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Abstract 

In this paper, we review the literature on statistical long-range correlation in DNA sequences. We examine 
the current evidence for these correlations, and conclude that a mixture of many length scales (including some 
relatively long ones) in DNA sequences is responsible for the observed l/f-like spectral component. We note 
the complexity of the correlation structure in DNA sequences. The observed complexity often makes it hard, 
or impossible, to decompose the sequence into a few statistically stationary regions. We suggest that, based 
on the complexity of DNA sequences, a fruitful approach to understand long-range correlation is to model 
duplication, and other rearrangement processes, in DNA sequences. One model, called “expansion-modification 
system”, contains only point duplication and point mutation. Though simplistic, this model is able to generate 
sequences with l/f spectra. We emphasize the importance of DNA duplication in its contribution to the 
observed long-range correlation in DNA sequences. 

1. Introduction 

Some time ago, two of the authors (WL and KK) noticed the existence of statistical long-range 

base-base correlation in DNA sequences [31,30], which was later observed independently by two 
other groups [41,56]. Statistically, such long-range correlation can be detected by measuring the 
two-point autocorrelation function and examining if it decays slower than exponentially. What is 
surprising in these findings is not just the existence of long-range correlation, but the particular 
form of the correlation structure - the l/f-like spectral component [ 31,561. If the power spectrum, 
which is the Fourier transform of the autocorrelation function, obeys a power-law behavior (e.g. 
1 /f ), it indicates that the two-point correlation function also decays as a power-law function, in 
contrast to an exponential decay. Thus, the l/f-like spectra imply that there is no single finite 
length scale for the base-base correlation: there should be many different length scales in DNA 
sequences. 

This point we want to emphasize, that what is interesting about the study of DNA sequences is 
more a particular non-trivial form of the correlation structure than the mere fact that statistical 
correlation at longer distances exists, reveals certain complexity of the statistical correlation structure 
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in DNA sequences. There are cases where correlation does exist at long distances, but its existence 
is easily explainable, and those sequences lack a multi-length-scaled correlation structure and 
thus simple. For example, a sequence with an exponential correlation function but nevertheless a 
relatively long correlation length has a broad Lorenzian spectrum. Another example is a random 
packing of two types of blocks: its power spectrum has a l/f2 component. None of these cases are 
as complex as sequences with l/f-like spectra. 

One might, then, imagine that the statistical character of DNA sequences is very simple and 
universal - all have a scale-invariance l/f power spectrum. This is not the case. The l/f -like 
spectral component observed in DNA sequences is not the sole spectral component; the white noise 
component also contributes to the spectrum. Besides, not all DNA sequences exhibit long-range 
correlations. Another complication in the study of DNA sequences lies in the finiteness of the 
sequence: the longest length scale of correlation is always bounded. When a long-range correlation 
is claimed, it is a claim that the longest length scale is not an order of magnitude smaller than the 
sequence length, not a claim that a power-law correlation function extends to infinity. The current 
studies only show clearly the existence of statistical correlations up to the length scale of about 
l-10 kb ( 1 kb = 1000 bases). The correlation structure of DNA sequences at even larger scales 
has not yet been thoroughly studied. 

What is the biological significance of these long-range correlations? First we have to note that the 
statistical correlation is not equivalent to a “cause-and-effect” correlation. A long-range statistical 
correlation in DNA sequences means the base appearance or base density tends to co-vary at regions 
separated by a long distance. It is a completely different concept when one says that one region of 
the DNA sequence has a biological influence on another that is far apart. It is not easy to make 
a straightforward connection between the long-range correlation from the viewpoint of biological 
function. 

On the other hand, we know very well that complexity stored in an object may be created by 
a relatively simple process. For example, imagine the dynamical process that doubles the whole 
sequence (plus a random mutation afterward). Although the doubling process is extremely simple, 
it actually generates sequences that are multi-length-scaled. One of the authors (WL) has studied 
a similar model system, called expansion-modification systems [27,29], which can conceptually be 
related to the mutation and duplication processes in the evolution of DNA sequences. In fact, it 
was the discovery of this model being able to generate sequences with 1 /f spectra that led two of 
the authors (WL and KK) to expect the existence of 1 /f spectra in real DNA sequences [ 3 1,321, 
and motivated our analysis of DNA sequences. 

There are three major purposes of the present paper. The first one is to provide an introduction 
and a survey of the long-ringe correlations in DNA sequences. Second, we try to clarify some 
confusions appeared afte: the publication of the first round of papers. This discussion is needed 
because many misunderstandings of the finding still exist. Third, we discuss the dynamical origin 
of such long-range correlations, in connection with the study of the expansion-modification system. 

The organization of the paper is as follows. We start in Section 2 by reviewing some of the measures 
used to study the correlation structure of DNA sequences, then we graphically illustrate our main 
theme that there are fluctuations of base densities at many different length scales (Section 2.1). 
Later, we review the current knowledge of the correlation structure of DNA sequences (Section 2.2). 
A set of new calculation of power spectra of base density fluctuations is included in Section 2.2. 
These calculations confirm some previous results. 

We review four “controversial” topics in Section 2.3. The first is on how good the scale-invariant 



394 W. Li et al. I Physica D 75 (1994) 3921416 

property of DNA sequences is. The second is on whether the DNA sequences with long-range 
correlation can be decomposed into subregions of different base densities, each with subregions of 
white noise with no correlations. The third is on whether the l/f-like spectra are actually Lorenzian 
spectra. And the fourth is on whether coding sequences have a common correlation structure that 
is different from that derived from non-coding sequences. Both the second and the third topics 
are related to the question on whether DNA sequences are simple or “complex”. If a sequence is 
complex, it cannot be decomposed into spatially separable simple sub-sequences, and it cannot have 
only a single length scale. Complex sequences have many different length scales and each of the 
length scale acquires its contribution from throughout the sequence. It will be demonstrated that 
many DNA sequences are complex. 

In Section 3, we study theoretically the “dynamical origin” of the correlation structure of DNA 
sequence. Section 3.1 reviews the expansion-modification system which is seemingly simple, but is 
capable of generating sequences with a fair amount of complexity: in this case, the l/f spectrum. 
In this model, the only processes involved are a point duplication and a point mutation, each 
occurring with a fixed probability. Although this model is simplistic in describing changes in DNA 
sequences, both duplication and point mutation are common events for DNA sequences. Since both 
processes can create new patterns in the sequence, these are potentially important for evolution. 
This topic is discussed in Section 3.2. 

In summary, we use this opportunity to review what we currently know about the statistical 
long-range correlation in DNA sequences. There are many issues one can question: whether long- 
range correlation is a common feature of DNA sequences; whether the correlation structure of 
DNA sequences at 1 Mb (1 Mb= lo6 bases) is similar to that at 1 kb; whether the correlation 
structure has any relevance to our understanding of biological function; whether the statistical 
structure of l-dimensional DNA sequences can reveal features of the 3-dimensional structure of the 
chromosome, and so on. We do not have definitive answers to these questions yet. With more and 
more long stretchs of DNA sequences become available, it is an exciting time for those who are 
interested in exploring and understanding the large-scale statistical structure of DNA sequences. 

2. Statistical correlation structures of DNA sequences 

Correlation structure of a length-N DNA sequence is the correlations between two nucleotides of 
any distance d (< N). The intention here is to characterize the correlation structure of a particular 
DNA sequence with a finite length, rather than to generalize the result to infinitely long sequences, 
nor to a subregion of the sequence. So we are not particularly concerned about the concept of 
“statistical stationarity”. It is similar to the case when one says that a sample density of G of 
a particular DNA sequence is 0.2 1: it does not necessarily imply that the density of G of other 
sequences is also 0.21, nor does it claim that any subregion of length n < N has the same density 
of 0.21. 

Correlation structure of a finite sequence can be studied by several sample measures of correlation. 
We list these in three categories: 

Direct measures of correlation. We first define a sample “mutual information function”: if the 
indices cy and j3 run through the four nucleotides (G,C,T,A), we define (the cyclic boundary is 
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used) 1 

n&d) = 2 l[Xi = cr and xi+d = /3] (2.1) 
i=l 

as the total number of counts of a particular joint nucleotide-pair type (a, p) with the two separated 
by a fixed distance d, and 

N 

&ZCl[Xj = a] (2.2) 
i=l 

as the number of counts of the nucleotide type (Y. Note that naa (0) = n,. 
The sample mutual information function can be defined as (the notation ^ is used to indicate an 

estimate) 2 : 

Mf@)=; c c 
a=(G,C,T,A) P=(G,C,T,A) 

nap(d)& (Nz(pd)) 

=logN+; c c 
(I= (G,C,T,A) /3= (G,C,T,A) 

(2.3) 

This sample mutual information function is an estimator of the mutual information function: 

(2.4) 

where Paa (d) is the joint probability of ((.u, p) symbol pair, and Pa is the density of symbol CL This 
quantity was first introduced in information theory [ 491, and recently is applied to, for example, the 
study of chaotic nonlinear dynamics [ 5 1,16,2 1,19 1, symbolic sequence analysis [ 20,28 1, learning 
features from experiments [ 46 1, nonlinear prediction [ 341, improving neural network performance 
[ 121, identifying active sites in AIDS virus sequence [ 231. Mutual information is now considered 
a standard measure of correlation (see page 634 of [45] ). The famous “PAM” (Point Accepted 
Mutation) matrix element used to measure the point mutation rate from one amino acid to another 
is of the form of log-likelihood [ 91, and the average of all these matrix elements is exactly a mutual 
information [ 21. See also a textbook introduction in [47]. 

One may also use the traditional covariance or autocorrelation function to calculate the same- 
symbol correlation (note that cross-correlations between different types of symbols need to be 
defined separately). Here is a sample covariance function: 

cozd) = (2.5) 

1 An alternative sampling method is to not use the cyclic boundary condition, so n,j (d) E CT”;” 1 [Xi = a and Xi+d = 
B]. Because the number of point sampled is less than N, one might want to introduce some correction factor to compensate 
this fact. 
2 Other alternatives include: (1) to use logI instead of lo&; and (2) to normalize the function by its value at d = 0, i.e., 

iii(d) = M3)lM%). 
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which is an estimator of the covariance function: 

cow(d) E 

a= (G,C,T,A) 

(Lm - Pi). (2.6) 

And one can define a sample autocorrelation function - the sample covariance function normalized 
by its value at d = 0: 

lq) = naa Cd) - d/N 
n, - ni/N ’ 

which is an estimator of the autocorrelation function: 

(G,C,T,A) (pa, td) - p,‘) 
r(d) = ‘;,.=(,,,;,,, (P, - P’) ’ a 

(2.7) 

(2.8) 

Again, there are alternative definitions, either concerning the sampling method (e.g., whether or 
not to use the cyclic boundary condition) or concerning the definition of covariance function for 
DNA sequences (e.g., whether or not to take the absolute value for each term in Eq. (2.6) before 
adding these together). 

Frequency domain characterization. Due to various reasons (see, e.g., pages 7,8 of [43], including 
being easier to interpret the result), power spectrum, instead of autocorrelation function, is often 
used to characterize the statistical structure of a sequence. Here is a sample measure of power 
spectrum of DNA sequence 3 : 

a=(G,C,T,A) i= 1 
(2.9) 

The frequency is f = k/N (k = 1,2,. . . N/2). By the convolution theorem (also known as 
“Wiener-Khinchin theorem” in this context), a power spectrum is the Fourier transform of the 
corresponding covariance function or autocorrelation function. We call a sequence “ 1 /f a spectrum” 
if its power spectrum behaves as an inverse power-law with the exponent a: S (f ) - l/f a. Two 
extreme cases are trivial: cy M 0 corresponds to white noise, while random walk sequences, step 
functions, or any sequences with a linear autocorrelation function lead to (Y z 2. 

Cumulative variables. The approach of using cumulative variables to study correlation structure of 
DNA sequences can suppress fluctuations in cow (d) or r(d) [41], but it measures essentially the 
same thing. Following Ref. [ 4 11, we define the purine-pyrimidine sequence as (purine = (A,G), 
pyrimidine = (CT) ): bi is 1 if xi = (A, G), and 0 if xi = (C, T). The cumulative variable 
yk(l) is a sum of bi within a window of size 1: yk (I) S xi=k k+‘-l bi. The variance of yk (I ) series 
(k = 1,2;.., N - 1 + 1) - var, (I) (subscript y indicates the y series)- can be estimated by 

(2.10) 

3 There are also other definitions of power spectrum for multi-symbol sequences (e.g., [52] ). 
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It can be shown that VU,(~) is a sum of covariance functions from the original purine-pyrimidine 
sequence [41,22] (subscripts b indicates the original binary series): 

W,(l) =I.CoV~(0)+2(1-1)~cov~(1)+2(1-2)~cov~(2)...+2~cov~(l-1). (2.11) 

From Eq. (2.1 l), if {bi} iS a white noise, then all COvb (d)‘s are zero CXCCpt covb (O), so var, (Z) is 
a linear function of 1. Similarly, if {bi} is generated by a first-order Markov chain with only l-step 
correlations, CoVb (d) decreases with d exponentially, so var, (1) is almost linearly proportional 
with I, plus an exponential correction. On the other hand, if co’u1, (I) decays slower than exponential 
functions, vur, (I) may not change with Z linearly. In particular, a power-law function in Covb (d) 
leads to a power-law function in VU,(Z). 

Any one of the three approaches (direct calculation, frequency domain characterization, and 
cumulative variables) can be used to analyze the correlation structure of DNA sequences. In the 
following, we will first visualize the base composition fluctuation in some long DNA sequences, 
then review the study of correlation structure that has appeared in recent publications, and discuss 
some issues currently under debate. 

2.1. Large scale fluctuations in base composition 

One of the easiest ways to obtain information from a DNA sequence is to “view” it. Good 
visualization can help us develop intuition about the sequence. Since the study of correlation 
structure is essentially the study of fluctuation of base densities at different length scales, we view 
the base densities within a moving window of different sizes ( W). Besides the window size, another 
parameter is the moving distance from one window to another (D). 

To simplify the work, we plot two types of densities instead of four base densities. The first is 
the density for G or C (“G + C content”) within the jth moving window: 

PG+C(J') = & 
(j-lP+W 

c 11 ifxi = (G,C)], j= 1,2 ,.... (2.12) 
i=(j-l)D+l 

If the moving distance D is equal to the window size W, windows are non-overlapping; if D < W, 

windows are overlapping. Similarly we can calculate the purine density: 

Ppurine (j 1 = w ’ ‘j-!f+w l[ ifxi = (A,G)], j = 1,2 ,.... 
i= (j-1)0+ 1 

(2.13) 

Fig. 1 shows &+c and ppucne for the complete DNA sequence of Saccharomyces cerevisiae (also 
called budding yeast) chromosome 3 (GenBank locus name: SCCHRIII; accession number: X59720) 
[ 381 with window sizes of W = 1000, 10000, and 100000 bases, respectively (the moving distances 
D is fixed at 1000 bases). The sequence length is N = 3 15,338 bases. The average density of G + C, 
0.3855, and the average density of purine, 0.4998, are drawn by the horizontal lines. 

The first impression of Fig. 1 is that the smoother fluctuations with larger window sizes look 
quite differently from that with the smaller window size. In other words, the small-scaled fluctuation 
behaves independently from those of large-scaled fluctuation, and both can be very complicated. 
Also note that the fluctuation of G + C content and that of purine density are completely different, 
giving a caution to those studies that reduce a DNA sequence to one of the binary sequences. The 
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Fig. 1. G + C content and purine density of budding yeast chromosome 3 with various window sizes (W= 1000, 10000, 
100000). The moving distance is fixed at D = 1000. The sequence length is N = 315,338 bases. The moving windows in 
the second and the third case are overlapping. 
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Fig. 1 -continued. 
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Fig. 2. Fluctuation of G + C content in human cytomegalovirus (strain AD1 69) sequence with window sizes W = 700, 7000 
The moving distance is fixed: 0~700. The sequence length is N = 229,354 bases. 
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Fig. 3. Fluctuation of G + C content in human blood coagulation factor VII gene sequence with window sizes W = 40, 400. 
The moving distance is fixed: D=40. The sequence length is N = 12,850 bases. 

fluctuation of G + C content with the window size W = 100000 is reminiscent of the “isochore” 
in frog, chicken, mouse, and human genomes studied by Bernardi’s group [ 31 4. 

The density fluctuation in budding yeast chromosome 3 sequence illustrates well the possible 
existence of many different length scales. It is not uncommon in this type of situation that a G + C 
rich region can contain many subregions that are G + C poor, or vice versa. Here we plot a few 
more density fluctuations of other DNA sequences whose statistical structure has been calculated in 
one way or another elsewhere. To save space, we only plot the PG+c fluctuations. These sequences 
are: 

- 

The complete sequence of a human cytomegalovirus (strain AD1 69, with the GenBank locus 
name: HEHCMVCG, and accession number Xl 7403) [ 81. The sequence length is N = 229,354 
(Fig. 2). The power spectrum of its base sequence was calculated in [ 561. 
The complete sequence of human blood coagulation factor VII gene (GenBank locus name: 
HUMCFVII, and accession number: 502933) [37]. The sequence length is N = 12,850 (Fig. 3). 
Both the mutual information function and power spectrum of this sequence is calculated in 
[31,30]. 
The complete sequence of bacteriophage lambda (GenBank locus name: LAMCG; accession 
number: 502459) 1481. The sequence length is N = 48,502. All studies of this sequence were by 
using the cumulative variable method, see Refs. [41,22,42,25]. 

4 An interesting observation of the budding yeast chromosome 3 sequence is that only coding region is responsible for 
the G + C rich/poor variations [ 501. The large-scale variation of G + C content along the sequence is not observed in 
non-coding segments [SO]. 
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Fig. 4. Fluctuation of G + C content in bacteriophage lambda sequence with window sizes W= 160, 1600. The moving 
distance is fixed at D= 160. The sequence length is N = 48,502 bases. 

To make the plots in Figs. l-4 somehow comparable, we choose the moving distances to be about 
l/300 of the sequence length (D= 700, 40 and 160 for Fig. 2, 3 and 4). The first plot in each 
figure has W = D, and the second plot has W = 1OD. Among the four sets of plots, it seems that 
bacteriophage lambda sequence shows the least change as the window size is increased by ten-fold. 
We will have more comments on these four sequences in the next section. 

2.2. Published results of statistical correlation structure of DNA sequences 

In Ref. [ 301, the mutual information function of five coding sequences and five non-coding 
sequences from human DNA is calculated. The sequence length ranges from around 2 kb to 16 
kb. It is observed that correlation structure as measured by the mutual information function can 
differ from one sequence to another. For these sequences (ten in all), the correlation decays to a 
negligible value at less than 10 bases for coding sequences, and at slightly more than 10 bases for 
non-coding sequences, with the exception of one coding sequence and one non-coding sequence. 

That exception in non-coding sequence has the longest correlation length among the 10 cases, 
which is the blood coagulation factor VII gene whose base composition fluctuation is plotted in 
Fig. 3. The correlation structure of the sequence is examined in more detail in Ref. [ 3 11, using 
the complete sequence instead of only the non-coding region (though 76% of the sequence is non- 
coding). In particular, it is observed that the power spectrum of the sequence has a l/f a spectral 
component, with (Y = 0.84, 0.57 and 0.53 when the first, the middle, and the last 213 = 8192 bases 
are taken for the spectral analysis (the sequence length is N = 12850). This was the first example 
that the l/f a spectral component in DNA sequence was shown. 
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The similar l/f a spectral component is also observed in a DNA sequence with much longer 
length: the human cytomegalovirus [ 561, whose base composition fluctuation is plotted in Fig. 2. 
The sequence is cut into 3 or 4 pieces, and 2 l6 = 65536 bases from each piece are used for a 
spectrum calculation. It should be noted that correlation structure at length scales longer than 65 
kb is not studied in [56] even though the sequence length iV is approximately 229 kb. 

Another interesting study in [56] is the average spectrum of all sequences in GenBank with 
2” = 2048 base in each spectrum calculation. As such, this study reflects only the average 
correlation structure up to the length scale of 2 kb. The exponent cy in the l/f a spectral component 
is amazingly close to 1, highly reminiscent of the similar spectral analysis of music time series [ 581. 
A reason why a much better quality l/f spectral component is observed in this case is that there 
are many more different length scales mixed into one statistic, and a good l/f spectrum requires 
many different length scales. 

The base-base correlations in a 300 kb long sequence - the complete sequence of chromosome 3 
of budding yeast, whose base composition fluctuation is plotted in Fig. 1 - are calculated in [60] 

for all possible types of base-pair: ZQ&Z) = Nz. A difference from 1 for Z$@) indicates a 

correlation. It is observed that I,%)% approach 1 from above, while Z&? )‘s (p # a) approach 1 
- 

usually from below, but sometimes alternatingly from above and below [60]. Also, Z,, (d)‘s reaches 
1 at longer distances than Zaa)‘s, i.e., the longest length scale for yeast chromosome 3 is decided 
by the base-pairs of the same type, which is about 1 kb [60]. 

All these published studies of correlation structure examine base-base correlation. To give a more 
complete picture, we include here (Figs. 5-8) power spectra of density fluctuations of the four 
DNA sequences illustrated in Figs. l-4. In this calculation, a sequence is partitioned into y1 = 2” 
non-overlapping windows, and the densities of four types of nucleotide are calculated (PA (j), 

PC(~), PC(~) and m(j), forj =I, 2, . . . . n). The overall power spectrum of the density fluctuation 
is the sum of four power spectra of each nucleotide type sequence. If the sequence length is long, 
the spectral analysis for density fluctuation is computationally easier than that of the base sequence 
because of its smaller number of data points. 

The window sizes used in Figs. 5-8 are around a few dozen bases (76, 55, 25 and 23 bases, 
respectively). The ranges of x and y axes are chosen in such a way that the cross-diagonal line 
corresponds to exactly 1 /f (Figs. 5, 6 and 7) or 1 /f2 (Fig. 8). Roughly speaking, the low frequency 
power spectra are close to 1lfO.j in Fig. 5, and close to 1 /f in Figs. 6 and 7, but close to l/f 2 in 
Fig. 8. Figs. 6 and 7 are consistent with the previous results that human cytomegalovirus (strain 
AD 169) sequence [ 561 and human blood coagulation factor VII gene sequence [ 3 1 ] have 1 /f-like 
spectra. Fig. 8 helps us to understand both sides of the argument on whether there is a long-range 
correlation in the bacteriophage lambda sequence [41,42,22,25]. We can see that the low frequency 
spectrum is l/f 2, which is essentially trivial and easily explainable. 

2.3. Review of some controversial topics 

Another line of approach to the study of correlation structure in DNA sequences first appeared 
in [41]. Although it claims less concerning the correlation structure than [ 3 1 ] and [ 561 (the 
latter emphasizes the particular correlation structure: the l/f a spectral component), this paper has 
generated much more controversy. In this subsection, we will focus on reviewing four controversial 
topics, with three generated by that paper and one by Ref. [ 3 1 ] ). These are: ( 1) how good is 
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Fig. 5. Power spectrum of the density fluctuation of the budding yeast chromosome 3 sequence. The window size is 76, and 
the number of non-overlapping windows is 2 l2 = 4096. The total number of bases included in the calculation is 311,296 
(= 4096 x 76) with the last 4042 (= 315,338 - 311,296) bases unused. 

Fig. 6. Power spectrum of the density fluctuation of the human cytomegalovirus (strain AD 169) sequence. The window size 
is 55, and the number of non-overlapping windows is 2 l2 = 4096. The total number of bases included in the calculation is 
225,280 (= 4096 x 55) with the last 4074 (= 229,354 - 225,280) bases unused. 

the scale invariance in the correlation structure in DNA sequences; (2) whether the observed non- 
white-noise feature in DNA sequences is purely a consequence of the sequence being composed of 
subregions with different base densities, whereas each subregion is a white noise; (3) whether the 
1 /f-like spectral components in DNA sequences are actually Lorenzian spectra; and (4) to what 
degree coding and non-coding sequences have different statistical correlation structures (this topic 
was actually suggested earlier in [ 301). 

On scale invariance. As we have seen in Eq. (2.11), function vary (1) changes with I much more 
smoothly than function covb (d) changes with distance d. It seems hard to observe co’ub (d) as a 
power-law function of d in DNA sequences, but much easier to observe vary(I) as a power-law 
function of I, at least up to some upper limit. 

Several publications show that the power-law behavior of vary (I) breaks down at larger values of 
l’s [44,7,22]. It is quite natural to assume a mixture of a few length scales instead of a continuous 
distribution of length scales as usually the case for scale-invariant systems. Most important, if there 
is an upper limit for the largest length scale, the assumption of scale invariance is no longer valid 
beyond that length scale, and one may not be able to reliably calculate the scaling exponent. See 
also [ 351 for a vary (I) versus 1 plot from the budding yeast chromosome 3 sequence. 

On whether a complex sequence is decomposable to subregions with simple correlation structures. 
Based on the observation of mainly one sequence (bacteriophage lambda, whose base composition 
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Fig. 7. Power spectrum of the density fluctuation of the human blood coagulation factor VII gene sequence. The window 
size is 25, and the number of non-overlapping windows is 2g = 512. The total number of bases included in the calculation 
is 12800 ( = 512 x 25) with the last 50 ( = 12850 - 12800) bases unused. 

Fig. 8. Power spectrum of the density fluctuation of the bacteriophage lambda sequence. The window size is 23, and the 
number of non-overlapping windows is 2 ii = 2048. The total number of bases included in the calculation is 47 104 (= 
2048 x 23 ) with the last 1398 (= 48502 - 47104) bases unused. Note that the scale of the y-axis is expanded so that the 
cross-diagonal line corresponds exactly to 1 /frequency2. 

fluctuation is plotted in Fig. 4), it is claimed that the long-range correlation observed in [ 411 can 
be fully accounted for by the difference of base compositions in subregions (might also be called 
“patches” or “domains”), such as the difference of G + C content [22]. Besides the problem that 
this sequence was not even listed as an example of long-range correlation in [41], there are other 
problems in the argument in [ 22 1. 

First, the effect of different G + C content or purine density at different regions can be removed 
by “detrending”, as in the traditional approach for studying non-stationary time series such as the 
gross national product time series [ 171. The detrending is carried out for the bacteriophage lambda 
sequence as well as other controlled sequences [ 421. It is shown that in those detrended sequences, 
both a trivial linear function and a non-trivial scaling function are possible for var, (I) [42]. Not 
surprisingly, G + C content is not responsible for all features of correlation structure of a DNA 
sequence. And often it is completely irrelevant to the observed long-range correlation. 

Second, even if the effect of different base composition in different subregions is not removed, it 
can be easily recognized as a trivial source of correlation. The power spectra of density fluctuation 
presented at the end of last section illustrates this point: the bacteriophage lambda sequence has 
a 1 /f * spectral component while other three sequences have a 1 /f-like spectrum. Although both 
types of spectra are not white noise, it is the l/f-like spectra that reveals the more interesting 
multi-length-scaled long-range correlation. 
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To emphasize the trivial contribution of subregions with different base compositions to the 
correlation structure, a simple calculation of the covariance function is carried out in the Appendix 
for both the case with two subregions and the case with many subregions. If the correlation structure 
within any subregion is a white noise, the overall covariance function is a constant term contributed 
from squares of base density differences, assuming the distance is smaller than the subregion sizes 
(see the Appendix). When the distance is larger, more samplings are obtained from crossing two 
neighboring subregions. Even if we add this term, thus a constant covariance function becoming 
distance-dependent, the distance-dependent form is still simple (linear). Such simple functional 
form will not lead to a l/f-like spectrum. 

The central issue in this discussion is whether DNA sequences are simple or complex. The white 
noise is the simplest type, and patching fixed-length subregions may be the next simplest type. Only 
when we patch subregions with many lengths that satisfy a power-law distribution, it is possible 
to have a l/f-like spectrum. Nevertheless, it is not the patching of white noise subregions that is 
responsible for the complexity of the sequence. Rather, it is the extra condition introduced to the 
length distribution (i.e., the power law distribution) that makes the sequence multi-length-scaled 
and complex. As we examine more and more DNA sequences, we will realize that most DNA 
sequences are not simple. 

On whether the spectra of DNA sequences are Lorenzian spectra. In a recent study [4], it is 
questioned whether a Lorenzian spectrum is “mistaken” as a l/f a spectral component. Following 
the notation in [4], suppose the autocorrelation function is r(d) = Cd0 a (do)ePdldo when d = 1, 
2, . . .) while r (0) = 1 (a (do) is the weight of contribution from a particular length scale do), then 
the power spectrum via the discrete Fourier transform is: 

S(f) = 1 +xa(do) 
cos(27cf) - e-‘ldo 

do 
(e1ldo + e-lldo)/2 - cos(2nf )’ 

(2.14) 

Each term with a fixed do value is a Lorenzian-type spectrum, which approaches 2do/ ( 1 + (2zdo f )2 ) 
in small f and large do limit. The latter standard expression of the Lorenzian spectrum is obtained 
by the continuous Fourier transform of the exponential function. 

The analysis carried out in [4] is the average spectrum for flanking sequences (those located 
before or after a gene), with the DNA sequence being converted to a binary sequence, and it seems 
that 2i2 = 4096 bases are taken for each spectrum calculation (see the black dots in Fig. 2 of [4] ). 

First we note that the power spectra presented in [ 311 and [ 561 are not Lorenzian spectra: 
there is no tendency at low frequencies for the spectrum to flatten out which is a signature of the 
Lorenzian spectrum. So whether the spectrum in the Fig. 2 of [4] is a Lorenzian spectrum or not 
does not affect the claim of l/f -like spectra in [ 3 1 ] and [ 561 - as different segments of DNA 
sequences may have completely different statistical structures. On the other hand, if the flanking 
sequence studied in [4] is indeed a Lorenzian spectrum, it will not be mistaken as a l/f -like 
spectrum because the low frequency components will be off the 1 /f line (e.g., see the first black 
dot in Fig. 2 of [4] ) 5 . 

5 The second spectrum in Fig. 2 of [4], as represented by open circles, is for an artificially joined long sequence of flanking 
segments. As it is hard to imagine that unrelated flanking segments can have any correlation between them, it is not 
surprising that the resulting long sequence will lack a long-range correlation. 
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Second, the connection between l/f spectra and Lorenzian spectra has long before been suggested 
[55]. A Lorenzian spectrum represents a specific length scale, whereas a l/f spectrum indicates 
a mixture of many different length scales. Naturally, a superposition of many Lorenzian spectra 
may lead to a l/f-like spectrum. One can easily perform some tests by adding more and more 
Lorenzian spectra with larger and larger length scales, and it will be observed that the overall 
spectrum can look very much 1 /f-like. In particular, the exact l/f spectrum corresponds to the 
case of a (da) 0: l/&. Nevertheless, the decomposition of a l/f-like spectrum to many Lorenzian 
spectra can be arbitrary, so is the number of length scales as well as their values. 

The third point is on the flat plateau at high frequencies. The existence of this plateau depends 
on the fact that Cd0 a(&) < 1, i.e., there is a “discontinuous” drop in r(d) from d = 0 to d = 1. 

If Cd0 a (do) = 1, a Lorenzian spectrum extends its 1 /f 2 tail to high frequencies and there will be 
no identity confusion with l/f spectrum. This drop in autocorrelation seems to be the source of 
the “white noise component” observed in [ 3 1 ] and [ 561. 

On the difference of correlation structure between coding and non-coding regions. In higher organ- 
isms, the mapping of a stretch of DNA to the corresponding amino acid sequence is frequently not 
continuous, but is interrupted by the regions called “introns”. Introns are non-coding regions, since 

its DNA contents do not translate to part of the amino acid sequence. The parts that are translated 
to the amino acid sequence are called “exons”. Much effort is spent on automatic recognition of 
intron/exon regions, and currently the success rate for a computer recognition is about 60-70 % 

1141. 
If we know which sequence is coding and which is non-coding, we can determine the correlation 

structure for each sequence, and then see whether there is a common property among all coding 
sequences or among all non-coding sequences. There does not seem to be a priori reason that coding 
sequences should have a different correlation structure from that of non-coding sequences. 

In [ 131, the correlation coefficient between the base composition in two co-moving windows is 
studied as a function of the distance between the two windows. This correlation coefficient decays 
much slower in human DNA than E. coli DNA [ 131. Non-coding regions are common, of course, 
in human DNA, and rare in E. coli. 

In [ 301, it is observed that non-coding sequences consistently have longer correlation length than 
coding sequences. Nevertheless, it is not clear whether the result can be generalized to other cases 
because there are few sequences being examined and all sequences are human DNA. 

In [ 4 11, it is shown that all complementary DNA (cDNA) (they are made by reverse transcription 
from the mature mRNA and thus do not contain introns) and other intron-less DNAs such as 
prokaryote DNAs being studied do not exhibit long-range correlation (judged by whether vary (1) 
is a linear function of I). However, many intron-containing DNAs do have long-range correlation 
(judged by whether vary (I) is a non-linear function of 1). Two more examples are given in [ 51 
showing again that intron-less sequences do not exhibit long-range correlation. 

One suggestion is that intron-containing sequences have long-range correlation because intron 
and exons may have totally different statistical properties and when they are mixed in the sample 
statistics, a spatial structure might be detected [ 361, as shown for example by the calculation in 
Appendix (e.g., Eq. (A.7) ). It implies that if the similar calculation is carried out for intron only, 
no long-range correlation will be detected. Such calculation has already been done in [301 and 
clearly intron alone can exhibit long-range correlation. 

Instead of separating exon and intron, in Ref. [ 561, DNA sequences were grouped according to 
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their Genbank categories 6. Besides the fact that the exponent Q: in the l/f a spectral component 
is slightly different from one category to another [56], there is a striking qualitative difference 
between the spectra of bacteria and phage sequences and those of others, Note that bacteria 
and phage sequences contain mostly coding sequences - these sequences are more “compact” or 
“efficient” in the context of protein-making. 

In another study [ 571, it is shown that in a certain grouping among a few GenBank categories 
(group 1 contains primate, rodent, mammal, vertebrate DNAs, group 2 contains invertebrate, plant 
DNAs, and group 3 contains virus, organelle, phage DNAs), intron sequences and exon sequences 
do not exhibit dramatic difference in their l/f” spectral component. Some of the grouping is 
questionable, such as whether organelle DNAs share anything in common with virus DNAs. Also, 
one important question not addressed is about non-coding sequences other than introns, i.e., the 
intergenic sequences: whether intergenic sequences have a different correlation structure from that 
of intron sequences. 

Despite the inconclusiveness of our knowledge concerning the extent the correlation structure 
differs between coding and non-coding sequences, we make the following speculations: 
- As mentioned before, there is no a priori reason to believe that the correlation structure should be 

different between coding and non-coding sequences. However, there are major physical charac- 
teristics of coding sequences, most notably the constraint of triplet (codon) usage in translation 
(for a review of this topic see several chapters in [ lo] ). One reason to expect that correlation 

structure might be different in the two is that coding regions are likely to be under different 
evolutionary constraints than non-coding regions. 

- If this is correct, the way correlation structure diverges between coding and non-coding sequences 
would depend on what have been the main driving forces in the DNA changes in non-coding 
regions, and how often each mechanism of DNA change has been in effect. For example, if point 
mutation is the major driving force to change non-coding regions, non-coding regions would look 
more like a random sequence than coding regions. On the other hand, if duplication of larger 
segments is the major driving force, non-coding regions would become less random and more 
regular than coding regions. 

- Will the difference of correlation structure between coding and non-coding regions ever be useful 
in an algorithm for automatic recognition of coding regions? It would be less useful if other 
methods are more accurate and if the DNA sequences are known accurately. But if the sequence 
data is error-prone (it might be the case for a brute-force sequencing in the early stage of human 
genome project ), one needs to re-evaluate each method [ 5 3 1. Since the calculation of correlation 
structure is rather insensitive to a frame shift due to point deletion or point insertion, the result 
will be the same whether such error exists or not in the sequence. 
Finally, since it has been shown that long-range correlation exists in budding yeast chromosome 

3 sequence [ 60,351, it is interesting to note that 30% of the sequence is estimated to be non-coding 
and most of them are intergenic sequences instead of introns [ 151. 

6 As pointed out in [7], these categories are not of the equal taxonomic rank. 
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3. Dynamical origins of long-range correlation in DNA sequences 

If we can recreate the dynamical process that led to the current DNA sequences, we should 
be able to understand why these sequences have the correlation structure they have today. For 
example, we can take the point of view that the Markov chain model implicitly assumes that the 
sequence is created from one end to another: at each moment, a new site is considered, and a new 
base is emitted from the source of the Markov chain to become the last base of the sequence. The 
probability of picking each base-type depends on the previous base (or the previous few bases for 
higher-order Markov chains) in the sequence. Such process clearly is not a natural one for modeling 
DNA evolution, and it is thus not surprising that the Markov chain fails to characterize many 
features of the correlation structure of DNA sequences. 

A different class of models carries out sequence manipulation, i.e., updating an existing se- 
quence by certain rules. For example, cellular automata are a type of sequence manipulation that 
synchronously updates bases according only to local environments (see [ 59,541 for a general discus- 
sion and [ 181 for recent work). The idea to use cellular automata to model DNA sequence change 
is considered in Ref. [6]. We might ask the following question: what is the resulting correlation 
structure if one applies a cellular automaton rule repeatedly on a sequence that is initially white 
noise? 

This question is studied in [26]. The answer is provided only for a special class of situations: if 
the dynamics of a cellular automaton is periodic, then the sequence can be characterized by regular 
languages (almost the same as Markov chains), and the autocorrelation function of the limiting 
sequence is exponential - long-range correlation occurs (if it does) only within the framework of 
exponential functions [ 261. For more general situations, we make a few comments: 
- Since cellular automata updates bases locally, it is usually hard to propagate local effects cooper- 

atively to generate a long-range correlation. 
- For some cellular automata, their temporal dynamics are irregular and their spatial configuration 

is unstable - these are termed “chaotic” 7. Since a local effect propagates very fast in chaotic 
cellular automata, we would expect some long-range correlation exists in the limiting sequence. 
Nevertheless, such long-range correlation tends to be a weak signal as compared with the high 
degree of randomness created by the chaotic dynamics. In this case, the long-range correlation is 
expected to be statistically insignificant. 

- The best candidate in cellular automata for generating detectable long-range correlation has a 
combination of the ability to propagate local effects and a low randomness level. Such rules are 
the “edge-of-chaos” cellular automata [24,33]. In fact, because the correlation at intermediate 
ranges is small for cellular automata with both periodic and chaotic dynamics, the existence of 
such correlation has been used to locate the edge-of-chaos region in a cellular automata rule space 

[331. 
- In a special class of cellular automata that maintain propagating gliders (solitons), the spatial 

pattern can be very complicated [ 11. In several cases, the spatial spectra after averaged over 

’ To avoid confusion, this definition for a cellular automaton being chaotic [40,33] is different from the definition in 
continuous-variable non-linear dynamical systems: here, we have linear propagation of perturbation in position space, there, 
it is the exponential propagation of perturbation in variable space. One way to reconcile the two is to map a (e.g. binary) 
sequence to a real value so that the binary representation of the real value is that binary sequence with a particular choice 
of the decimal point. By doing so, a linear divergence in the position space corresponds to an exponential divergence in the 
variable space. 
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Fig. 9. An illustration of the dynamical process as defined by the expansion-modification system (reproduced from Fig. 1 
of [29]). 

500 time steps are l/f” (a > 0.5) at low frequencies (see Fig. 4.2b, 4.7, and 4.9 of [l]). 
But note that such low-frequency 1 /f a spectra often appear during the transient, also note that 
different length scales may be picked up at different time steps (because a time average has been 
performed in [ 1 ] ). 

Since cellular automata are again not clearly the most “natural” model for DNA evolution, we 
turn our attention to sequence manipulations that increase the sequence length. In the following 
two subsections, we will first review the “expansion-modification” system, and then argue about 
the relevance of models like expansion-modification systems to DNA evolution. Some of our points 
were already presented in [ 321. 

3.1. Expansion-modification systems 

The prototype of the expansion-modification systems is defined as follows (for two symbols) 
[27,29]: 

t t+1 

l-, 11:1-p 

{ 0 :p 

o+ 00:1-p 

{ 1 : p. (3.1) 

To describe in words, the symbol 1 at time t is updated to either two symbols 11 (with a 
probability 1 - p ), or the symbol 0 (with a probability p ). Similar action is applied to the symbol 
0. An illustration of this dynamical process is in Fig. 9. An example of the spatial-temporal pattern 
is presented in Fig. 10. 

When the probability for the “switch” operation (= p) is small, the limiting sequence exhibit a 
perfect l/f” (cu z 1) spectrum (unlike DNA sequences with l/f* spectral component, spectra of 
sequences generated by Eq. (3.1) do not contain a white noise component). The exponent cx is a 
function of p. One such spatial l/f spectrum generated by this system is presented in Fig. 11. 

Unlike cellular automata, the expansion-modification system uses a different way to propagate 
local effects to global scale: it forces the old neighbors farther away by creating new neighbors. This 
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Fig. 10. An example of the spatial-temporal pattern of the expansion-modification system at p = 0.1 (reproduced from 
Fig. 2b of [29]). 
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Fig. I 1. Spatial spectrum of a sequence generated by the expansion-modification system at p = 0.1 (reproduced from Fig. 3b 
of [29]). 

mechanism avoids the difficulty of having both elements of chaos and non-chaos at the same time 
as in the case of a cellular automaton. 

A simple argument shows that power-law covariance or autocorrelation functions can be rnain- 

tained by the expansion-modification system. The argument goes as follows (we use subscript to 
represent the time step): first, there is a linear expansion of the distance after each time step: 

d t+l = dt(2 -P). (3.2) 

Then, the covariance at time step t, distance dt is essentially the same with that at time step t + 1, 
distance d, + 1, with perhaps a proportionality factor ,I. Using Eq. (3.2), we have 

cov(d,+,),+, =kwu(dt)t =kov (3.3) 
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Assuming that the covariance function is invariant by the updating (another way to say this is that 
the function reaches the asymptotic limit), so we can drop all subscripts: 

cow(d) M km 

A power-law function cuz, (d) N l/da is a solution of Eq. (3.4), as long as 

(3.4) 

(3.5) 

When /I z 0, the power spectrum l/f l-p becomes l/f. For p being 0 requires 2 being close to 1, 
but p away from 1. 

This argument is used in [27,29]. Actually, the condition for cozi (d) being l-step invariant can 
be relaxed to r-step (T > 1) invariant: 

cow(d) =~Tcow (,Zfp,T)_ (3.6) 

Since we only deal with positive, real values here, as the function con (d) N 1 /dfl is inserted to the 
equation, the expression for p is the same. As r goes to infinity, the same result holds. 

Note that our argument about power-law covariance function being maintained by some rule 
with a linear expansion of distance does not really show how the power-law covariance function is 
generated, before being maintained. The latter might be called an “operational” proof. 

When the expansion-modification system was first studied, we had thought about many potential 
applications of the model, ranging from particle showers in high-energy experiments, the expansion 
of the universe, grammar of natural languages, to composition of musical notes. But it occurred to 
one of us (KK) that no other examples were more compelling than the evolution of DNA sequences. 
The expectation that expansion-modification system could be relevant to DNA sequences was thus 
conceived before we actually analyzed and eventually observed cases of long-range correlation in 
DNA sequences. 

Interestingly, on one hand, we have the observation that the exponent a in l/f a spectral 
component differs from one Genbank category to another [ 561, and on the other hand, the 
exponent ar in the l/f* power spectrum generated by the expansion-modification system depends 
on the mutation rate p [27,29]. If we believe that DNA sequences are updated according to some 
rules similar to the expansion-modification system, then the variation of the exponent Q in DNA 
sequences might reflect a difference of degree of point mutation relative to point duplications. 

3.2. Duplication events in DNA evolution 

We use the phrase “DNA duplication” in a general way here to describe the general situation 
when segments of DNA get copied and inserted elsewhere in the genome. This can include situations 
when DNA is duplicated to adjacent segments, or otherwise. The result in either situation is the 
development of tandem (adjacent) or dispersed repeating segments. Because of the underlying 
mechanisms involved, the duplicated segments can appear as not exact copies. 

The expansion-modification system described in Eq. (3.1) represents one special case of dupli- 
cation, that involves single point duplication that leads to a single tandem repeat per duplication 
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event. Similar tandem repeats are though to be common during DNA replication where the replica- 
tion machinery causes segments to be duplicated through unequal pairing during mitosis. Clearly, 
our model is simpler than the real situation and we make no claim about the biological reality of 
this model. 

Besides the duplication processes discussed above, there are many other sources of variation 
generation in DNA sequences. They fall into two broad categories, first there are the point mutations, 
such as point deletions and point insertions, and secondly there are the chromosomal level variations 
such as recombination, translocations, and deletions, for example. Chromosomal level (meaning 
essentially any relatively large segment) variation processes are thought to be major sources for 
generation of raw material for evolution to work on, such as in the shuffling of modular elements 
described in [ Ill. 

The duplication of relatively large segments of DNA provides interesting sources of variation for 
evolution. For example, entire genes are known to duplicate and insert elsewhere in the genome, 
leaving the original copy intact and operational, while the duplicated copy can be subject to further 
modification and evolutionary selection. We will not address the level of organization at which 
evolution operates here, but rather assume that a mechanism exists that can ultimately influence 
the evolutionary potential of duplicated segments. Perhaps no one more advocates the role of DNA 
duplication in evolution than S. Ohno [39]. The principle argument here is that when entire genes 
or otherwise functional units are duplicated, the working original is left alone, while the duplicated 
copy can be subject to a different set of evolutionary dynamics. 

While genome length per se does not scale with complexity of the organism, it is true that longer 
genomes on an absolute scale can contain a larger collection of distinct elements than smaller ones. 
Increased genome length puts additional constraints on the existence of certain functional elements, 
such as origins of replication, since replication during the cell cycle is time-constrained, so that 
more origins are needed to replicate the longer segments during a fixed period of time. There may 
be other similar constraints that exist that are necessary for higher-order genome structure that are 
related to linear dimension. The type of analysis we have described here may provide insight into 
what the dynamics and constraints are in DNA organization. Clearly, there is much room for this 
type of analysis as the international human genome program provides biology the opportunity to 
ask such fundamental questions regarding DNA structure, organization, and dynamics. 
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Fig. A.l. Illustration for the calculation in the Appendix: (a) two-subregion case; (b) multi-subregion case. 

Appendix A. Calculation of covariance functions for sequences decomposable to many white-noise 
subregions 

Two subregions case (same-symbol correlation). Fig. A.la illustrates this situation. The overall 
sequence length is N, and the length for two subregions are Ni and N2. The ratio of the length of 
two subregions relative to the whole is fi = Ni/N and A = N2/N. 

Suppose the count of nucleotide type a in two subregions are n,(i) and na(2), respectively, we 
have 

j.7 _ &I _ Ql) + %2) N2- - - 
(I N N 

A similar decomposition of the joint probability is 

(A.11 

(A.21 

where n,~(~z) (d) is the number of cross-subregion counts of the (a, /?) base-pair out of total d 
counts. It is usually negligible as compared with other two terms if d C-C Nl, N2, N. 

The differences of base composition between two subregions are: 

APO = Pa(i) - Pat21 # 0, Af’g = p/1(1, - Pg(2) # 0. (A.3) 

It can be shown that the covariance function of the whole sequence as defined by Eq. (2.5) is 
related to the covariance functions of the two subregions in the following way: 

cozd) = 

= h c&h’) + hcov&’ ) + _kh c (aI2 + c na(r(12) (d) 

a= (G,C,T,A) a= (G,C,T,A) 
N 

= .f&&) + hcou~dd) + jifi c (ad2 (ifd CC Nl,N2,N) 
(I= (G,C,T,A) 
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M fif2 c (Eo)2 (if both subregions are white noise and d > 0). (A.4) 
u= (G,C,T,A) 

The above formula shows that the difference of base composition alone contributes a constant term 
to the overall covariance or autocorrelation function. The d-dependent term of co’u (d) is of the 
order of o (d/N) if d is smaller than Ni , N2: 

c nua(12) (d) 

N = c 
u= (G,C,T,A) a= (G,C,T,A) 

(A.51 

To summarize, the overall correlation structure of the sequence, if it is decomposable to two 
subregions with white noise but different base compositions, is very simple: it is a constant plus a 
small linear term. This correlation function does not share similar features with those of complex, 
multi-length-scaled sequences with 1 /f” spectral component. 

Two subregions case (different-symbol correlation). One can also easily derive the correlation 
between bases of different type (a # /3): 

= .hcwx;j (d) + .hco’~‘a;~ (d) + _fih@i@ (ifd << Ni,Nz,N) 

z f,.r,A?$AFp (if both subregions are white noise and d > 0) 

= -.f3(~)2 (if the sequence is binary) (A.6) 

Interestingly, the observat@ in the budding yeast chromosome 3 sequence that Ls)‘s tend to 
be larger than 1, while lag (d)‘s (p # (t) tend to be smaller than 1 [ 601 can be compared with 
our result Eq. (A.4) and Eq. (A.6) that covariance functions between same base type acquire a 
positive contribution from the base composition difference, whereas those between different base 
types acquire a negative contribution. 

Many subregions. All the above results can be generalized to K > 2 different subregions, each of 
them is a white noise. Fig. A. 1 (b) illustrates the situation, with the overall sequence length as N, 
the length of i’th subregion as N,, and fi = Ni/N. For example, we can show that 

coxd) = 
K-1 n,,(i,i+l) Cd) 

.hL~d) + c N 
i=l 

= &coi;;id) + c j:x1;1;(Aqjj,)2 + C y n,,(i,;l)(d) 
i=l a=(G,C,T,A) i=l j>i m=(G,C,T,A) i=l 

z $hcoGd) + C Fxf;fi(AGi;;i,J2 (if d << Ni,N) 
i=l a= (G,C,T,A) i= I j>i 

zz 1 FxA&(Ac. aCr,j )2 (if all subregions are white noise and d > 0) 
o=(G,C,T,A) i=l j>i 

(A.7) 
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where naa(i,i+l) is the count of (~,a) base-pairs crossing the i’th and the (i + 1)‘th subregions. 
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