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Traveling waves triggered by a phase slip are studied in a coupled map lattice. A local phase slip affects globally the 

system, which is in strong contrast with kink propagation. Attractors with different velocities coexist, and form quantized 

bands determined by the number of phase slips. If the system size is not far from an integer multiple of the selected 

wavelength, attractors are tori; otherwise, weak chaos induces modulation of waves or a chaotic itinerancy of traveling 

states, with a long-ranged temporal correlation. Supertransients before the formation of traveling waves are noted in the 

high nonlinearity regime. In the weaker nonlinearity there are fluctuations of domain sizes and Brownian-like motion of 

domains. Propagation of chaotic domains by phase slips is also found. 

1. Introduction 

The coupled map lattice (CML) is a dynamical 
system with discrete time (“map”), discrete 
space (“lattice”), and a continuous state. It 
usually consists of dynamical elements on a 
lattice interacting (“coupled”) among suitably 
chosen sets of other elements [l-17]#‘. The 
CML was originally proposed as a simple model 
for spatiotemporal chaos; high-dimensional 
chaos involving spatial pattern dynamics. 

Modeling through a CML is carried out as 
follows: Choose essential procedures which are 
essential for the spatially extended dynamics, 
and then replace each procedure by a parallel 
dynamics on a lattice. The CML dynamics is 
obtained by successive application of each proce- 

’ E-mail address: chaos@tansei.cc.u-tokyo.ac.jp. 

#’ For type-1 spatiotemporal intermittency, see [1,6], and 

[9]. For type-II intermittency, see [lo]; see also [II]. 

dure. As an example, assume that you have a 
phenomenon, created by a local chaotic process 
and diffusion. Examples can be seen in convec- 
tion, chemical turbulence, and so on. In the 
CML approach, we reduce the phenomena into 
local chaos and diffusion processes. If we choose 
a logistic map x:(i) =f(x,(i)) (f(y) = 1 - uy’) to 
represent chaos, and a discrete Laplacian 
operator for the diffusion, our CML is given by 

x,+,(i) = (I- c)f(x,(i)) 

+ +f(x,(i + 1)) +f(x,(i - 1)) (1) 

Here a is the parameter for the nonlinearity, 
while E is the coupling representing the diffusion 
strength. One of the merits of the CML ap- 
proach lies in its prediction of novel qualitative 
classes of behavior that are found generally 
irrespective of the details of the model. Classes 
discovered thus far include spatial bifurcation, 
frozen random chaos, pattern selection with 
suppression of chaos, spatiotemporal intermit- 
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tency, soliton turbulence, and quasistationary 

supertransients [2-71. 

Here we report a novel universality class in 

CML, which is related to recent experiments in 

fluid convection and liquid crystals: (chaotic) 

traveling waves. We study the qualitative and 

quantitative nature of the chaotic traveling wave, 

with the help of the Lyapunov analysis and co- 

moving mutual information flow. 

In our model (1)) the observed domain struc- 

tures are temporally frozen when the coupling E 

is small (~0.45) [5]. For larger couplings, do- 

main structures are no longer fixed in space, but 

can move with some velocity. For weak non- 

linearity (a < aPs = 1.55), the motion of a domain 

is rather irregular and Brownian-like, while 

pattern selection yielding regular waves is found 

for larger values of the nonlinearity (a > ups = 

1.55). These two regions correspond to the 

frozen random phase and (frozen) pattern selec- 

tion in the weaker coupling regime [5], respec- 

tively. Our novel discovery here is of non-frozen 

patterns that can slowly move. 

The traveling wave here is sustained by phase 

slips, which are localized objects with 27~ phase 

advance of oscillation. We have found that the 

velocity of the wave is proportional to the 

number of phase slips. This additivity of the 

velocity is in strong contrast with soliton type 

propagation, and will be studied in detail. 

For most parameter regimes with a > ups the 

motion of the traveling wave is quasiperiodic, 

unless there is a mismatch between the size and 

the wavelength. In the latter case we have seen 

chaotic itinerancy among traveling states with 

Table 1 

Phase diagram for our CML, with l BO.45. 

a 1.4011.. a,,(-1.55 .) 

different velocities. If a is larger than a,, = 1.74, 

we have observed quasistationary chaotic trans- 

ients before the system is attracted to regular 

traveling wave. The length of transient diverges 

with the system size. In the transient state the 

motion is fully chaotic. 

The phase diagram for the strong coupling 

regime is shown in table 1. The diagram is 

essentially independent of E for E > 0.45, except 

weak dependence of a,, on E, and the increase of 

the wavelength of the selected pattern with E. 

The organization of the paper is as follows. In 

section 2, the coexistence of traveling-wave at- 

tractors with different velocities is shown. The 

quantization of selected velocities is noted. The 

mechanism of traveling is attributed to the exist- 

ence of phase slips, as studied in detail in section 

3. In section 4, detailed studies of the basin 

volume for the traveling attractors and the pa- 

rameter-dependence of velocities are given. The 

traveling wave suppresses chaos almost com- 

pletely, as is confirmed by the Lyapunov analysis 

in section 5. When the size is not close to an 

integer multiple of the selected wavelength, 

weak chaos remains, which leads to the modula- 

tion of traveling wave or a chaotic itinerancy 

over different traveling wave states due to cha- 

otic frustration in the pattern. The long-term 

correlation of the itinerancy is studied in section 

6. The flow of information in the traveling wave 

is characterized by co-moving mutual informa- 

tion flow in section 7. Quasistationary supertran- 

sients before falling on a traveling wave attractor 

are studied in section 8. Switching among attrac- 

tors by a local input is studied in section 9, where 

a,,(-1.74) 
I + 

Traveling wave by phase slip 

(pattern selection) 

Moving 

kink 

in 

Wandering 

domain 

by 

i 

period- 
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media 
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it is shown that a single input can induce a 
transition of an attractor’s velocity and thus 
affect the entire lattice. In a weak nonlinearity 
regime, the motion of a domain is no longer 
regular. The Brownian-like motion of domains is 
studied in section 10. If the local dynamics is not 
chaotic, but periodic with period 2”, we can have 
traveling kinks in the strong coupling regime. 
These kinks are localized in space and do not 
have a global influence, in contrast with the 
phase slips, as will be shown in section 11. 
Discussions and a summary are given in section 
12 [l]. 

2. Selection of discrete velocities 

In the CML (l), only a few patterns with some 
wavenumbers are selected for large nonlinearity 
(a > 1.55 for E = 0.5). Besides the non-traveling 
pattern, there are moving patterns which form a 
traveling wave, as shown in fig. la (see also [l]). 
We note that such traveling attractors are not 
observed in the weak coupling regime (E < 0.4). 
The selected velocities of the attractors in the 
examples are rather low, in the order of 10e3, 
and attractors with different velocities of waves 
coexist. In the simulation, the admissible veloci- 
ties up for the attractors lie only in narrow bands 
located at +u,, +u,, . . . , +u, (e.g., 0.8u, < up < 
1.2~~). For example, u1 = 0.95 X 10e4, u2 = 1.9 x 

10m3, and u3 = 2.9 x 10m3, uq = 3.9 x 10m3, for 
a = 1.72, E = 0.5, and N = 100. No attractors 
exist with up = 0 but up # 0. Between neigh- 
boring velocity bands there is a clear gap where 
no attractors exist with such velocity. For all 
parameters, uk is approximately proportional to 
k. 

One might argue that this discreteness of the 
velocity bands may be an artifact of our model, 
which is discrete in both space and time. Since 
the speed is very slow (i.e., the order of low3 site 
per step), it is not easy to imagine a mechanism 
to which our original discreteness (the order of 1 
site per step) is relevant. To examine possible 

1 

Phase 

;_::I 

Fig. 1. (a) Amplitude-space plot of x,(i) with a shift of time 
steps. 200 sequential patterns x,(i) are displayed with time 
(per 64 time steps), after discarding 25 600 initial transients, 
starting from a random initial condition. a = 1.71, E = 0.5, 
and N = 64. An example of an attractor with up = u,. (b) 

Space-amplitude plot of x,(i). a = 1.72, l = 0.5, and N = 64. 

100 steps are overlaid after discarding 10000 initial trans- 
ients. This wave pattern is traveling to the left direction. (c) 

The same plot, shown per 4 steps. Arrows indicate the phase 

of oscillation of the corresponding domains. The bottom 

figure shows the phase of oscillation of the corresponding 

domain, measured from the site i = 1. 
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effects of the spatial discreteness, we have also 

simulated a CML with a much longer coupling 

range, following the method of Section 7.5 in [5]; 

i.e., a repetition of the diffusion procedure in the 

CML of I, times per local nonlinear mapping 

procedure. With the increase of I,, the range of 

the diffusion is increased, making our attractor 

spatially much smoother, approaching a continu- 

ous space limit. Our traveling attractors have 

then much longer wavelengths, and have higher 

quantized speeds. For example the speed band at 

u, is amplified roughly 4 times by choosing I, = 8 

(for a = 1.72, E = 0.5, N= 200). Thus the dis- 

creteness in space is not relevant to the discrete 

selection of velocities. 

The wavelength of a pattern is almost in- 

dependent of the velocity of an attractor. The 

velocity is governed not by the (spatial) fre- 

quency but by the form of the wave. Since our 

model has mirror symmetry, a traveling wave 

attractor must break the spatial symmetry. The 

wave form is spatially asymmetric. Here this 

spatial (a)symmetry is not a local property. 

Indeed, the waveform differs by domains of unit 

wavelength. The asymmetry is defined only 

through the average over the total lattice. We 

have measured the spatial asymmetry by 

(2) 

with the long time average (. . .). This third 

power is chosen just because it is the simplest 

moment of an odd power, since the first power 

C,“=i ]x,(j + I) - x,(j)1 vanishes due to the per- 

iodic boundary conditions. 

In the present paper the velocity of an attrac- 

tor is estimated by the following algorithm: Find 

the minimum k such that C,“=i [x,+2m( j) -x,( j - 

k)]’ is a minimum. Up to some value of 2m, the 

minimum is found for the lattice displacement 

k = 0. If the attractor is moving, at a certain 

delay 2m, the minimum is not obtained for k = 0, 

but for k = +l. With the help of this delay the 

speed of the pattern is estimated as ?1/2m. In 

fig. 2, we have measured the above 2m over time 

‘\ 

‘\ 

Fig. 2. Asymmetry s versus velocity U, for attractors started 

from randomly chosen 300 initial conditions. The asymmetry 

and velocity are computed from the average of 160 000 steps 

after discarding 100 000 initial transients. N = 64 and l = 0.5. 

(a) a = 1.69, (b) a = 1.8. 

160000 steps, after discarding 100000 initial 

transients, to estimate the average velocity accu- 

rately. 

The relationship between s and up is shown in 

fig. 2. If a 2 1.74 = a,,#* the relationship is rather 

*‘See section 8 for a ,r, where a possible mechanism for the 
change of the S-U relationship at a,, is discussed. 
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simple. The velocity of an attractor turns out to 
be proportional to its asymmetry s, as is plotted 
in fig. 2b. Here we note that there is a gap of 
velocity between frozen attractors (up = 0) and 
traveling attractors. For an attractor with ve- 
locity u = 0, s is zero within numerical accuracy. 
Thus spatial symmetry is attained through the 
attraction to the non-traveling attractor, starting 
from an initial condition with spatial asymmetry. 
Again, this spatial symmetry is not a local but a 
global property. Indeed, for each domain over a 
single wavelength, its waveform is not generally 
mirror symmetric. The asymmetry in each wave 
form is cancelled through the summation over 
the entire lattice. This attainment of self-organ- 
ized symmetry is possible under the existence of 
traveling attractors. Indeed, for a weaker cou- 
pling regime without a traveling attractor, all 
attractors have a fixed structure [5], but they are 
not generally spatially symmetric. Spatial 
asymmetry in the initial conditions is not elimi- 
nated in this case. 

For a<~,,= 1.74, the relationship between s 
and up is more complicated (see fig. 2a). Attrac- 
tors with up = 0 can have a small non-vanishing 
asymmetry. The self-organized symmetry is not 
complete. The velocity gap between frozen at- 
tractors and moving ones is not seen. Further- 
more the linear relationship between up and s 
does not hold, although we can see a band 
structure of velocities. One of the reasons for 
this complication is coexistence of attractors with 
different periods (or frequencies), as will be 
studied in the next section. 

3. Phase slips: local units for global traveling 
wave 

To understand the mechanism of this velocity 
selection, we note that x,,(i) oscillates in time. 
For E = 0.5, the oscillation is almost periodic and 
the period is very close to 4. Then one can assign 
a phase of oscillation to a lattice site i relative to 
(x,(i), x,(i + 1)). It is possible to assign a phase 
change $z’l~(m’ = +l) between the lattice site i 

and the lattice site i + j in the neighboring 
domain, according to the order of the period-4 
like motion. 

When there is a phase gap of 21r between sites 
i and i + 1, it is numerically found that this 
interval unit [i, i + I] maintains the traveling 
wave. For example, in the attractor with velocity 
u1 in fig. 1, the oscillation is close to period 4, 
with slow quasiperiodic modulation. For periodic 
boundary conditions, the total phase change 
should be 2kn. The velocity is zero for an 
attractor with k = 0. If k = 1, there must be a 
sequence of 5 domains with phases 0, +r, 7~, tn, 
21r for corresponding lattice sites i (fig. lb). This 
unit is a phase slip of 21r. A phase slip with a 
negative sign is defined by the mirror-symmetric 
pattern of a positive one. An attractor with the 
velocity of the band uk has exactly k (positive) 
phase slips, in other words, 2kn phase change 
over the total lattice. (k equals the number of 
positive phase slips subtracted by negative ones.) 
Among attractors with the same number of 
phase slips, there can be various configurations 
of domains. The velocity variance among attrac- 
tors within the same band depends on this 
configuration. 

Since a phase slip is localized in space, one 
might think that the movement is a local phe- 
nomenon like soliton propagation. This is not 
the case. In the present case, this phase slip must 
pull all the other regions to make them travel, 
changing the phases of oscillations of all lattice 
points. Thus all lattice points are globally in- 
fluenced by a local slip. Our dynamics gives a 
connection between local and global dynamics. 
One clear manifestation of the global aspect is 
the additivity of velocity. In our system, the 
velocity of the wave is proportional to the 
number of phase slips. This proportionality gives 
a clear distinction between our dynamics and 
soliton-type dynamics, where, of course, the 
velocity of a soliton does not increase with the 
number of solitons present. 

Phase of oscillation at each lattice point can 
clearly be seen with the use of spatial return 
maps, 2-dimensional plots of (x,(i), x,(i + 1)). 
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When there is a phase slip, the spatial return 

map shows a curve as in fig. 3. A point 

(X,(i)? x,(i + 1)) rotates clockwise with time 

when there is a phase slip, while the point does 

not rotate for a non-traveling attractor. When 

there are two phase slips, the rotation speed is 

twice in addition to a slight change of the curve. 

We note that the motion is smooth without any 

remarkable change of rotation speed even when 

the lattice site lies at the phase slip region. In fig. 

3, we have plotted spatial return maps for 

attractors with 1 and 4 phase slips. In the figure 

the system size is 64 lattice sites while each phase 

slip requires 16 lattice sites. Thus the attractor 

with 4 slips (see fig. 3b) consists only of a 

sequence of 4 repeated phase slip patterns. For 

1 

lb) 

1 
.I’,> ( 1) 

1 

Fig. 3. Spatial return map: {x,(1),x,(2)} are plotted over 

the time steps n = 10 001, 10 002, ,210OO. a = 1.70, E = 

0.5, and N = 64. (a) An attractor with one phase slip (b) an 
attractor with four phase slips. The return map for an 

attractor with three slips shows a quasiperiodic modulation, 

typical to a three-dimensional torus [3]. 

attractors with less than 4 slips, there can be 

variable configurations of domains other than the 

phase slips. Depending on the configuration, the 

spatiotemporal return maps are different. 

When the return map shows a closed curve, 

the attractor is on a projection of a 2-dimension- 

al torus. This is the case in the state consisting 

only of phase slips (see fig. 3b). In general, the 

curve is not closed and the return map forms 

surface rather than a curve, suggesting a higher- 

dimensional attractor. Indeed, another fre- 

quency modulation is observed in the spatial 

return map, for the return map with two or three 

phase slips. As will be confirmed in section 5, the 

attractor is on a higher-dimensional torus. Fre- 

quencies of quasiperiodic modulation depend on 

the number of phase slips and the configuration 

of the domains. 

The proportionality between the asymmetry 

and the velocity (see section 2) can (partially) be 

explained by the phase slip mechanism: Each 

(positive) phase slip gives rise to a certain 

contribution to the asymmetry s. In fig. 2b, 

however, the proportionality holds even in a 

level within each band where the number of slips 

is identical. The asymmetry can depend on the 

configurations of domains, besides the number of 

slips. So far it is not clear why the propor- 

tionality holds even for such small changes of the 

asymmetry by the configurations, when the non- 

linearity is large. 

4. Basin volume and parameter dependence 

For random initial conditions, the probability 

to hit an attractor with the velocity 0 or +u, is 

rather high. We have measured the basin volume 

ratio for attractors of different velocities (see 

also fig. 3 of [l]). A band structure of admissible 

velocities is confirmed. In each band there are 

discrete sets of admissible velocities. We have 

confirmed that there are many attractors with 

different velocities within each band by running 

a long-time simulation. 
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As the velocity of an attractor increases, its 
basin volume shrinks rather drastically (see table 
2). The basin volume for u1 is often rather large. 
Basin volumes decrease (approximately) in a 
Gaussian form with the velocity of the band 
(exp(-K* x const.) for attractors in the band 
up = Ku,). This Gaussian decrease is generally 
observed for any parameter value, although the 
basin ratios for the fixed and u1 attractors may 
vary. 

The above behavior of basin volumes is ex- 
plained through the phase slip mechanism. Let 
us assume that by a random initial condition, a 
phase change between two domains (++7~) is 
randomly assigned. (We have to impose the 
constraint that its sum should be a multiple of 
integers of 2rr, but this is not important for the 
following rough estimate.) Then the probability 
for the sum of the phase changes obeys the 
binomial distribution. For large N, the probabili- 
ty to have K phase slips is estimated as 

exp[-(K/c+)‘] with (+ m fi . (3) 

Thus the probability to have K phase slips is 
expected to decay with a Gaussian form with K. 
Thus the Gaussian form of the basin volume is 
explained. 

Dependences of the velocity up on the parame- 
ter a and size N are given in figs. 4a,b. In these 
figures, we have measured the velocity by taking 
the average over 160000 time steps, after dis- 
carding 800 000 transients starting from several 

Table 2 
Velocity, asymmetry, and basin volume of fixed and traveling 
attractors. a = 1.73, and E = 0.5. 500 attractors from random 
initial conditions are chosen to estimate the basin volume 
ratio. 

Velocity Asymmetry s Basin volume 
ratio (%) 

0 0 34.6 
krJ1 = 0.95 x lo-’ 2.5 x 1O-5 23.7 
cu, = 1.95 x 1o-3 5.3 x 1o-5 7.2 
&II, = 2.9 x 1O-3 8.3 x 1o-5 1.6 
*u, = 3.8 x 1om3 12 x 1o-5 0.2 

Velocity vs a 
x IO ’ 

Fig. 4. Dependence of velocities of attractors on a and size 
N. (a) Velocities versus a; velocities from randomly chosen 

100 initial conditions are overlayed, obtained with the algo- 

rithm in the text, applied per 32 steps, over 32 X 5000 steps, 

after discarding 50 000 initial transients. N = 100, and l = 0.5 

(additional data are included from fig. 5 in [I]). 
(b) The absolute values of velocities ]uP] of attractors, 

plotted as a function of size N. The velocities are computed 

with the algorithm in the text, applied per 32 steps, over 

32 x 5000 steps, after discarding 50000 initial transients. 

Velocities from randomly chosen 50 initial conditions are 

overlaid. a = 1.73, and l = 0.5. 
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0. 4 .45 

Coupling c 

0. 5 

Fig. 5. Basin ratio for traveling wave as a function of E, for 

a = 1.69. Velocity of attractors from randomly chosen 50 

initial conditions are examined, to count the number of 

attractors with u # 0. 

initial conditions. These averaged velocities are 

plotted for 1.6 <a < 1.85 for N = 50 (in fig. 4a), 

while they are plotted over 10~ N < 250 for 

a = 1.73, in fig. 4b. We can see the selection of 

discrete velocities rather well. Velocities lie in a 

narrow band around vk. 

As is given in fig. 5, selected velocities slowly 

decrease with the system size. The l/V% depen- 

dence of the velocity (fig. 4b) is explained by the 

argument at eq. (3). Since our system has a 

selected wavelength R, the fractional part of 

N/R is important for the nature of traveling 

wave#3, besides the above size dependence. 

Except for this additional dependence, the ve- 

locity decrease is roughly fitted by l/V% up to 

N = 200. We also note that higher bands succes- 

sively appear (v, with larger k), with the increase 

of the system size, although the basin volume for 

such higher bands is rather small due to the 

Gaussian decay. 

As has been reported, no traveling state has 

been observed for E < E, = 0.402. We note that 

#‘See section 5 for a novel dynamical state which appears 

when there is a mismatch between the size and the wave- 
length. 

the velocity does not go to zero as E approaches 

E, from above. For 0.402 < E < 0.45 the velocity 

lies between 1.0 x 10-j and 1.8 x lo-’ without 

displaying any symptoms of a decrease. Rather, 

the basin volume for the traveling attractor 

vanishes with l + E,, which is the reason why 

only non-traveling attractors are observed for 

E <E,. The basin volume for traveling states 

(i.e., all attractors with non-zero velocities) 

shown in fig. 5. 

is 

5. Chaos and quasiperiodicity in the traveling 

wave 

To examine the dynamics of our attractors, 

Lyapunov spectra have been measured numeri- 

cally through the product of Jacobi matrices [4]. 

For most parameters (1.65 < a < 2.0) and sizes, 

the maximal exponent is zero, irrespective of the 

velocity of attractors. Thus chaos is completely 

eliminated by pattern selection, and the attractor 

is a torus. As is expected from the spatial return 

maps, the attractor can be a higher-dimensional 

torus with more than one null exponent. Be- 

tween attractors with u = 0 and v = up, there are 

only slight differences in Lyapunov spectra. 

In our model a (traveling) pattern is selected 

such that it eliminates chaos (almost) complete- 

ly. If chaos were not sufficiently eliminated, it 

would be impossible to sustain a spatially period- 

ic pattern during the course of propagation. Such 

elimination of chaos is not possible for every 

wave pattern, since our dynamics has topological 

chaos. In our system a wavelength R is selected. 

When the size N is not close to a multiple of the 

selected wavelength R, there can remain some 

frustration in any pattern configuration, and 

weak chaos can be observed. 

In narrow parameter regimes, we have found 

chaotic traveling waves for some sizes. For 

example, very weak chaos is observed around 

a = 1.70, if N is large, as is shown in fig. 6a. The 

corresponding spatial return map (see fig. 6b) 
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(b) I- 

1 -. , 41) 

Fig. 6. (a) Amplitude-space plot of x,(i) with a shift of time 

steps. 200 sequential patterns x,(i) are displayed with time 

(per 128 time steps), after discarding 10 240 initial transients, 

starting from a random initial condition. a = 1.69, E = 0.5, 

and N = 92. (b) Spatial return map: {x,(1),x,(2)} are 

plotted over the time steps n = 10001, 10002,. ,210 000. 

a = 1.69, E = 0.5, and N = 100. 

consists of curves (corresponding to regular 
traveling) and scattered points (corresponding to 
chaotic modulation). It should be noted that the 
chaotic modulation propagates in the opposite 
direction to the traveling wave. There are few 
positive exponents in the Lyapunov spectra for 
the traveling wave attractor (see fig. 7). The 
number of positive exponents is small (l-3) 
compared with the system size N. Chaos, 
localized in a domain, propagates as a modul- 
ation of the wave, as is shown in fig. 6a. We 
also note that the spectrum (see fig. 7) is almost 
flat near A ==O. The propagating wave leads 
to a Goldstone mode giving rise to a null 
exponent. 

Lyapunov Spectrum 

0 0” 2” “0 4000 M) “0 x0 w 

Fig. 7. Lyapunov spectra of our model with E = 0.5, starting 

with a random initial condition, discarding 50000 initial 

transients. The calculation is carried out through the product 

of Jacobi matrices over 32 768 time steps. N = 100, a = 1.69: 

for attractors with v = v, (solid or dotted line) and v = 0 

(broken line). 

6. Chaotic itinerancy of traveling waves 

As is shown in the previous section, there 
remains some frustration in forming a wave 
pattern if the ratio N/R is far from an integer. 
When the frustration due to this mismatch be- 
tween the size and wavelength is large, it leads to 
spontaneous switching among patterns (see fig. 
8a). This spontaneous switching arises from 
chaotic motion of each pattern, and may be 
regarded as a novel class of chaotic itinerancy 
[15]. Global interaction is believed to be neces- 
sary to obtain chaotic itinerancy [15]. Although 
the interaction of our model is local, the phase 
slip globally influences all the lattice points, and 
thus satisfies the condition for chaotic itinerancy. 

Only few remnants of curves (corresponding to 
the traveling structure) can be seen in the spatial 
return map (see fig. 8b), while scattered parts are 
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(b) 1 , - 

,7 

I 
I 

Fig. 8. (a) Amplitude-space plot of x,(i) with a shift of time 

steps. 200 sequential patterns x,(i) are displayed with time 

(per 1024 time steps), after discarding 1024 000 initial trans- 

ients, starting from a random initial condition. a = 1.69, 

E = 0.5, and N= 51. (b) Spatial return map: {x,(1),x,(2)} 

are plotted over the time steps n = 10001, 10002, , 
210000. a = 1.69, E = 0.5, and N = 51. 

more dominant than in the chaotic traveling in 

the previous section. The direction of rotation 

also changes with time, through the scattered 

points. Both amplitudes and phases of oscilla- 

tions are modulated strongly here. 

For the spontaneous switching, we need some 

kind of modulation of the wave. Indeed, each 

waveform starts to be rather irregular in space 

and time in advance to the switching. The 

wavelength, on the other hand, is not affected by 

the course of this switching process. In general, 

there can be three types of modulation of the 

wave; frequency, phase, and amplitude modula- 

tions. In our example, frequency is hardly modu- 

lated (as is seen in the invariance of wavelength 

through the switching), while the phase modula- 

tion (following the amplitude one) is essential to 

the spontaneous switch of traveling states. 

The switching occurs through the creation or 

destruction of a phase slip. Frustration in a 

pattern icads to the distortion of a phase slip, 

inducing chaotic motion. This chaotic motion 

breaks the phase slip. On the other hand, there 

can be the creation of a slip by chaotic modula- 

tion of the phase of oscillation. This creation or 

destruction of a phase slip is a local process, but 

influences globally the velocity of the traveling 

wave. 

In chaotic itinerancy, long time residence at a 

quasi-stable state is often noted. We have mea- 

sured the residence time distribution of a state 

with a given velocity. As is shown in fig. 9, all 

the residence time distributions Pk(t) of a k- 

phase-slip state (for k = 0, -1, -+2; i.e., up = 0, 

up = ?u,, up = -+2u,) obey the power law Pk(t) = 

t -a with (Y = 1. This power-law dependence 

clearly indicates the long time residence at each 

traveling state. Similar power-law dependence of 

a quasi-stable state has already been found for 

spatiotemporal intermittency in a CML [5], al- 

though the power itself is clearly distinct. 

Lyapunov spectra for this frustration-induced 

chaos are shown in fig. 10. The number of 

positive exponents is again very few (3 in the 

figure), whose magnitudes are very small. The 

chaos by the frustration is very weak and low- 

dimensional. The spectra have a plateau at the 

null exponent, implying the existence of a Gold- 

stone mode by traveling wave. As seen in the 

previous section the accumulation at null expo- 

nent is characteristic of a (chaotic) system with a 

traveling wave. 

For larger system sizes, chaotic itinerancy of 

waves is hardly observed. The system settles 

down to a frozen or traveling pattern after 

transients. Since the number of chaotic modes is 

few (O(l)), the frustration per degree of freedom 

is thought to decrease with N. The distortion due 

to the mismatch of phases is still there, but it is 

distributed over a large size and is too weak to 

switch the pattern. The remnant frustration in a 
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Fig. 10. Lyapunov spectra of our model with E = 0.5, starting 
with a random initial condition, discarding 50000 initial 
transients. The calculation is carried out through the products 
of Jacobi matrices over 32 768 time steps. N = 51, a = 1.69: 
Spectra from three different initial conditions are overlaid. 

Fig. 9. Residence time distribution for a state with u = u* in 
the chaotic itinerancy of traveling wave. The distribution is 
taken over 819200 time steps after 20000 initial transients, 
and sampled over 500 initial conditions. a = 1.69, E = 0.5, 
and N = 51. Here the residence time distributions at the state 
k = 0 (non-traveling state), and k = 1 (residence at a one- 
phase-slip state) is plotted. The distributions at the state 
k = -1 (residence at a one-negative-phase-slip-state) and k = 
2 (residence at a two-phase slip state) are also computed. 
They obey the same power law distribution as in the present 
figure 

traveling wave leads to chaotic modulation of 
wave as is studied in section 5. 

7. Co-moving mutual information flow 

Co-moving mutual information is often useful 
for measuring correlations in space and time [4]. 
From the joint probability P@,,(i), x,+,(i + j)), 
we have calculated the mutual information 

@b i) = I %Ai) dx,+,(i +i) 

X %(i) ,x,+,(i +i)) 

’ log P@,(i)) P(x,+m(i + j)) ’ (4) 

In a traveling wave, we have peaks in Z(m, Z) 
at Z(t, u,t) for an attractor traveling with up. For 
a quasiperiodic attractor the peak height does 
not decay with the time delay t, while it slowly 
decays for a chaotic attractor. The transmission 
of correlations can clearly be seen. 

In a chaotic attractor, however, there is also 
propagation of small modulations on the travel- 
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ing wave. This propagation is in the opposite 

direction to the wave. From the above mutual 

information, this reverse propagation could not 

easily be measured so far. The propagation of 

chaotic modulation implies the flow of informa- 

tion created by chaos [18]. One way to measure 

this information creation may be the use of three 

point mutual information with the use of P@,(i), 

x,+,(i +i), x,+,+/(i +i)) [19], while another 

possible way of characterizing a chaotic traveling 

wave is the use of the co-moving Lyapunov 

exponent [4]. A slight increase of the exponent 

at the traveling velocity is observed. In our case, 

however, chaos is too weak to give a quantitative 

distinction. 

The mutual information in the chaotic 

itinerancy decays with time and space, without 

any peaks at some velocity. By the switching 

process, all local traveling structures are smeared 

out, leading to the destruction of peaks in the 

mutual information at some velocities. 

8. Chaotic transients before the formation of 
traveling waves 

To fall on a traveling (or fixed) attractor, the 

velocities of all local domains of unit wavelength 

must coincide. Thus it is expected that the 

transient time before falling on an attractor may 

increase with the system size. As for the tran- 

sient behavior, our transient wave phase splits 

into the following two regimes. 

(i) For the medium nonlinearity regime (a < 

a = 1.74), the transient length increases at most 

$;th the power of N. Indeed, local traveling 

wave patterns are formed within a few time 

steps. Before hitting the final attractor, these 

local waves are slightly modulated to form a 

global consistency. The formation of a global 

wave structure occurs for time steps smaller than 

O(N). We need time steps in the order of 6(N) 

for the slight modulation to adjust the phases of 

all domains. (See fig. lla for the spacetime 

diagram.) 

(ii) For larger nonlinearity (a > a,,), there are 

long-lived chaotic transients before our system 

falls on a traveling-wave attractor. The transient 

length increases with the system size rather 

rapidly: the increase is roughly estimated by 

exp(const. x N) [16], although some (number- 

theoretically) irregular variation remains. In the 

transient process, the dynamics is strongly cha- 

otic, and is attributed to “fully developed 

0 time per 128 ;tcps GO0 

tirn? y 2048 stqw GO0 

Fig. 11. Spacetime diagram for the coupled logistic lattice 

(l), with E =OS, and starting with a random initial con- 

dition. If x,(i) is larger than x* (unstable fixed point of the 

ding spacetime pixel is painted as 
- 1)12a painted darker), while it 

is left blank otherwise. (a) a = 1.71, N = 300. Every 128th 

step is plotted. (b) a = 1.76, N = 200. Every 2048th step is 

plotted. 
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Fig. 12. Lyapunov spectra of our model with E = 0.5, starting 
with a random initial condition: Comparison of quasistation- 
ary states with an attractor. In the former, two sets of spectra 
in the transients states are calculated after discarding 10000 
initial transients, for two different initial conditions. They are 
overlaid, but agree within the linewidth of the figure. For the 
latter, the data after 1000000 steps are adopted. The 
calculation is carried out through the products of Jacobi 
matrices over 32 768 time steps. N = 50, a = 1.88. 

spatiotemporal chaos” in [5]#4. Lyapunov spec- 
tra during the transients are shown in fig. 12, in 
contrast with the spectra of an attractor. This 
transient process is quasistationary (see fig. lib 
for the spacetime diagram); No gradual decay is 
observed for dynamical quantifiers such as the 
short-time Lyapunov exponent [13] or Kol- 
mogorov-Sinai entropy. Such dynamical quan- 
tifiers fluctuate around some positive value, till a 
sudden decrease occurs at the attraction to the 
regular attractor. These observations are con- 
sistent with the type-II supertransients often 
observed in spatially extended systems [12]. In a 
strong coupling regime, we have found traveling 
wave states up to the maximal nonlinearity a = 2. 
Thus the fully developed spatiotemporal chaos in 
this regime may belong to supertransients [16]. 

We note that the linear relationship between 

*4 If a is not so large (near a =a,,), we have often 
observed some local traveling wave patterns during the 
transients. The dynamics here can be attributed to the 
spatiotemporal intermittency of type-II [9-111. 

the asymmetry s and the velocity u (in section 2) 
is seen only for a > (I~,. This relationship may be 
partially explained from the results in the present 
section, although further studies are necessary 
for a complete explanation: For a <a,,, the 
pattern selection can occur locally, and some 
local distortion in the wave pattern may not be 
removed. Then spatial asymmetry can remain 
even for a non-traveling attractor, and the s-u 
relationship can be very complicated. For u > a,,, 
on the other hand, slight distortion in wave 
pattern leads to global chaotic transients. Only 
patterns without distortion are admissible as 
attractors. The s-u relationship may be expected 
to be monotonic and simpler. 

9. Switching among attractors with different 

velocities 

By a suitable input at a site at one time step, 
we can make an external switch from one attrac- 
tor to another (with a different velocity). By a 
local input, the structure of an attractor is 
changed over the whole lattice. Local informa- 
tion by an input is transformed into a global 
wave pattern. In the medium nonlinearity regime 
(a <a,,), the switching process occurs within a 
short time, without any global chaotic transients. 

As is expected this switching is easily attained 
by applying an input at site(s) in a phase slip. For 
example, assume that the phases at neighboring 
5 domains are given by [O,++r, +7~, +$n, 2~1. 
By applying an input at site(s) of the third 
domain, the phases can be switched to 
[0, ++r,O, -$(=37~), 01. Thus a phase slip 
is removed, leading to a switch to an attractor 
with u+u,,,~=u-u~. We can control a 
switch by choosing an input site and value so that 
the number of phase slips is in(de)crea 

For larger nonlinearity (a > utr), the chaotic 
transient lasts for many time steps during the 
course of switching. In this case the control of 
switching is almost impossible; it is hard to 
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predict the length of the switching process or the 

attractor after the switch. This type of chaotic 

transients in the search for an attractor can be 

seen in some models with chaotic itinerancy [15] 

and in the neural activity in an olfactory bulb 

[171. 

10. Wandering domain by chaos 

In the weak coupling case, a frozen random 

pattern is observed [5] for weak nonlinearity 

(a < 1.55). In our strong coupling regime, do- 

mains with variable sizes are again formed. 

These domains, however, are not fixed in space. 

The boundary of domains here fluctuates in 

time. A region can move in one direction locally, 

but then it changes the direction of traveling (see 

fig. 13a). In spatial return maps, the motion of 

(x,(i), x,(i + 1)) along a curve changes its direc- 

tion with time (see fig. 14). The boundary 

motion is diffusive and Brownian-like (see fig. 

13). Furthermore, the size of domains can also 

vary (chaotically). Domain distribution is rather 

random. We have plotted the spatial power 

spectrum S(k) = ( ]Cj x,(j) exp(ikj)] ‘) with the 

temporal average (. . e). In contrast with the 

peaks corresponding to the selected wavelength 

in the regular traveling wave regime, there are 

no clear peaks in the spectra. The decay of the 

power spectra with the wavenumber k is con- 

sistent with the diffusive motion of domains, 

while the decay in the frozen random phase in 

the weak coupling regime is much slower, due to 

the absence of such diffusive motion. 

In this phase, some attractors have phase slips. 

Again a phase slip is defined by a unit with a 

sequence of domains of 27r phase advance. In an 

attractor with phase slips, the pattern moves (in 

average) in one direction with some fluctuation. 

Generally the pattern has some average velocity 

depending on the number of phase slips, al- 

though a fluctuating boundary of domains brings 

about the fluctuation of the velocity. Here chaos’ 

is not eliminated in large domains. In this case 

(4 

200 

(b) 

space 

Fig. 13. Amplitude-space plot of x,(i) with a shift of time 

steps. 200 sequential patterns x,(i) are plotted with time (per 

1024 time steps), after discarding 20480 initial transients, 

starting from a random initial condition. E = 0.5, and N = 

100. (a) a = 1.47, (b) a = 1.52. 

chaos is transported along with the traveling 

wave. Chaos localized in large domains moves 

together with the wave and in the same direc- 

tion. An example of a pattern is given in fig. 14b 

with the corresponding spatial return maps. 

If a is smaller, domains of various sizes coex- 

ist, while the appearance of larger domains is 

less frequent as a approaches ~1.55, where 

pattern selection sets in. 

Chaos in the internal dynamics in a large 

domain is confirmed by the Lyapunov spectra 

given in fig. 15. The slope of the spectra is small 

at A = 0. These exponents near 0 are thought to 
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.Y,ili 11/-l 

Space 

Spxe 

Fig. 14. Spatial return maps with the corresponding space amplitude plots: (x,,(l), x,(2)), (x,(13), x,(14)), (x,(25), x,(26)), and 
(x,(37), x,(38)) are plotted over the time steps n = 12 800, 12 801, . ,64 000, while x,(i) is plotted with time per 256 steps. 
a = 1.5, l = 0.5, and N = 50; (a) without any phase slip. (b) With one phase slip. 

come from the diffusive motion of the domains. 
Co-moving mutual information decays exponen- 
tially in space and time, implying that there are 
no remaining patterns in space and time. 

11. Propagating kinks in period-doubling media 

To clarify the difference between the phase 
slips and conventional solitons, we have studied 
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Fig. 15. Lyapunov spectra of our model with E = 0.5, starting 

with a random initial condition. Three examples of calcula- 

tion are overlaid starting from 3 randomly chosen initial 

conditions, after discarding 10 000 initial transients. Calcu- 

lated over 32 768 time steps. N = 50, a = 1.53. 

our CML in the period-doubling regime with a 

strong coupling. As is known our CML exhibits 

the period-doubling of kink patterns [2]. In the 

lower coupling regime (E < 0.4), these kinks are 

pinned at their positions. In the strong coupling 

regime, some kinks can move when they form a 

phase gradient in one direction (see for example 

fig. 16). This phase in-(de-)crease is possible if 

the period of the kinks is larger than 2.#5 If the 

period is 4, for example, there can be a series of 

domains with the increase of the phase 

0, in, trr, 27r, separated by 3 kinks. These kink 

patterns form a phase gradient, which drives 

them to move with a constant speed. 

As for this phase advance, these moving kinks 

are similar to our phase slips. However, the 

kinks here are completely local. When there are 

two kinks at a distant position, they move almost 

independently with their original speeds, (until 

they collide). See fig. 16, where elimination of 

one kink by external input does not cause any 

change to the propagation of the other kink. 

Furthermore, there is no discrete selection of 

speeds. The speed of a kink gradually varies with 

the phase gradient within the kink pattern. In 

index i 

Fig. 16. Amplitude-space plot of x,(i) (for a moving kink) 

with a shift of time steps. 200 sequential patterns x,(i) are 

depicted with time (per 1024 time steps), after discarding 

4096 initial transients, starting from a random initial con- 

dition. At the time steps and lattice points indicated by the 

arrows, the value of x,(i) at the corresponding i and n shifted 

to 0 by an input. a = 1.4, E = 0.5. and N = 64. 

fig. 16, change of a tail width at a kink leads to a 

slight change of speed. 

The local propagation and the shape depen- 

dence of speed imply that the mechanism of kink 

propagation here is essentially same as that 

(usually) studied in partial differential equations 

like a +4 system. In table 3 the differences 

between the kink here and the traveling wave by 

phase slips are summarized. In an oscillatory 

medium (without chaos), we can expect the 

existence of kinks with period-doubling as in the 

present example. 

12. Summary and discussions 

In the present paper we have reported a 

traveling wave triggered by phase slips. The 

velocity of traveling attractors forms quantized 

bands determined by the number of phase slips. 

X5 This type of moving kink domains is first discussed in 

[20]. In the case of a period-2 attractor, possible attributed 

phases are n or -n. Thus it is impossible to distinguish 

between the phase increase or decrease (for example, the 

phase changes with the sequence of n, -71, n can have 
neither phase advance nor retardation). 
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Table 3 

Traveling wave by phase slips vs kinks in period-doubling media. 

Traveling wave Kink propagation 

315 

Local unit 

Range of a 
Mechanism 

Velocity 

Underlying 

structure 

phase slip kink 

1.55cac2.0 1.25<a<1.401.. 

global local 

proportional to varies with the kink 

no. of phase slips shape (tail width) 

spatially periodic spatially homogeneous 

Frozen attractors (without any phase slips) and 
traveling attractors with different velocities coex- 
ist. The velocity of each band increases linearly 
with the number of slips. When the nonlinearity 
is large, the proportionality between the 
asymmetry of a pattern and the velocity holds 
even within each band. In this case, (approxi- 
mate) symmetry is self-organized for frozen 
attractors. See table 1 in section 1 for the phase 
diagram of our CML model in a strong coupling 
regime. 

Through pattern selection of domains with 
some wavenumbers, chaos is completely elimi- 
nated leading to quasiperiodicity. When there is 
a mismatch between the size and the wavelength, 
remaining frustration leads to a chaotic motion 
of the wave. If the frustration is large, chaotic 
itinerancy over many traveling (and frozen) 
states is observed. Our system makes itinerancy 
over states with different velocities of traveling. 
The residence time in each state obeys a power 
law distribution. If the frustration is not so large, 
a chaotic traveling wave is observed, where the 
chaotic modulation is transmitted in the opposite 
direction to traveling wave. 

It should be noted that a local phase slip 
affects globally the motion of the total system. 
This is in strong contrast with the kink type 
propagation (also observed in our system in a 
non-chaotic region), where it propagates as a 
local quantity. The additivity of velocity of the 
wave with the number of phase slips is a clear 
manifestation of the global nature. 

By local external inputs, one can create or 
destroy a phase slip, and to switch to an attractor 

with a different velocity. By the traveling wave, 
information is transmitted to the whole space 
within the steps in the order of 6(N). Thus the 
transformation from local to global information 
is possible through this switching, which may be 
useful for information processing and control. 

We have noted two types of transient pro- 
cesses in the course of attraction to traveling 
states. When the parameter for the nonlinearity 
is large, a supertransient (with quasistationary 
measure) is observed whose transient length 
increases exponentially with the system size, 
while such rapid increase is not seen in the 
medium nonlinearity regime (a < 1.75). 

In the weaker nonlinearity regime (a < 1.55) 
corresponding to the frozen random phase, we 
have found fluctuation of domain sizes and 
Brownian-like motion of domains. Coexistence 
of fluctuating domains and phase slips is also 
noted. In this random pattern, chaos is localized 
in large domains, and propagates along the 
traveling wave. 

We have analyzed the dynamics of the travel- 
ing wave with the use of spatial return maps, 
Lyapunov spectra, and co-moving mutual in- 
formation flow. When chaos is suppressed in the 
pattern selection regime, the maximal Lyapunov 
exponent is zero implying that the traveling wave 
attractor is on a torus whose dimension depends 
on the number of phase slips. This null 
Lyapunov exponent remains even in a chaotic 
wave or chaotic itinerancy. This exponent is due 
to the Goldstone-type mode corresponding to 
the traveling structure. Through the mutual 
information flow, we note the creation and 
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transmission of information by a chaotic travel- 
ing wave. The chaotic modulation added on the 
traveling wave leads to the possibility of informa- 
tion transmission, created by chaos [18]. 

There is no a priori reason to deny the 
possibility of the global traveling wave by a local 
phase slip, in partial differential equation sys- 
tems. For convenience of an illustration, con- 
sider a partial differential equation with two 
components 

ad+-, 4 
at = F(+(r, t)) + D V”+(r, t) . (5) 

If there exists a constant velocity traveling wave 
solution +(r, t) =f(r - ut), it must satisfy 

-uf’ = F(f) + Of". (6) 

If this coupled second order differential equation 
has a periodic solution for a range of velocities u, 
then the traveling wave f(r - ut) can be a solu- 
tion of eq. (5). Generally speaking, the non- 
linear equation (6) has a chaotic solution for 
some range of u, and has windows of limit cycles 
in the parameter space (u) for chaos. A stable 
traveling wave is possible if chaos is eliminated 
by the choice of u. This scenario implies the 
existence of admissible velocity bands for stable 
traveling wave solutions, as in our CML exam- 
ple. 

Traveling waves have often been studied in 
various experiments [21]. Quite recently, 
Croquette’s group has observed traveling waves 
in BCnard convection with periodic boundary 
condition. Indeed this traveling wave is triggered 
by a unit of a 27~ phase advance [23]. They have 
also observed chaotic itinerancy over different 
traveling states, when the motion in a BCnard 
cell is strongly chaotic [24]. It is expected that 
this discovery belongs to the same class as our 
traveling wave. It is interesting to check if 
attractors with different velocities coexist by 
applying perturbations to such experimental sys- 
tems. A search for our velocity bands in experi- 
ments will also be of interest. Detailed com- 

parison with our model and experiments will be 
important in future. 

In the weak nonlinearity regime, the suppres- 
sion of chaos is not possible, where domains 
show chaotic Brownian motion without a travel- 
ing velocity. This type of floating domains has 
some correspondence with the dispersive chaos 
found in BCnard convection by Kolodner’s 
group#6. 
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