64 X 64, at time step 91 500; (d) a=1.901, e=0.1, size = 64 X 64, at
time step 92200; (¢) a = 1.903, e = 0.1, size = 64 X 64, at time step 100000; (f) a = 1.6, € = 0.2. size = 32 X 32, at time step 1200: (g)
a=1.95, e = 0.2, size = 32 X 32, at time step 570000; (h) a = 1.94, ¢ = 0.18, size = 64 X 64, at time step 8000: (i) ¢ =1.93, ¢ =0.15,
size = 64 X 64, at time step 18000; (j) a=1.6, e =0.5, size =32 X 32, at time step 5000.
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Fig. 6. Continued.
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where n is a discrete time step and i, Jj denotes a
2-dimension lattice point (i, j=1,2,...,N=
system size) with a periodic boundary condition.
Here the mapping function f(x) is again chosen
to be the logistic map f(x)=1— ax2

Examples of snapshots are shown in fig. 6.

For small €, we have again observed the transi-
tion sequence from (i) frozen random state to (ii)
pattern selection and to (iii) fully developed spa-
tiotemporal chaos via spatiotemporal intermit-
tency.

4.1. Checkerboard pattern selection, chaotic string,
and intermittent collapse

For €¢=0.1, a frozen random pattern is ob-
served for a <1.75 (fig. 6(a)). Checkerboard pat-
tern is selected for 1.75 <a < 1.9 (note that this
range of parameiers for the pattern selection agrees
with the range for pattern selection in a 1-d laitice
for the same value of coupling ¢). See fig. 6(b) for
an example. After some iterations (10 for a lat-
tice 64 X 64), a single checkerboard pattern covers
the whole lattice if the size is even. The selection
process is regarded as the pattern formation, since
two antiphased checkerboard domains are sepa-
rated by a string, which movus chaotically in time
and moves around space, and disappears by colli-
sions.

In fig. 7, only the regions are depicted which do
not belong to a checkerboard pattern. We can see
the pattern formation process by the Brownian
motion of chaotic string. Here we call the motion
as Brownian, since the motion there obeys the
normal diffusive behavior triggered by random
walk [18]. The reason why we call it chaotic string
1s ithai ihe motion in a siring shows a deterministic
chaotic motion in the sense of positive Lyapunov
exponent, as can be seen in the calculaticn of the
following Lyapunov exponent.

The chaos of a string is quantitatively measured
by taking a system of odd size (e.g., 7 X 7), where
a single chaotic string which separates two anti-

71

phased checkerboards always exists. In fig. 8(a)
the maximum Lyapunov exponent and KS en-
tropy density for 8 X 8 latiice and 7 X 7 lattices
are shown. The discrepancy between the two is
seen for 1.75 < a < 1.9, where a checkerboard pat-
tern stably exists. Positive exponents for 7 X7
lattice show the chaotic motion of a string clearly.

At a=a_ =1.901, the checkerboard pattern col-
lapses spontaneously. Defects are created sponta-
neously from a checkerboard pattern. For a=
1.901, these defects are not percolated. As a is
increased further, they propagate and interact with
other defects (percolate [19]) and form the spa-
tiotemporal intermittency. The spatiotemporal
pattern there is understood as the intermittent
transition between checkerboards and random
patterns (see fig. 6(e) for a snapshot).

Still, the lifetime of ciieckerboard pattern is very
long if a is close to a.. Following the results in
the one-dimensional case [11, 1], we calculated the
dynamical form factor P(k,, k,, w), power of the
Fourier transform in space and time. As in the 1-d
case, it shows the selective flicker noise [11, 1] for
the wavenumber of a checkerboard pattern, i.e.,

Plk,=1/2,k, =12, 0)=0w"" (9)

(a=19) while neither the spectrum Pk, =
1/2, ky = 0, w)nor P(k, =0, ky = (}, w) does show
the divergence of low-frequency parts (see fig.
9(a,b,c)).

To sum up, the pattern dynamics for ¢ =0.1 is
essentially understood as the extension of pattern
dvnamics in the 1-dimensional logistic lattice as
for the transition sequence, zigzag (checkerboard)
pattern selection, Brownian motion of defects

{(strings), and its intermittent coliapse of the se-
lected pattern.

Recently Nasuno et al. [25] have performed «
beautiful experiment on the collapse of a grid
patiern in the electric convection of liquid crystal.
They have found the intermittent collapse of the
grid pattern and the selective flicker noise for the
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wavenuinber for the grid patterr (with a=1.9).
Uur observations in 1-d and 2-d logistic lattices
show a good similarity with their results.

4.2. 2X 1 pattern selection

For ¢ = 0.2, we have again seen the frozen ran-
dom pattern (fig. 6(f)), pattern selection, and fully
developed spatiotemporal chaos. Here the selected
pattern is a 2 X 1 unit (see fig. 6(g)). In the selec-
tion of 2 < 1 unit, the transient time necessary for

the pattern formation is much longer than that for
a checkerboard pattern. Indeed, in fig. 6(f), after
570000 steps, still a single domain has not yet
covered the whole lattice, and a domain boundary
is slowly moving. This slow pattern formation
process is due (o the 4-fold de

avew LS

generacy of attractor
(two types of phase of oscillation, and horizontal
or perpendicular roll struct:re). The formation
process is a competition among the 4 types of
domains. This kind of pattern was first noted in a
phase transition in 2-dimensional stochastic cellu-
lar automata [30].
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Fig. 8. KS entropy density (a) and maximal Lyapunov expo-
nent (b) as a function of a for 2-dimensional logistic lattice of

thcsize 7X 7 (/\\ and 8§ X g un\ with ¢ == 0.1, Note the rhcr‘r:-n-

ancy for 1.74 < a < 1.90, where a checkerboard pattern is se-
lected. For the lattice of 7 X 7, there is a chaotic string which
scparates the two neighboring domains out of phuse, which
gives additional positive Lyapuncv cxponents. Note that the
motion of checkerboard is pe:ivdic or quasiperiodic for 1.74 <
a<181l. In the following figures Lyapunnv exponents are
calculated through the products of Jacobi matrices of the time
step 2000 to 2500, starting from the random initial conditions.
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Here again, chaos is suppressed by the pattern
selection process. See fig. 10 for the change of
maximum Lyapunov exponent and KS entropy
density. Suppression of chaos is seen in the KS
entropy density more clearly than in the maximum
Lyapunov exponent. This is because the pattern
selection is not complete. In fact, the motion of a
boundary between two different 2 X1 domains
gives some positive Lyapunov exponents, which
masks the decrease of maximal Lyapunov expo-
nent. The number of positive exponents, on the
other hand, is reduced drastically by the pattern
selection, since the motion within a cluster of
2X1 with the same phase and direction is
quasiperiodic (or with a slight chaotic modulation).
Thus the KS entropy density is reduced by the
selection.

As the nonlinearity is increased, collapse of the
pattern by spatiotemporal intermittency again oc-
curs. Here we note that the existence of 4-fold
degeneracy strongly suggests the first order transi-
tion, which is true in a 2-dimensional stochastic
cellular automaton [30].

In the coupling between 0.1 and 0.2 (e.g., 0.15),
the competition between the checkerboard and
2 X 1 is seen, which leads to the intermittent col-
lapse of the two patterns (pattern competition
intermittency) (fig. 6(h)) or to the formation of
chaotic string with 2 X 1 structure in the checker-
board cluster (fig. 6(i)). These are again similar to
the observation in a 1-d lattice.

We note that the experiment by Nasuno et al.,
mentioned in the last subsection, also shows the
competition of checkerboard (“grid”) and 2 X1
structure [25].

4.3. Absence of u frozen pattern for stronger
coupling

For larger couplings such as ¢> 0.3, we have
observed neither a frozen random pattern nor a
pattern selection. A domain is unstable and a
domain boundary moves in time till a single do-
main covers the whole lattice (fig. 6())-
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Change of Lyapunov exponents with the pa-
rameter @ is smooth (fig. 11). Lyapunov spectra
have a smooth shape for all 2 (fig. 12). From al! of
these results we can conclude that there are no
pattern changes for strong coupling regimes in a
2-dimensional lattice (see also [27]).

The reason for the absence of frozen pattern is
thought to be as follows: By the difiusive cou-
pling, the domain boundary between two frozen

— L. iy

LAdA 4 kx =k,\'=O: (C) A’A = év k,; = Q.

patterns has a tendency of diffusive motion. On
the other haid, the motion in a domain is more
stable than the boundary (recall that x(i, j) at a
domain boundary takes a value around the unsta-
ble fixed point of a logistic map), which leads to
the tendency towards the preservation of a do-
main and the pinning of a boundary. The ratio of
the former tendency to the laticr increases with €
and with the dimension of a lattice. Here the
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the size 10 X 10 with ¢ = 0.4. Note the smooth increase with q,
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estimate of the former boundary effect can be
carried out as in the usual estimate of surface
tension, which leads to M/} for a domain of
size M, for a d-dimensional lattice. For 4> 1. a
smaller domain has a smaller stability. Thus for a
lattice with a dimension > 2, it is expected that
a frozen random pattern or frozen pattern selec-
tion is unstable, for a stronger coupling. From our
numerical results, ii can be concluded that this
threshold coupling lies around ¢ = 0.35 for our
2-dimensional lattice with a nearest-neighbor cou-
pling.

This icaturc (instamlity of frozen random o
tern and nonexistence of frozen pattern selection)
distinguishes the behavior in a 2-d lattice from
that in 1-d.

5. Designing fluid dynamics with CML?

One difference beiween Navier—Stokes-type
equation and our diffusively coupled map lattice
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lies in that the nonlinearity in the former arises
from the coupling term as is typically seen in the
convective term in Navier-Stokes equation, while
in the diffusively coupled map, the coupling term
acts as a smoothing effect. Here we consider a
model with nonlinear coupling, which has some
similarity with a turbulent behavior in Navier-
Stokes-type equation.

5.1. Soliton turbulence in a convective coupling
model

Recalling the success of separation of procedure
in the diffusively coupled map lattice model, we
consider a model which consists of the following
three procedures:

(1) Convective coupling (corresponding to the
—(vV)v term in Navier—Stokes equation).

(2) Diffusion-type spatial average, which takes
the same form as the diffusively coupled map
lattice (corresponding to the »v% term in
Na' .er-Stokes equation).

(3) Cut-off for high velocity: If we use only the
above two procedures, (1) and (2), the system

exhibdits a divergent behavior to infinity or, other-
wise, is attracted to a trivial behavior like a fixed
point. In order to remove this divergence and to
take into account of the dissipaiion, we introduce
a cut-off procedure. This is easily accomplished by
x'(1) = f(|x(@)|)* x(i) with monotonically de-
creasing function f(x) with f(0)=1 and f(c0) =
0. Here we take f(x) = exp(—x?/c).

Combining these three procedures, our coupled
map lattice is given by

@M %) =x,() +(x,(i-1)

_xn(i+ 1))xn(i)= (10)
(I x"()=Q-e)x'(i) +e/2(x'(i -1}
+x'(i +1)), (11)

WD) x,0,() =exp (= x7()/e)x"(i).  (12)

The evolution x,(i) = x,, (i, j) consists of the
successive operation of the procedures (I), (II),
and (III).

This model includes two parameters, ¢ and e,
corresponding to the cut-off (related to the inverse

space (i)

space (i)

Fig. 13. Temporal evol.ution.of pattern for the 1-dimensional convective coupling medel with periodic boundarv condition: ¢ = 300,
¢=0.01, N = 100, starting with a random initial condition. x,(1) for 1000-5000 (left), 5000-9000 (right) time steps is plotted per 16

steps.
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of damping) and diffusion. As ¢ is increased, the
system starts to explore a region with larger non-
linearity.

As c is increased, the following change occurs
(for periodic boundary condition):

(1) The attractor is a “dead” state (i.e., x(i)=0
for all i).

(2) The model exhibits a very long transient as
“soliton turbulence” and finally is attracted to a
dead state. If the size is larger this transient can be
longer [28, 21, 22]. Also an addition of a small
amount of noise makes this transient much longer.

(3) Soliton turbulence: We can see intermittent
change among dead state, travelling of a localized
wave (“soliton”) and chaotic bursts as an attrac-
tor. Soliton turbulence has first been found in a
class of cellular automata [28, 29] and a coupled
circle lattice [14, 4).

(4) Developed turbulent state: For larger ¢, no
simple structure is observed.

The soliton turpulence here consists of the fol-
lowing processes (see fig. 13 for a temporal evolu-
tion of a pattern and fig. 14 for spatial derivative
plots):

(1) Chaotic nucleus: By the nonlinear process
(I), inhomogeneity in space is enhanced and then

K. Kaneko / Spatiotemporal chaos in coupled map lattices

hits the cut-off and decays. This process repeats
chaotically (recall that the chaos is generated by
a process of stretching and some saturation
(folding)). Here we call it “nucleus”, since this
localized structure is a nucleus which emits some
solitons.

(2) Irregular emission of solitons from the
chaotic nucleus.

(3) Travelling of solitons: In our model, the
velocity of a soliton depends on its amplitude of
solitons and its direction of the propagation is
determined by the sign of x(i) of a soliton. Since
our model includes the cut-off for high velocity,
the soliton loses its velocity and amplitude gradu-
ally.

(4) Collisions of solitons: By a collision two
solitons form a chaotic nucleus or pass through or
show the absorption, depending on their ampli-
tudes and phases of collisions. If two colliding
solitons have different directions, a pair-annihila-
tion is also possible.

In our model we have seen the intermittent
change between chaotic nucleus and a quiescent
state (x = 0), in a wide parameter range. The time
series at a given lattice point shows the intermit-
ient change between a quiescent state and chaotic

(1) ooeds
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Fig. 15. Same figure as fig. 14 except the boundary condition: Here fixed boundary to x(0) = 10.0 at luit end, and free at right end
X(N +1)=x(N). ¢=001, c=250. For 2000~ 18000 time si>ps plotted per 32 steps.
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602,
(15)

150, time step

y=x"(i, j)exp (= (x" (0. j)°
+y"(i, j)’)/¢).
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We note that the mechanism of the turbulence
here consists of the formation of chaotic nucleus

oscillation.

homogeneous state, its saturation by the damping
and return to a homogeneous state. A similar

mechanism for turbulence has recently oeen pro-
sional forced, damped, nonlinear Schrodinger

posed as homoclinic excursions for a two-dimen-
equation [31].

by the amplification of a small disturbance from a

If we use a fixed boundary condition at one end

and a free boundary at the other end, we can

construct a situation similar to an open flow ex-
periment. In this case, some solitons are emitted

to downflow from the chaotic region at the upper
and behaves like a boundary layer in a fluid flow

flow. The chaotic region chauges its size with time,
(see fig. 15).

5.2. 2-dimensional flow

vector v(i, j) =

The model (I)-(III) is straightforwardly ex-
tended to a flow in a two-dimensional system, by

taking a two-dimensional

Fig. 16. Snapshot for the 2-dimensional convective coupling
model (I-(III"): Left boundary is fixed at (vy.0) and right

boundary is free. Top and botiom arc rigid. i.e., (x, ¥) = (0,0).

(x(i, j), y(i. j)) instead of the scalar quantity on

a 2-dimensional lattice (i,

replaced by

J). The procedure (1) is

(b) vy =22, ¢ =300, time step = 1281

Lattice size is 63 X 48. (a) vy =3.0, ¢

@) x'(i, j) = x,(i, j) + (D= -1, /)

—x,(i+1, j))x,(i, j)

+((i, j-1)

and (III) by

)

po=t
pe=t
(.1
N’

{13)

—xn(ia J+ 1))xn(i)]3

@ G, ) =n( )+ DIx.(-1, )

(Equation for y(i, ) is just similar.)*

(14)

£y

=x,(i, j+ 1))y, ()],

while (II) is replaced by

Examples of snapshots are shown in fig. 16,

where the boundary condition is fixed at the left
zero at the top and bottcm. We can see the

end and free at the right end, while it is fixed to

average of x'(i, j)

J) =

) x"(i

(v

*The division by 2 in {I'} is just a matter of convention, since
the factor can be scaled out and be absorbed into the cutofl ¢
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formation of shocks, vortices, sinks, and sources
(since we have not imposed the “incompressibil-
ity” condition in our model). The time series of a
flow at a given lattice point shows the intermittent
behavior, leading to the flicker-like temporal pow-
erspectra near the onset of chaotic motion.

5.3. Drawbacks

We have to admit that the model (I')-(IIT') is
still a premature atterapt towards the modelling of
hydrodynamics, comparad with the expanding field
of lattice gas hydrodynamics [32]). Drawbacks in
our model are the existence of artificial cut-off
term (III) and a very rough treatment of the
conservation law. In fact, our model has a conser-
vation law only in the limit of small diffusion
(e = 0) and c — oo (see fig. 14(b) for a case with
very small e and large c). One possible refinement
of our model is to introduce another guantity
corresponding to the density and to take into
account a discrete version of the equation of con-
tinuity.

The strategy we have adopted here is to con-
struct an artificial fluid dynamics model based on
simple units corresponding to the convective term,
diffusion, and damping. The existence of shocks,
vortices, sinks, and sources in the present model
suggests that the existence of these objects does
nct depend on the details of the equation, but just
on the existence of the above units. We have not
seen, however, a global parameter range in which
the model exhibits the power-law for correlation
function, as is seen in the inertial range in real
fluid. This drawback is thought to come from the
lack of conservation law. To proceed a realistic
construction of fluid dynamics model, a detailed
consideration on this point is required.

If the cut-off is not included, our modei shows a
trivial fixed poiat state (constant flow in the case

of open flow boundary) or divergence to infinity, .
depending on the parameter. Near the critical -

point between these two phases, a state exhibits
the soliton turbulence (for 1-d) or vortex turbu-
lence (for 2-d) in a transient time regime, and then

decays to the fixed point or diverges to the
infinity. Our cut-off procedure is a brute-force to
suppress the divergence and preserve these “non-
trivial stages as attractors. In a real fluid, this
critical state is thought to be preserved not by this
artificial method but via the conservation law [33].

6. Summary and future problems

Pattern dynamics in a one-dimensional diffu-
sively coupled map lattice is reported, with the
emphasis on the transition between a frozen ran-
dom pattern and a pattern selection. In a 2-dimen-
sional lattice, the pattern dynamics has turned out
to be quite similar to the 1-dimensional case if the
coupling is small, while no frozen pattern is seen
in the strong coupling regime. This is thought to
be due to the dominancy of the diffusion effect at
the domain boundary, which is simply estimated
as M@~1/9 for a dimension d and a domain of
size M. Thus it is expected that a frozen pattern is
much harder to appear in a 3-dimensional lattice
Of course, more elaborated argument analogous to
the Peierls’ in an equilibrium pliase transition
should be made in future.

Our results in 1-d and 2-d lattices show a re-
markable similarity with recent experiments on
Bénard convection [20], electrical convection in
liquid crystal, [25], and Faraday instability in wa-
ter wave [26]. (see also [34-36] for experiments on
the spatiotemporal chaos which may have some
connections with our simulation here). The simi-
larity may not be surprising if we think that our
model is just a prototype of a system with chaotic
mechanism and spatial diffusion. In future, quan-
titative comparison wit' ~ur model and their ex-
periments should be made.

In section 5, we have considered some models
with convective coupling. The coexistence of soli-
tons or vortices and turbulent burst is noted ini the
transition parameter range, where the intermittent
change among these patterns is observed. This
gives us a hope, that, if suitably refined, some
coupled map lai‘ice for hydrodynamics may be
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constructed. This construction is of interest not
only from a dynamical system theoretical but also
from a practical viewpoint (note that all the simu-
lations here are carried out by SUN-computer, not
by CRAY).

Use of coupled map lattice for physical phe-
nomena have just been started. One of the best
success in this application has been carried out by
Oono and Puri for the problem of spinodal de-
composition [37]. Indeed, their medel gives a much
faster simulator than the conventional Monte
Carlo method. A similar modelling is possible in
the roll formation in convection, crystal growth,
complex Ginzburg-Landau equation, and so on.
Also the use of coupled circle lattice for the
Josephson array and charge density wave will be
promising. For the application, our guiding princi-
ple is to decompose the dynamics into some parts
and separate the procedure to local parts and
spatial coupling parts.

Up to now there is no relevant theory on spa-
tiotemporal chaos. The argument on the preim-
ages in section 1 makes the use of
Perron-Frobenius operator possible {38]. With the
use of the standard argument of the decomposi-
tion into subsystem and heat bath, we can con-
struct a mean-field-type approximation on the in-
variant measure [39].‘ It is also important to search
for a statistical mechanical theory based on this
operator as has been successful in a low-dimen-
sional chaos [40, 41}].

Through this statistical mechanical study, we
hope to understand the transition among pattern
dynamics in spatiotemporal chaos.
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