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Abstract 

A coupled map lattice for convection is proposed, which consists of Eulerian and Lagrangian procedures. Simulations 
of the model not only reproduce a wide-range of phenomena in Rayleigh-BCnard convection experiments but also lead to 
several predictions of novel phenomena there: For small aspect ratios, the formation of convective rolls, their oscillation. 
many routes to chaos, and chaotic itinerancy are found, with the increase of the Rayleigh number. For large aspect ratios. 
the collective oscillation of convective rolls, travelling waves, coherent chaos, and spatiotemporal intermittency are observed, 
At high Rayleigh numbers, the transition from soft to hard turbulence is confirmed, as is characterized by the change of the 
temperature distribution from Gaussian to exponential. Roll formation in three-dimensional convection is also simulated, and 
found to reproduce experiments well. 

1. Introduction 

Rayleigh-Btnard convection has been extensively 
studied as a “standard” experimental model for tem- 
porally and/or spatially complex phenomena. When 
the aspect ratio is small, it shows a variety of routes 
to chaos such as subharmonic, quasi-periodic and in- 
termittencies, depending on the Prandtl number. For 
large aspect ratios, spatiotemporal intermittency is ob- 
served, which provides one of the standard routes from 
localized to spatiotemporal chaos, as is common in 
spatially extended systems. When the Rayleigh num- 
ber is very large, the experiments provide a test-bed 
for turbulence theory. It includes the recent discovery 
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of the transition from soft to hard turbulence, found by 
Libchaber’s group. In cases with a large aspect ratio 
and a relatively low Rayleigh number, pattern forma- 
tion of rolls has been extensively studied. 

In principle, it is expected that these experiments 
can be described by the Navier-Stokes (NS) equa- 
tions, coupled suitably to an equation for the tempera- 
ture field. In a weakly nonlinear regime, for example, 
a set of equations comprising of the NS equations and 
a temperature field with Boussinesq approximation is 
in quantitative agreement with experimental observa- 
tions, with regard to the critical Rayleigh number and 
the onset of oscillation of rolls. In a highly nonlin- 
ear regime (chaotic and turbulent regime), one has 

to resort to numerical simulation, to study this set ol 
equations. 

Saltzman’s pioneering simulation with the Fourier 
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mode truncation from the NS equations with Boussi- 
nesq approximation for the temperature field leads 
Lorenz to study his celebrated equation [ 1,2]. Yahata 
has employed the Galyorkin method to obtain an or- 
dinary differential equation with about 100 variables. 
His sequence of numerical studies has revealed the 
onset of chaos as well as the spatiotemporal structure 
of rolls in Rayleigh-BCnard convection with low as- 
pect ratio [ 3,4]. A large scale direct numerical sim- 
ulation of the NS equations has become possible by 
using huge computational resources [ 5-71. 

However, it is often difficult to adopt the NS equa- 
tions there, because of the limitation of computational 
resources and numerical stability problems, practi- 
cally. Furthermore, it is sometimes not easy to under- 
stand the phenomenology for convection completely, 
even if we succeed in reproducing the phenomena. 

So far, we do not have a “simple” model which 
reproduces all of the above phenomena. Is it possi- 
ble, then, to construct a simpler (and coarse grained) 
model to study the phenomena? 

In this paper, we introduce a coupled map lattice 
model which reproduces almost all phenomena known 
for Rayleigh-Benard convection except those associ- 
ated with the long wavelength instabilities (see [8] 
for the rapid communication of the present paper). Al- 
though we have not studied such instabilities as Eck- 
haus, zigzag, and skewed varicose here, we believe 
that these long wavelength instabilities can be repro- 
duced with our model by adopting a larger system 
size 3 . Also, we can analyze the phenomena, in terms 
of dynamical systems, with the use of, for example, 
Lyapunov analysis. Another advantage of this model 
is its fast computation. All the simulations are carried 
out with the use of workstations, rather than a CRAY 
or Connection Machine, although our model fits with 
parallel computations very well. This numerical effi- 
ciency enables us to globally search a wide parameter 
space, to predict a new class of phenomena, and even 
to make some quantitative predictions. 

The present paper is organized as follows: In Sec- 
tion 2, we construct a CML model for convection 

’ Preliminary simulations on 3-dimensional lattices show the Eck- 
haus instability. 

by introducing the Lagrangian procedure which ex- 
presses the advection for the flow. Numerical results 
of the model are presented through Section 3 to Sec- 
tion 9. The onset of convection (i.e., the Rayleigh- 
Benard instability point) and the onset of periodic os- 
cillations is studied in Section 3. With the increase 
of the Rayleigh number, the periodic oscillations are 
replaced by chaotic ones. In Section 4, a variety of 
routes to chaotic oscillations is found, in agreement 
with experiments. It is also argued that the interrup- 
tion of period-doubling bifurcations, experimentally 
observed, may not be due to external noise, but inher- 
ent to the dynamics of convection, which originally 
involve many degrees of freedom. After these low di- 
mensional attractors collapse with the increase of the 
Rayleigh number, chaotic itinerant motion between the 
collapsed attractors is often observed, as is studied in 
Section 5. 

For large aspect ratios, spatial degrees of freedom 
are no longer suppressed. High-dimensional chaos is 
observed whose dimension increases with the system 
size. We note that the spatial structure is still sustained 
here, leading to coherent chaos, as is studied in Sec- 
tion 6. With the increase of the Rayleigh number, a 
transition to a state with spatial disorder is seen univer- 
sally. This route to turbulence, characterized by spa- 
tiotemporal intermittency (STI), is confirmed in our 
model in Section 7, with a detailed statistical analysis. 
The transition from soft to hard turbulence is studied 
in Section 8. Experimental observations regarding the 
change of distributions are reproduced, while a mech- 
anism for the transition is proposed with the visual- 
ization of plumes. A prediction on the Prandtl number 
dependence of the transition is also given. The pattern 
formation process in convective rolls is given in Sec- 
tion 9, as well as the inclusion of a rotation effect. A 
summary and discussions are given in Section 10. In 
Appendix A, we discuss the stability of our model, by 
showing that the salient feature does not depend on 
the detailed procedure of our model. 
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2. Model 

Coupled map lattices (CML) are useful for study- 
ing the dynamics of spatially extended systems [9- 
121. Originally, the CML was proposed as a model for 
studying spatiotemporal chaos at a rather abstract and 
metaphorical level. However, the results derived from 
this model are often strongly connected with those 
found in natural phenomena. For example, spatiotem- 
poral intermittency (STI) was first found in a class of 
CML, and is observed in a wide range of CML models 
when the system loses spatial coherence and moves 
towards turbulence. Later ST1 was also discovered 
in systems with partial differential equations (PDE) 
such as the Kuramoto-Sivashinsky equation and the 
Ginzburg-Landau equation. In nature, such ST1 be- 
havior is observed, e.g, in Rayleigh-BCnard convec- 
tion, electric convection of liquid crystals and rotating 
viscous fluids. 

As far as we see from the examples of STI, the 
qualitative features do not depend on the details of the 
models. Some other features, found in abstract CML 
models are also found widely in PDE systems and in 
experiments. These observations lead us to believe in 
the existence of qualitative universality classes in na- 
ture. Without bothering about the details of the equa- 
tions involved, we may construct a simple model for 
some given spatially extended dynamics. Here we pro- 
vide an example of the construction of a simple model 
which potentially belongs to the same “universality 
class” as Rayleigh-Btnard convection. 

CML modeling is based on the separation and suc- 
cessive operation of procedures, which are represented 
as maps acting on a field variable on a lattice. Be- 
sides the above mentioned abstract case, this approach 
has successfully been applied to spinodal decomposi- 
tion [ 131, the boiling transition [ 14,151, pattern for- 
mation of sand ripples [ 161, and so on. In particu- 
lar, the pattern formation process derived from a CML 
model of spinodal decomposition has been shown to 
form a universality class including the time dependent 
Ginzburg-Landau equation, and agrees with experi- 
mental observations, even in a quantitative sense with 
regard to scaling relationships. 

Let us start with the construction of a CML model 

for convection in 2-dimensional space. For this, tirst 
we choose a two dimensional square lattice (x, y ) with 
y as a perpendicular direction, and assign the velocity 
field u’( X, y) and the internal energy E’( x, y ) as field 
variables at time f. The dynamics of these field vari- 
ables consists of Lagrangian and Eulerian parts. The 
latter part is further decomposed into the buoyancy 
force, heat diffusion and viscosity, which are carried 
out by the conventional CML modeling method [ 17 1. 
In constructing procedures, we assume that E’(s, y) 
is associated with the temperature. 

2.1. Euler procedure 

To construct the procedures in the Eulerian part we 
take into account the following properties in convec- 
tion phenomena: ( 1) Heat diffusion leads to diffusion 
of E’(x,y); (2) The velocity field v’(s,y) is also 
subject to the diffusive dynamics, due to the viscosity: 
(3) A site with higher temperature receives a force in 
the upward direction (buoyancy) ; (4) The gradient of 
a pressure term (which depends on the velocity field ) 
gives rise to a change of the velocity fields. 

The procedures for ( 1) and (2) are rather transplu-- 
ent, since we can just adopt the discrete Laplacian pro- 
cedure of diffusively coupled map lattices. The con- 
struction of (3) and (4) is more subtle and difficult. 
For the buoyance procedure, we assume that the verti-- 
cal velocity is incremented linearly with the horizon- 
tal Laplacian of the energy term. Indeed we have tried 
some other procedures also, such as a Laplacian term 
also including the vertical direction. In so far as we 
have studied, our choice here fits best with known re- 
sults on the convection (see Appendix A). 

To take (4) into account, we note that the pressure 
term requires div u to be 0, in an incompressible fluid, 
We do not use this condition here, since the inclusion 
of pressure variables requires more complicated mod- 
eling, and often makes it difficult to construct a model 
with local interaction only. Instead, we borrow a term 
from compressible fluid dynamics, which brings about 
this pressure effect, and refrains from the growth 01’ 
divv. This term is given by the discrete version 01‘ 
grad(divv). 



T. Yanagita, K. Kaneko I Physica D 82 (1995) 288-313 

Combining these dynamics, the Eulerian part is 
written as the successive operations of the following 
mappings (hereafter we use the notation for discrete 
Laplacian operator: AA(x,y) = b{A(x - 1,~) + 
A(x+l,y)+A(x,y-l)+A(x,y+l)-4A(x,y)} 
for any field variable A > : 

(4 

(b) 

(cl 

Buoyancy procedure 

o.;(x,y) =u_,,(x,Y) + +{2E’(x,y) 

-E’(x+ 1,y) - E’(x - l,y)}, 
(1) 

o;(x,y) =u:(x*y) (2) 

Heat diffusion 

E’(x, y) = E’(x, y) + AAE’(x, y) 

Viscosity and pressure effect 

(3) 

u:tx,y) = u:(x,y) + vAu:(x,y) 

+rl{&Qx + l,Y) +0:(x - l,y)l 

-$(x,y) + $;(x + 1,y + 1) 

+$(x - l,y - 1) - u,*(x - 1,y + 1) 

-$(x + l,Y - 1)1} (4) 

and the equation with [x +-+ y] . 
The above three parallel procedures complete the 

Eulerian scheme. 

2.2. Lagrange procedure 

The Lagrangian scheme expresses the advection of 
velocity and temperature. To take advection into ac- 
count, it is often useful to introduce a quasi-particle 
on each lattice site (x, y) . The particle has a velocity 
o(x,y) and moves to (x + Sx,y + Sy) by the La- 
grangian scheme, where Sx = uX(x, y), Sy = u,(x, y). 
All field variables (velocity and internal energy) are 
carried by this particle. Since there is no lattice point 
at the position (x + Sx, y + Sy) generally, we allocate 
the field variable on its four nearest neighbor sites. 
The weight of this allocation is given by the lever 
rule: (1 - 8x)( 1 - 6y), Sx( 1 - 6y), (1 - Sx)Gy, 
andSx8yforthesites ([x+Sx],[y+6yl),([x+ 
8x1 + 1, [y + Syl),([x + 6x1, [y + Syl + 1) and 
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Fig. I. Lagrangian procedure. Schematic figure illustrating the 
Lagrangian procedure. A quasi-particle sets at each site (x, .v) 
moves to (x, y) + ( ux, L+,), following the velocity field at the 
original site. Then the field values are allocated to the nearest 
neighbor’s sites, according to the lever rule. 

([~+8x]+l,[y+Sy] +l)respectively,with [z_] 
the largest integer smaller than z (see Fig. 1 for the 
explanation). By this rule, the energy and momentum 
are conserved in the Lagrangian procedure. 

The total dynamics of our model is given by suc- 
cessive applications of the above procedures: 

This completes one step of the dynamics. 
For the boundary, we choose the following condi- 

tions: 
( 1) Top and bottom plates: Assuming a correspon- 

dence between E and the temperature, we choose the 
boundary condition E(x,O) = AT = -E(x, NY). For 
the velocity field we have used either the fixed bound- 
ary or free boundary. For the Lagrangian scheme, we 
use either the fixed or the reflection boundary. 

(2) Sidewalls at x = 0 and x = NX: We use ei- 
ther fixed, reflective, or periodic boundary conditions. 
Hereafter we mostly choose the fixed boundary for top 
and bottom plates and the periodic boundary condi- 
tion for the x-direction. The change to a fixed bound- 
ary at the wall alters our velocity pattern at least in the 
small size case, but most of the transition sequences 
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of patterns (to be reported) remain invariant. 
The basic parameters in our model (and in experi- 

ments) are the Rayleigh number (proportional to AT), 
the Prandtl number (ratio of viscosity to heat diffu- 

sion v/h), and the aspect ratio (N,/N,,). Here we 
study in detail the dependence of convection patterns 
on the Rayleigh number and the aspect ratio, and men- 
tion the effect of Prandtl number for each transition. 
For simulations we take the diffusion coefficient 7 as 
v/3 < 7 2 v [ 181, although our results are repro- 
duced, as long as 7 is in the same order of magnitude 
as V, where divv is kept small numerically. 

2.3. Defense of our CML approach 

One might ask why we do not use a set of PDE with 
the Navier-Stokes (NS) equations and a suitable heat 
equation for the temperature field. There are several 
reasons for this. First, one has to resort to numerical 
simulations to solve the NS equations, since it cannot 
be treated analytically at least in a high Rayleigh num- 
ber regime. The numerical scheme for solving it is also 
complicated and often it is unstable. To stabilize the 
numerical scheme, we often have to add artificial vis- 
cosity, for example; a higher order term than the Lapla- 
cian. Without such a method, we cannot avoid the nu- 
merical viscosity which is due to the discreteness of 
our computation. Such an “artificial viscosity” drasti- 
cally changes the functional analytical property of the 
NS equations [ 19,201. For example, it is not proven 
that the NS equations have a physically or mathemat- 
ically unique solution, while inclusion of the higher 
order viscosity leads to a unique global solution. So 
it is not clear whether the numerical solution (even if 
it is carried out with high accuracy) retains the math- 
ematical structures of the NS equations. On the other 
hand, it may be appreciate to note that the NS equa- 
tions are not derived from a microscopic level with a 
complete rigor, and thus the equations can be regarded 
as a kind of phenomenological equation [ 20,2 1 ] 4 . 

4 It is not completely sure if the NS equations are the only equa- 
tions for fluid dynamics. As is clear from the above argument, nu- 
merical solutions in agreement with experiments do not justify the 
NS equations, while one may argue that the functional analytical 
properties of the NS equations may not fit our physical intuitions. 

In Rayleigh-BCnard convection, we also have to 
adopt some approximation for the coupling with the 
temperature field. Thus the PDE equations there re- 
main approximate and phenomenological. 

The CML model we adopt here is constructive in 
nature. For this construction we assume that the salient 
features of the phenomena do not depend on the details 
of a model. A model, at any rate, cannot he exact11 
identical with nature herself, and we have to assume 
some kind of universality among the model classes. 
Most important macroscopic (coarse grained) prop- 
erties such as the flow patterns and statistical quanti- 
ties must be robust against some changes of models. 

Thus we can hope that our CML modelling belongs 
to the same “universality” class as convection in nil- 
ture. Conversely, by modifying or removing the proco- 
dures in our model, we can see what parts arc essential 
to a given feature. Numerical results of other models 
(with modification and removal of some procedures I 
are given in Appendix A, where the predominance 01 
the present model is discussed. as well as the stability 
against the change of models. 

Since our model is much more efficient lhan the 
PDE approach, it is easy to explore the phenomenol- 
ogy globally with changing parameters. A Rayleigh-- 
Btnard system has at least three basic parameters. Wc 
do not know as yet how long it takes to explore all 
the phenomenology in convection with the use of the 
PDE approach, even if’ we use the fastest computer in 
the world. In our model. we can easily study the phc- 
nomena interactively with work-stations, by exploring 
the three-dimensional parameter space. Surprisingly. 
the model reproduces almost all phenomenology 1‘01 
convection as is shown in the following sections. Fur- 
thermore we can even get some predictions for future 
experiments. In particular, we can predict some fea- 
tures of the turbulence regimes, which are rather clil‘~ 
ficult to study by PDE simulations, so far. 

Of course, another merit of our approach is its easy 
accessibility of dynamical systems theory. For all 
classes of convection patterns to be studied. consider- 
ations are made from the point of dynamical systems 
theory, by which we can proceed to the understanding 
of convection patterns. 
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3. Pre-chaos 

3.1. The onset of convection 

When AT is sufficiently small, there is no convective 
motion; the fluid is completely fixed in time, where 
the Fourier law of the temperature is numerically con- 
firmed. As AT is increased, the heat transfer by the 
diffusion is no longer enough to sustain the temper- 
ature difference, and convective rolls start to appear 
(Fig. 2). The critical temperature difference AT, for 
the appearance of convection corresponds to the criti- 
cal Rayleigh number in experiments. The critical value 
depends on the boundary condition at small aspect ra- 
tios. Slightly above AT,, the convective rolls are fixed 
in time. In this subsection, we investigate several fea- 
tures at the onset of convection. 

In Fig. 3 the vertical velocity in the middle of the 
container vr( N,/2, N,/2) is plotted vs AT. At AT = 
AT, the vertical velocity rises from zero. To see the 
critical property here, we have to determine AT, nu- 
merically with accuracy. Here we use the following 
method: Let us measure the time evolution of the total 
kinetic energy 

K(t) = -&(r,y)2+ L+,y)2) (5) 
x=1 g=l 

starting from a random initial condition with small 
amplitudes. If the total kinetic energy decreases with 
time then AT is lower than AT,, otherwise AT > AT,. 
By measuring the time derivative for the total kinetic 
energy dK/dt, the critical value AT, can be deter- 
mined by the condition dK/dt = 0. By using this crit- 
ical value, and the following normalized temperature 
difference (corresponding to the normalized Rayleigh 
number) : 

AT - AT, 
E= 

AT, ’ (6) 

the vertical velocity vY is found to scale as 

112 DJE) NE . (7) 

The exponent l/2 is, of course, expected from the 
bifurcation analysis, and agrees with experiments 

Fig. 2. Vector field of convective rolls near the onset of con- 
vection. The snapshot of the vector field of convective rolls 
near the onset of convection. These rolls are fixed in time. 
AT = 0.01, A = 0.4, v = 11 = 0.2, NX = 34, NY = 17 with periodic 
boundary conditions after the transients have died out. A random 
initial condition is adopted. 

[ 22,231. 
When there is convection (i.e., AT > AT,), the 

effective thermal conductivity A,% of the convective 
layer is greater than the static thermal conductivity A. 
The Nusselt number 

Nu 5 &r/h (8) 

equals 1 for E < 1, and is known to satisfy Nu - 1 CC 
E [23,24]. This relationship of the Nusselt number 
is confirmed in our simulation, while the proportion 
coefficient A (s.t. Nu -1 = AE) depends on the as- 
pect ratio and the condition of the side walls of the 
container. At the onset of instability, critical slowing 
down is commonly observed when a constant heat flux 
is supplied. To study this, we define the heat current 
as a constant increment (decrement) of energy at the 
bottom (top) plate of the container. 

We have measured the time evolution of the temper- 
ature difference AT(t) between the top and the bot- 
tom plates. When a heat current is turned on at time 
0, heat is initially carried only by thermal diffusion. 
Before AT(t) reaches its maximum value, the temper- 
ature difference exceeds the critical value AT,. Then 
the fluid starts the convection by which the tempera- 
ture difference starts to decrease. The final decay to 
equilibrium can be represented by 

AT(t) =Dexp(--t/7) +AT(co). (9) 

We have fitted our data with the above form in order 
to determine r. Fig. 4 shows the heat flux dependence 



294 T. Yanagifa, K. Kaneko I Physicu D X2 (1995) 28X-.313 

0 0.5 1 1.5 

(AT-AT,) /ATc 

Fig. 3. The AT dependence of the vertical velocity. The vertical ve- 
locity L’!, (N,/2, N,/2) in the middle of the container as a function 
of the normalized temperature difference. AT is gradually incre- 
mented form 0.007 to 0.02 per 0.00013. Each uY( N,/2, NY/2) is 
obtained after 1000 transients. Above AT, - 0.007, L’? suddenly in- 
creases with some power. A = 0.4, Y = 7 = 0.2, Nx = 34, N, = 17. 

l/TX:C-5 
6.0 

4.c 

2.c 

C 

. 

. 

1.0 1.1 1.2 1.3 
flux x10-5 

Fig. 4. The heat flux dependence of the relaxation time. Applying 
a constant flux, we calculate AT(r) until 2 x IO5 time steps 
starting from a random initial condition. We fit the time evolution 
of the temperature difference AT(t) by EQ. (9). The inverse of 7 
increases with the heat flux linearly which vanishes at the onset 
of convection. A = 0.4, v = 71 = 0.2, N, = 34, NY = 17. 

of the decay time 7. The inverse of the decay time 
linearly increases with the heat as is expected, and 
agrees with experiments and theory [ 231. 

3.2. The onset of oscillations 

By further increasing AT, the rolls are no longer 
fixed, but start to oscillate. The amplitude of the oscil- 
lation increases in proportion to AT - AT,,, near the 
onset of the oscillation AT,,,. The critical temperature 

difference at the onset of the oscillation AT,,, depends 
on Pr, r and the boundary conditions. First, AT,,, is 
proportional to the Prandtl number. Changing A from 
0.05 to 0.4 by fixing v = 7 = 0.2, N, = 34, N,. = 17. 
the critical value of the onset of oscillation AT,,, IS 
fitted as; 

AT,,,(A) = 1.8A + 0.3. 

The aspect ratio dependence is, on the other hand, 
nonmonotonic. When the aspect ratio I’ is close to an 
integer, the rolls start to oscillate at a small tempera- 
ture difference. If r is far from any integer, the mo- 
tion of the convective rolls should be restricted by the 
unmatched size of the container. 

At the onset, the oscillation is periodic without any 
higher harmonics of the fundamental frequency. The 
characteristic frequency of the oscillation also depends 
on AT, Pr and the aspect ratio r. We have studied the 
dependence of the frequency on AT, near the onset of 
the oscillation. To estimate the power spectrum of the 
velocity, the AutoRegressive (AR) model is adopted 
(see Appendix B) [ 251. 

From the AR model one can estimate the oscillation 
frequency as well as the amplitude of the fundamental 
frequency by the difference between the maximum 
and minimum vertical velocities u!( N.,/2, N,.!2). The 
amplitude A,,, is found to be proportional to AT near 
the onset of oscillation (see Fig. 5). By increasing AT. 
the maximum peak of the power spectrum (i.e., the 
fundamental frequency) shifts to a higher frequency. 
Fig. 6 shows the AT dependence of the characteristic 
frequency. The fundamental frequency almost linearly 
increases with AT. 

4. Routes to chaos 

For smaller aspect ratios, the periodic oscillation 
may bifurcate to chaos via several routes as the 
Rayleigh number is changed. Such routes to chaos 
have been compared with dynamical systems theories. 
and have been observed in numerous experiments 
over the past few decades [ 26,271. The other system 
parameters, Prandtl number and the aspect ratio, arc 
known to be relevant to the nature of the bifurcation. 
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A nlax 
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0.06. 

0.04. 

0.02. 

AT 
Fig. 5. The AT dependence of the amplitude of oscillation. The 
amplitude of the oscillation vs AT is plotted. The amplitude is 
defined as the difference between maximum and minimum val- 
ues of uy( N,/2, Ny/2) after discarding lo4 initial transients. 
A = 0.4, v = 7) = 0.2, Nx = 34, NY = 17. 

f max 

0.04 

0.038. i ..+:.-. 

+--'*-- 
.".m.-..--* 

0.036. * ' . 
__"d=-5 

0.034' _/*** 
.% 

.."* 
0.032. 

o.o:I 
0.22 0.24 0.26 0.28 0.3 

AT 
Fig. 6. The AT dependence of the oscillation frequency. The 
fundamental frequency vs AT. Each fundamental frequency is 
estimated by a 100th order AR model (see Appendix B) using 
4ooO time series per 10 steps of the velocity uY ( N,/2, NY /2) after 
104 transients have died out. All the parameters are the same as 
in Fig. 5. 

At low Prandtl numbers, we have found a sub- 
harmonic route to chaos. With the increase of the 
Rayleigh number, the period of the oscillation dou- 
bles as is shown in Fig. 7. Here, we note that the dou- 
bling is interrupted after a finite number of times (so 
far the maximum periodicity we observed is 16). In 
experimental observations, it is believed that noise in- 
duces such an imperfect period-doubling bifurcation 
cascade. In our simulation, no external noise is added, 
and high dimensional dynamics possibly plays the role 
of a generator of “noise”, which, we believe, is the 
origin of the interruption of the doubling sequence. 

At high Prandtl numbers, we have found a quasiperi- 
odic route to chaos (see Fig. 8)) as well as the mode 
locking phenomena near the collapse of tori. At an 
even higher Prandtl number, torus doubling is often 
observed [ 281, while the route to chaos with intermit- 
tency is also observed by changing the aspect ratio. 
These changes of routes to chaos are consistent with 
experimental observations [ 291. 

These routes to chaos strongly depend on the system 
parameters, in particular, on the aspect ratio r. With 
the change of r, the number of convective rolls can 
also vary. For example, with the further increase of AT 
(after the oscillation of two convective rolls becomes 
chaotic), we have sometimes observed the periodic os- 
cillation of three rolls. This “window” is due to quite 
a different mechanism from that in low-dimensional 
chaotic dynamical systems. In the present case, the 
change of spatial degrees of freedom (the number of 
convective rolls) is a trigger for the bifurcation to a 
periodic state. Furthermore, the “window” here has a / __--*- __.-- 

0.2 ,f / r”__ 

; I 
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Fig. 7. The projection of the orbit of the vertical velocity uY (N,/2, NY/2). The change of the oscillation of convective rolls with the increase 
of AT, from periodic to chaotic. The projection of the orbit onto the plane of vertical velocity I$( N,/2, NY/2) versus u;+~O( N,/2, NY/2). 
4000 time series are plotted. (a) AT = 0.5:period 2 (b) AT = 0.55: period 8 (c) AT = 0.6:chaotic. A = 0.4, Y = 7 = 0.2, NX = 30, NY = 17. 
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Fig. 8. Quasiperiodic route to chaos. (a) At high Prandtl numbers, the motion of convective rolls is quasiperiodic. The time series of the 
vertical velocity L$ (N,/2, NY/2) is plotted at AT = 0.2, A = 0. I, v = 17 = 0.2, N.r = 34, N, = 17. (b) Power spectrum for the above time 
series (a). Two elementary frequencies exist. 

hysteresis with respect to the changes of AT and Pr. 
Thus the route to chaos can depend on the history 
of the variation of the parameters. The change of the 
number of rolls with the aspect ratio is rather abrupt. 
Once the number changes, the low-dimensional dy- 
namics governing the motion alters drastically, which 
can push the attractor from chaotic to periodic motion. 
Since the change of roll structures has a hysteresis 
with AT and Prandtl number, we can observe a differ- 
ent route to chaos for the same parameters, depending 
on the history. 

5. Chaotic itinerancy 

In the previous section, we have seen that the routes 
to low-dimensional chaos in our simulations agree 
well with experiments. In this section, we investigate 
how well the correspondence with experiments holds 
further into the high-dimensional region with spatial 
structures, and study how “turbulent” motions appear 
after the low-dimensional “chaotic” behavior. Here we 
see how the change from low- to high-dimensional 
dynamics occurs as a change from low-dimensional 
chaos to turbulence, where the dimension of the at- 
tractor is much higher. In other words, turbulence is 
regarded to be chaotic not only in time but also in 
space, and can be called spatiotemporal chaos. We 
consider how the spatial structure of the convective 
rolls collapses, especially in a confined system with a 
relatively small aspect ratio. 

Here we study the chaotic change of roll patterns. 
observed by increasing AT beyond the chaotic regime. 
With this phenomenon, we see a switching behavior 
between low-dimensional and high-dimensional mo- 
tions. 

An example of the switching phenomena is given in 
Fig. 9, where the sign of the vertical velocity in each 
convective roll switches intermittently in time. Over 
a long time interval, the convection pattern remains 
regular, until a disorganized motion in space and time 
appears. After this “turbulent” motion, a regular con- 
vective pattern comes back, while the direction of the 
flow is often reversed (Fig. 10). 

When AT is slightly lower than that for this switch- 
ing phenomenon, two attractors exist which corre- 
spond to the upward and downward streams of rolls. 
Depending on the initial conditions one of these at- 
tractors is selected (two different basins exist). These 
separate attractors are connected to form a single at- 
tractor when AT exceeds the threshold ATc.1 for the 
switching behavior. Beyond AT,-,, almost laminar spa- 
tial structures (corresponding to one of the attractors 
for AT < AT,l) suddenly break down and a turbu- 
lent motion (disordered in space) appears. Then ei-- 
ther one of the patterns corresponding to the attractors 
for AT < AT--[ is selected and the motion is lami- 
nar again. This process of switching continues forever, 
as far as we have observed. If the state between two 
“laminar” regions were described by low-dimensional 
chaos, this phenomenon would be described as a bifur- 
cation with symmetry breaking (restoration), which is 
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Fig. 9. Switching between collapsed attractors. Snapshots of the vector field during chaotic itinerancy. Almost laminar convective rolls 
suddenly collapse and am replaced by turbulent motions, until a new direction of convective rolls is selected after the turbulence. The 
switching between upstream and downstream occurs intermittently. AT = 2.0, A = 0.02, v = r] = 0.2, Nx = 34, NY = 17. 

a rather common one. In the present case, the motion 
between the “laminar” states involves many degrees 
of freedom, as will be confirmed. Thus the behavior 
here cannot be described by a low-dimensional dy- 
namical system. Indeed, this type of behavior here has 
not been observed for an ODE model reduced from 
the Navier-Stokes equations, with taking only a small 
number of Fourier modes. 

The itinerancy over low-dimensional ordered mo- 
tions via high-dimensional turbulent motions is known 
as chaotic itinerancy and has been observed in a vari- 
ety of dynamical systems, including globally coupled 
maps [ 30,3 11, Maxwell-Bloch turbulence [ 321, neu- 
ral dynamics [ 331, and also in an optical experiment 
[ 341. Similar phenomena as CI has also been observed 
and analyzed in global climate dynamics [ 351. 

So far there have been no reports on chaotic itiner- 
ancies in BCnard convection. This, we believe, is due 
to the fact that convection experiments are often fo- 
cused either on low-dimensional chaos or on a very 
high-dimensional dynamics. Thus we predict that the 
behavior here should be observed by studying the in- 
termediate situation. 

This chaotic itinerancy motion is studied quantita- 
tively, by using a probability distribution for a lifetime 
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Fig. 10. Time series of the vertical velocity in the middle 
of the container. Temporal evolution of short-time average of 
the vertical velocity uy(N,/2, Ny/2) is plotted every 50 steps, 
which shows intermittent switching between upward and down- 
ward directions. Here we take 50 time steps for the average 

(VY ‘-%I + v)+’ + + ui) /50. In the course of the switch- 
ing to a new direction, highly turbulent behavior is observed. 
AT = 1.5, A = 0.02,~ = ?j = 0.2, Nx = 34, NY = 17. 

of laminar and turbulent states. In order to get such 
a binary representation, we first define the number of 
rolls which exist in the container. The number of rolls 
can be estimated by the number of local maxima of 
thefunctionf(x) = u,(x,N,/2).Wecallthemotion 
turbulent if the number of rolls exceeds a threshold 
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Fig. I I. The lifetime distribution of the turbulent state. Semi-log 
plot of the lifetime distribution of the turbulent state. The distribu- 
tion is taken over I O4 residence time. The form of the distribution 
does not depend on the temperature difference between the top and 
bottom plates. Solid 1ine:AT = 0.07, doted line:AT = 0.09, broken 
1ine:AT = 0.15. The other parameters are the same as in Fig. IO. 
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Fig. 12. The lifetime distribution of the laminar state. The distri- 
bution of the lifetime of the laminar state, which should be com- 
pared with Fig. Il. The distribution is taken over IO4 residence 
time. The characteristic lifetime is clearly dependent on AT. Solid 
line:AT = 0.07, doted line:AT = 0.09, broken 1ine:AT = 0.1.5. The 
other parameters are the same as in Fig. I I. 

II,, and otherwise call it laminar ’ The lifetime dis- 
tribution of these states exhibits quite a different type 
of behavior with the increase of AT (see Figs. 11 and 
12). 

Both distributions of the turbulent and the laminar 
states are exponential. The characteristic lifetime of 
the turbulent states is almost independent of AT. On 
the other hand, the lifetime of the laminar state is 
much longer and increases by decreasing AT until it 
diverges at the critical point ATcr, where the two lam- 
inar states are disconnected. The exponential distribu- 
tion of the turbulent state implies that the state plays 

’ AS long as we take the threshold 3 < n, < 7. the statistical Instead of averaging over a long time, we detinc the 
properties we study do not depend on this choice of nC. local Lyapunov spectrum by the average over a given 

the role of “loss of memory” in the course 01’ this mo- 
tion. Indeed, the direction of the vertical velocity i\ 

almost randomly selected by losing the memory of the 
previous laminar state. 

We have computed the Lyapunov spectrum [ XI] IO 
characterize the switching and to estimate the involved 
degrees of freedom during turbulence. The Lyapuno\. 
spectrum measures the averaged divergence of nearby 
trajectories in phase space. The number of positive 
Lyapunov exponents gives a rough measure for the 
effective number of “degrees of freedom”. 

Fig. I3 shows the Lyapunov spectra at different A7 
in the chaotic itinerancy regime. The number of posi- 
tive Lyapunov exponents is almost constant at around 
7, over the range of AT from 0.5 to 2.0. Thus about 7 
chaotic modes are involved in the motion. By increa.s- 
ing AT, the lifetime of the laminar state gradually dc- 
creases, and the dynamics of convective rolls gets conl- 
plex towards developed spatiotemporal chaos. How- 
ever, the number of positive Lyapunov exponents IS 
constant here, which means that the number of’ un- 
stable directions in phase space is almost constant in 
the chaotic itinerancy region. It may also be useful to 
point out that the shape of Lyapunov spectra seems to 
be rather fat at the null exponents. Such tract OF the 
plateau at the null exponent may represent a cascade 
process (e.g.. successive split of vortices) at the col- 
lapse of (low-dimensional) ordered motion [ 37.38 j 
In our simulation, only few null exponents arc seen in 
Fig. 13, and the plateau is not so clear, which is due 10 
a small number of lattice points. 17 Y 34 in this cast, 

The Lyapunov spectra may not be useful for distin- 
guishing the chaotic itinerancy from the usual chaotic 
motion, since they are obtained from long (infnitc) 
time averages. In order to characterize the dynamic 
properties, we have computed local Kolmogorov 
Sinai entropy C LKSE) The Kolmogorov-Sinai cn 
tropy (KSE) is estimated by the sum of the positive 
Lyapunov exponents [ 391: 

KSE = 2 A, CA, > 0. A, / / < 0). f IO) 
/=I 
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finite (short) time interval here. By using the local 
Lyapunov exponents, we define the LKSE as the sum 
of the local positive Lyapunov exponents. Thus the 
LKSE is time dependent, and characterizes some dy- 
namic features. Time series of LKSE are plotted in 
Fig. 14, which has a spiky structure. Each higher peak 
than about 0.02 in this time series corresponds to the 
turbulent motion of the convective rolls. The switching 
between upward and downward occurs intermittently. 
Unfortunately, the intermittent switch is not clearly 
visible, since the stream line of the convective rolls is 
modulated in time, and the LKSE fluctuate around a 
small value. 

hi 

I 
5 10 15 

i 

From the local Lyapunov exponents, one can get 
some information on the dynamics of the degrees of 
freedom. The number of positive local Lyapunov ex- 
ponents gives a measure for the degrees of freedom 
at each time. Indeed, the time series of this number 
shows essentially the same behavior as that of the 
LKSE. Thus the switch between two low-dimensional 
states via high-dimensional motion is confirmed. 

Fig. 13. Lyapunov spectra in the chaotic itinerancy region. The 
first 20 Lyapunov exponents are plotted, computed by the average 
of lo5 time steps. In the chaotic itinerancy regime, the number of 
positive Lyapunov exponents is almost constant with the increase 
of AT, while the value of the positive exponents increases with 
AT. Solid 1ine:AT = 0.5, dotted:1 .O, broken:l.5. 

In the present paper, we have focused on the chaotic 
itinerancy motion with two convective rolls. However, 
we have observed the same chaotic itinerancy behav- 
ior for the cases with 3 or 4 rolls. Generally this type 
of behavior is observed at low or intermediate aspect 
ratios (e.g., r < 5). Here turbulent behavior appears 
after a few numbers of rolls is selected. At these as- 
pect ratios, spatiotemporal chaos appears through the 
chaotic itinerancy motion of convective rolls. First, 
we observe turbulence as spatiotemporal chaos as a 
switching state between two laminar (but temporally 
chaotic) states, and then, with the increase of AT, the 
portion of such turbulent motion increases. Since this 
behavior is rather generally observed, we expect that 
it will also be observed in experiments, by choosing a 
suitable aspect ratio and Rayleigh number. 

0.03. 
g 
:0.02- 
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I. 1 

0 500 1000 1500 2000 
time per 50 steps 

Fig. 14. lime series of local KS entropy. Time series of the 
LKSE estimated by the sum of the local positive Lyapunov 
exponents. Each LKSE is obtained as the average over 500 
time steps around each time step. For each collapse of the 
convective rolls, a sudden increase of the LKSE is observed. 
AT = 1.5, A = 0.02, v = 7) = 0.2, Nx = 34, NY = 17. 

dom for convective rolls is suppressed. Indeed we have 
confirmed the universal routes to chaos such as sub- 
harmonic, quasi-periodic and intermittent ones. 

6. Coherent chaos 

If the aspect ratio is much larger, the number of 
rolls is very large. Since the spatial degrees of freedom 
roughly correspond to the number of convective rolls 
in the Rayleigh-BCnard system, the degrees are no 
longer suppressed. Here it is difficult to observe the 
universal routes to temporal chaos discussed in the 
previous section. In this case, a study of the transition 
to “spatiotemporal chaos” is required. 

So far we have studied a system with a relatively When AT is increased above the critical value AT,, 
low aspect ratio, where Rayleigh-BCnard convection a perfect chain of convective rolls is formed. The num- 
has provided a good test system for the study of the ber of rolls increases with AT. For example, the num- 
transition to chaos, since the spatial degrees of free- ber of rolls increases from 10 (at AT = 0.001) to 13 
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(at AT = 0.02) with r = 10 (with NY = 17). With 
the further increase of AT, the number of rolls starts 
to vary in time. During the selection process of the 
number of rolls, the long time transient behavior with 
glassy motion of rolls has been observed. 

Above a certain threshold, these rolls oscillate col- 
lectively where all rolls oscillate with almost the same 
frequency. We have measured the temperature in the 
middle of the container along the horizontal direc- 
tion. The local maxima correspond to the positions of 
hot streams while the local minima to cold streams 
in the vertical direction. In Fig. 15, the positions of 
the local maxima and minima are plotted in space- 
time. It is clearly seen in Fig. 15a that the positions 
of hot and cold streams oscillate collectively. In addi- 
tion, cold streams and hot streams oscillate with op- 
posite phases. The value of the local maximum also 
oscillates in time. Such a collective oscillation is also 
observed in experiments [ 401. We have not found any 
aspect-ratio dependence of the oscillatory frequency 
while changing r from 10 to 30. Thus the oscillation 
is governed not globally but locally with interactions 
of neighboring cells. 

We have found chaotic motion with spatial coher- 
ence at intermediate values of AT between collective 
and ST1 behavior to be discussed in the next section. 
We confirm the existence of spatial coherence by the 
spatial correlation C(x) : 

C(x) = (+a, NY/2) ~‘j.(xo fx, N./2)). (11) 

In Fig. 16, the spatial correlation starts to decay up 
to some distance, beyond which it seems to converge 
to an oscillation with a finite amplitude. Thus the spa- 
tial coherence is sustained with a regular structure of 
convective rolls. 

On the other hand, the motion is chaotic with many 
unstable modes. We have measured the Lyapunov 
spectrum by changing the aspect ratio from 2 to 50. 
The number of positive Lyapunov exponents increases 
in proportion to the aspect ratio. The Lyapunov spec- 
trum n(x) E AI_,, scaled with the aspect ratio, as is 
shown in Fig. 17, approaches a unique form when the 
size is increased. Such scaling behavior is often seen 
in spatiotemporai chaos [ 41,421. 
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Fig. IS. Collective oscillation 01. convect&c rolls. Spacctmc 
positions of convective rolls are plotted. At lagc aspect ra- 
tios, collective oscillation of rolls is observed. Cold and ho1 
streams oscillate with opposite phases. As iZT is incrcascd. tur- 
bulent patches appear in the spacetime diagram, providing STI 
A = 0.02,Y = 7) = 0.2. IV,, = 17,N, = 85 (aJA7‘ = 0.04. 
(b)AT = 0.05. 

Thus a system with a large aspect ratio consists of a 

chain of chaotic oscillators, and the dimension is ex- 
pected to diverge linearly with the system size. Hence 
one may expect that the spatial coherence, rcpresent- 
ing the phase relationship between rolls, may be lost. 
This is not the case. The coherence is maintained as 
can be seen in C(x). The reason for this “coherent” 
chaos is due to the separation of scales. Here. chaos 
appears as a slow modulation on the oscillation 01‘ 
convective rolls. The time scales, as well as the ampli- 
tudes, are well separated, and chaos in each convective 
roll cannot destroy the spatial coherence. 

Coexistence of long-range order with chaos has 
been discussed recently [ 43 1. A “ferro-type” order in 

a CML with local chaos is found in an Ising-like model 
[44], while an “antiferro”-like order (or a pattern with 
a longer wavelength) with local chaos was found in 
the earlier studies of CML [ 9,l 1 1. The long-ranged 
spatial order in the present model belongs to the lat- 
ter example, which is maintained by the separation oi 
scales between the collective motion and chaos. As fog 
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Fig. 16. Spatial correlations for coherent chaos. Spatial correlation 
function at coherent chaos, by the average of IO4 time steps after 
discarding IO“ transients. There are many positive Lyapunov ex- 
ponents here, indicating high dimensional chaos, while the spatial 
structure still remains. A = 0.02, v = r] = 0.2, NY = 17, AT = 0.05, 
I‘= 100. 

the shape of Lyapunov spectra, there is one difference 
between the earlier studies and the present one. In the 
former, a stepwise structure is often seen [ 111, while 
the spectra are rather smooth (with an almost linear 
slope) in the present case (see Fig. 17). We believe 
that this distinction is due to the fact that the domain 
structure is rigid in the former [ 111, while the bound- 
ary of each roll is not so rigid. 

As an onset of spatiotemporal chaos, phase turbu- 
lence is a well established mechanism arising from 
broken continuous symmetry [ 45-471. In the present 
model, we found chaotic modulation keeping the spa- 
tial coherence, which might be associated with the 
phase turbulence, since the coherent chaos exists in a 
weakly nonlinear regime. However there remain some 
problems for this association. First the amplitude oscil- 
lation might be essential here. Second long-time sim- 
ulations with a large system size are required to check 
if the behavior in the present section can be described 
by phase dynamics. 

The amplitude of the oscillation of the rolls in- 
creases with AT, until oscillatory bursts with a large 
amplitude appear through the interaction of streams 
of two neighboring cells. Then the collective oscilla- 
tion loses its stability, as in shown in Fig. 15b. Lam- 
inar and turbulent states coexist in the spacetime di- 
agram, which leads to spatiotemporal intermittency. 
The collective oscillatory motion here is a prelude to 
spatiotemporal intermittency. 

During this cooperative oscillation, we have also 
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Fig. 17. Scaled Lyapunov spectrum At an intermediate value AT for 
the collective oscillation (below the STI), chaos with spatial co- 
herence has been observed. The figure shows ordered Lyapunovex- 
ponents Ai versus i/T. A = 0.02, v = 11 = 0.2, NY = 17, AT = 0.05, 
r = 4 (thin solid line), 10 (broken line), 15 (dotted line), 50 
(solid line). In the computation, we have obtained only the first 
50 exponents. The spectra for r = 15 and 50 agree rather well by 
the scaling of i/f. 

observed travelling waves. The rolls move to the left 
or right (depending on the initial conditions) with 
the oscillation. These travelling waves have been ob- 
served in experiments [48], as well as in a simple 
CML model [49]. In our simulations, we have found 
that several attractors coexist which correspond to dif- 
ferent traveling speeds. The details of the travelling 
wave will be reported elsewhere. 

7. Spatiotemporal intermittency 

In this section, we study spatiotemporal intermit- 
tency as a standard route to spatiotemporal chaos. The 
transition to spatiotemporal chaos is rather different 
from that to temporal chaos. In spatially extended sys- 
tems, the most well known transition to spatiotempo- 
ral chaos occurs through spatiotemporal intermittency 
(SD). STI occurs through the propagation and con- 
nection of chaotic bursts within the laminar domains. 
There the system consists of a mixture of laminar do- 
mains and chaotic bursts. ST1 was first studied in (dif- 
fusively) coupled map lattices for some classes of lo- 
cal maps [ lo], and has also been observed in partial 
differential equations [ 431. Critical properties were 
studied in detail in connection with directed percola- 
tion [ 43,501. 
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Fig. 18. The probability distribution of the local wavelength. For 
low AT, the rolls oscillate coherently (there are no turbulent 
patches in space and time), and the distribution of local wave- 
lengths has a sharp peak. The peak gets broader with the increase 
of AT due to the turbulent patches. Each distribution is taken over 
IO7 time steps sampled per 100 time steps after 1000 initial tran- 
sients, A = 0.02, v = 7 = 0.2, NY = 17, I‘ = 50,AT = 0.01 (solid 
line), 0.02 (dotted line), 0.03 (broken line). 

It is useful to point out that there seem to be two 
types of ST1 [ 5 11. The first case, which we term type- 
I STI, is associated with the transition from spatially 
homogenous and temporally periodic states to turbu- 
lence, where chaotic bursts are not created sponta- 
neously. The type-II STI, on the other hand, allows 
spontaneous creation of bursts, and is typically ob- 
served at the transition from a spatially inhomogenous 
pattern to a turbulent state. Locally chaotic dynamics 
usually exists already at the pre-ST1 region, and the 
ST1 transition leads to a globally chaotic behavior. 

In Rayleigh-BCnard convection, ST1 has been ob- 
served in systems with large aspect ratios [ 5052,531, 
and has been investigated intensively. Other exam- 
ples of ST1 are observed in electric convection of liq- 
uid crystals [ 54,551, rotating viscous fluids [ 561, and 
other systems [57]. ST1 is now believed to form a 
universality class for the transition to turbulence in 
spatially extended systems. All experimental reports 
of the ST1 in convection, so far, belong to type-II. 

In this section, we study this ST1 transition to spa- 
tiotemporal chaos in a system with a large aspect ratio, 
mostly by fixing it to r = N,/N. = 50 and adopting a 
periodic boundary condition for the horizontal direc- 
tion. We also discuss the Prandtl number dependence 
of the transition. 

Below the onset of ST1 (ATsri), all the rolls have 

the same frequency and wavelength. With the increase 
of AT, the spatial coherence of the rolls’ oscillations is 
gradually lost. To see this change, we have measured 
the distribution of the local wavelength, which is es- 
timated as the distance between two local maxima of 
l>!(x, N!./2). For AT < AjTsrt, this distribution has a 
sharp peak at a single value corresponding to the wave- 
length of laminar rolls, while the peak gets broadci 
and broader as AT increases beyond ATsri (Fig. 1 X 1. 

When AT is increased, the amplitude of the hori 
zontal oscillation of convective rolls increases. which 
leads them to interact with their neighbors. By the in- 
teraction, the roll structure is often collapsed and crc 
ats a chaotic bust. A typical example for the collapse 
can be seen in Fig. 15b. Convective rolls successively 
appear and disappear though bursts, which provide the 
ST1 behavior. 

To distinguish the laminar and turbulent regions 
numerically, we have adopted the following criterion 
with the use of the local wavelength of the convective 
rolls; By introducing the mean wavelength &i at the 
onset of ST1 and a given tolerance zone Ah. WC as- 
sume that the behavior at a position is laminar if the 
local wavelength there (i.e. the size of the cell ) sat- 
isfies Aa - Ah < h; otherwise it is called turbulent”. 
By using this binary representation, the spatiotempo- 
ral diagram for ST1 is plotted in Fig. 19. The fraction 
of the turbulent patches increases with AT, which are 
connected in spacetime near the onset of STI. 

ST1 has been studied both experimentally and nu- 
merically. Following previous studies [ 10.43 1. WC 
quantitatively characterize the ST1 behavior, with the 
use of the distribution P(L) of the laminar domains 
of length L. The existence of two different regimes 
can clearly be observed. At the onset of STI. the dis- 
tribution shows a power law (Fig. 20). The exponent 
of this power is 2 $ 0.2, and agrees with that found 
in experiments [52] Beyond the onset of STI. the 
distribution is exponential (Fig. 2 I), and ia titted by 

P(L) = c exp( -L/Ls,,, ). i I?, 

’ The following results do noi depend on the choice of AA pr-o 
vided 3 c AA < 9 is satisfied. 
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Fig. 19. Binary representation for STI. Spacetime diagram for STI. 
A black pixel means a turbulent region defined by the criterion 
in the text. The fraction of turbulent patches increases with AT. 
f = 10, Left: At = 0.04, Center: AT = 0.12, Right: AT = 0.30. 
The other parameters are the same as in Fig. 18. 

It is found that the inverse of characteristic length 
1 /Lsn increases almost linearly with the temperature 
difference AT - ATsn (Fig. 22). Furthermore this AT 
dependence of Lsn is invariant against a change of A 
from 0.02 to 0.1. 

We have also measured the spatial correlation func- 
tion for the vertical velocity (see Fq. ( 11) ) . This cor- 
relation function C(X) oscillates with x because of 
the existence of the roll structure, whose amplitude 
decays with x. The absolute value of the local max- 
ima and minima for C(x) shows exponential decay. 
We fit C(X) above the onset of STI as 
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Fig. 20. Log-log plot of the distribution of the lengths of the lami- 
mu domains. The distribution of the lengths of the laminar domains 
is plotted by sampling IO5 steps, starting from a random initial con- 
dition with AT = 0.05, I = 0.02, v = n = 0.2, NX = 850, NY = 17. 
Near the onset of STI, the distribution of the length of laminar 
domains obeys the power law, with the exponent 2 f 0.2. 
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Fig. 21. Semi-log plot of the distribution of the lengths of the 
laminar domains. Semi-log plot of the distribution of laminar 
regions, for AT = 0.1 (solid line), and 0.5 (broken line). The 
other parameters are the same as in Fig. 20. Above the onset of 
ST1 ( ATsn N 0.05), the distribution obeys the exponential form, 
whose decay rate decreases to zero as AT approaches ATsn. 
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Fig. 22. AT dependence of the spatial characteristic length. The 
inverse of the characteristic length l/Lsn of the distribution is 
plotted versus AT. Each dot is obtained by fitting the distribution 
of the lamlnar domains with E!q. ( 12). The parameters are the 
same as in Fig. 20. 
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Fig 23. Rayleigh number dependence of the spatial correlation 
length. The best fit value of [srt in Eq. ( 13) is plotted versus AT. 
The inverse of the correlation length l/&r increases with AT. 

The inverse of the correlation length 1 /&rt increases 
with AT as is shown in Fig. 23. This divergence of 
the correlation length is common in the STI transition, 
although it is not easy to estimate the value of the 
exponent accurately. The divergence is a consequence 
of the increase of the frequency of a large laminar 
domain, as is seen in Fig. 20. 

In order to find the Prandtl number dependence near 
the onset of STI, we define the following characteris- 
tics: 

F= 
( 

number of turbulent patches 

number of patches > ’ 
(14) 

where (. . .) denotes the temporal average. A global 
characterization of STI is given by the evolution of the 
turbulent fraction F, which is calculated as the aver- 
aged total length occupied by the turbulent cells, di- 
vided by the length of the container. By plotting this 
turbulent fraction versus the thermal conductivity h, 
we find that the critical value ATsrr almost linearly 
increases with the Prandtl number. The power law be- 
havior and its exponent at the onset of STI are invari- 
ant under a change of the Prandtl number. 

We have also calculated the Lyapunov spectra by 
changing AT and the aspect ratio. In and above the 
ST1 region, the ordered Lyapunov exponent decreases 
almost linearly with its index (see Fig. 24). Neither a 
plateau at the null exponent nor a stepwise structure 

‘I / / 

Fig. 24. Scaled Lyapunov spectrum. The ordered Lyapunov cxpo 
nents Ai versus i/T are plotted. A = 0.02, v = n = 0.2, N, = 17. 
(a) AT = 0.1 (near onset of STI), I’ = 2 (thin solid line). 5 
(broken line), IO (dotted Line), 20 (solid line). (b) AT -- 0.5. 
I’ = 2 (thin solid line), S (broken line), 10 (dotted line ). In 
the computation, we have obtained only the first SO exponents by 
the average of LO4 time steps after discarding 10” transients. The 
Lyapunov spectrum approaches a unique form with the increase 
of aspect ratio. Above the onset of ST1 (b), this convergence i\ 
faster than for (a) 

is observed. This linear shape is distinguished from 
that of type-I ST1 in some coupled map lattices \ 10 1. 
and is consistent with that for the type-II ST1 of the 
coupled logistic lattice [ 1 11. With the increase of the 
aspect ratio, the scaled Lyapunov exponents A, versus 
i/T approaches a unique form, as is shown in Fig. 24. 
The approach is rather slow near the onset of STI, due 
to the long range spatial correlation, where the inter- 
mittent appearance of large laminar patches enhances 
the statistical fluctuation of the Lyapunov exponents. 

8. Transition from soft to hard turbulence 

When AT is increased further, the roll patterns col- 
lapse, and the convection shows turbulent behavior. 
In recent experiments, Libchaber’s group has found 
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Fig. 25. Contour plot of temperature field. The snapshots of equi-temperature lines am plotted for (a)AT = 1 .O (b)AT = 3.0, and 
(c)AT = 10.0. In (b) (in the soft turbulence region), plumes exist near the boundary layer. In (c) (in the hard turbulence region), plumes 

(b) 

can reach the opposite boundary, and the boundary layer is destroyed by these plumes. A = 0.4, ZJ = 7) = 0.2, NX = 29. NY = 29. 

a transition in turbulence. The phase at lower AT is 
called soft turbulence, while the latter at higher AT 
is called hard turbulence [ 58,591. They have charac- 
terized this transition by the temperature distribution 
in the middle of container. According to their exper- 
iments, the distribution is Gaussian in the soft turbu- 
lence regime, while it is exponential in the hard tur- 
bulence regime. They have also pointed out that the 
transition is due to the destruction of the boundary 
layer and the formation of hot and cold plumes. 

Let us discuss this soft/hard turbulence transition 
in our model. By increasing AT, hot and cold plumes 
start to appear (Fig. 25)) above some transition tem- 
perature. Plumes in our model are defined as isolated 
sets of few connected lattice points with larger or 
smaller energy E than their neighbors. Slightly above 
the transition temperature for the plume formation, a 
hot plume cannot reach the top plate (and vice visa 
for a cold plume). The boundary layers are still pre- 
served. With the further increase of AT, plumes can 
reach the opposite plate, breaking the boundary lay- 
ers. This observation agrees with the picture by Libch- 
aber’s group for the transition between the soft (for 
former) and hard turbulence [ 58,591. 

To confirm the transition quantitatively, we have 
measured the distribution of E( n, NY /2), by sampling 
over a given time interval. As is plotted in Fig. 26, 
the distribution shows the transition from Gaussian to 
exponential, in agreement with experiments. 

To characterize the change of the distribution quan- 
titatively, we have also calculated the flatness 

81 

Fig. 26. Distribution function of the temperature. The distribution 
of the temperature E(x, N,/2) in the middle of the container, 
measured from the histogram of the temperature sampled over 1 O5 
time steps. The distribution changes its form from Gaussian to 
exponential, indicating the soft and hard turbulence respectively. 
A = 0.4, v = 7 = 0.2, N, = NV = 29, solid line: AT = 3.0, dotted 
line: AT = 5.0. 

f = ((E - (E))4)/((E - (E)j2j2. (15) 

At low Prandtl numbers, the flatness rises from 3 
to 6 with the increase of AT, while it rises continu- 
ously to 12 at high Prandtl numbers. Moreover, the 
plateau around the flatness 3 (in the soft turbulence 
region) gets narrower by increasing the Prandtl num- 
ber (Fig. 27). This Prandtl number dependence of the 
flatness is our prediction here, which should be con- 
firmed by experiments in the future. Our CML pro- 
vides the first simple model for the soft-hard turbu- 
lence transition [ 601. Our observation of the energy 
pattern (Fig. 25) also suggests that this transition is 
associated with the percolation of plumes at the bot- 
tom plate. 

We have a!so varied r], which expresses the pressure 
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8 

AT 
Fig. 27. The flatness of the temperature distribution. At low Prandtl Fig. 28. Lyapunov spectrum for the turbulent regime. The tlrst 20 
numbers, the flatness of the distribution increases with A,T and sat- Lyapunov exponents, computed by the average over I OJ time steph 
urates around 6.0, while at high Prandtl numbers, it increases until In the turbulent regime, the number of positive Lyapunov exponenrs 
12. line: A = 0.404, dotted line: A = 0.116. Each dot is obtained increases rapidly, which should be compared with the chaotic itin 
from the average over 20000 time steps. The other parameters are erancy motion in Section 5. A = 0.4, v = 7 = 0.2, N, = N, = 30. 
the same as in Fig. 26. solid line: AT = 2.0, dotted: 3.0, broken: 5.0. 

effect, from 0.2 to 0.4. The flatness for the temperature 
distribution scatters around from 2.6 to 3.0 in the soft 
turbulence region (AT = 3.0)) without any systematic 
deviation from the Gaussian shape. Thus our transition 
is a robust property against the change of 7, which is 
important for the justification of our approach, since 
YJ represents a rather artificial term in our modeling. 

To study the transition in terms of dynamical sys- 
tems, the Lyapunov spectrum and Kolmogorov-Sinai 
entropy are computed (Fig. 28). By increasing AT, 
the number of positive Lyapunov exponents also in- 
creases, in contrast with the chaotic itinerancy case 
discussed in Section 5 (Fig. 13). Within our simula- 
tion, no plateau at the null exponent is clearly visi- 
ble. At present it is not sure if this lack of the plateau 
implies the absence of the cascade process, or it is 
just because the number of lattice points is not large 
enough. 

9. Pattern formation 

Extension of our model to three dimensions is quite 
straightforward. We have simulated three-dimensional 
convection in rectangular and cylinderical containers, 
taking a fixed boundary at the wall. Here the pattern 
formation of convective rolls requires a long time, 
due to slow motion of defects between locally aligned 
rolls. Temporal evolution of roll patterns is given in 

Fig. 29, which is quite similar with the spatial pat- 
tern observed experimentally [ 611. while a quantita- 
tive agreement will be discussed shortly. Starting from 
an almost homogeneous field, rolls are formed locally 
within a short time, while defects between rolls move 
slowly. The domain size of aligned rolls increases so 
slowly that the irregular motion of the defects remains 
over many time steps. If AT is larger, these defects 
form cellular structures as in Fig. 29f. 

To see the pattern formation process quantita- 
tively, we have measured the spatial power spectrum 
P(k) of the vertical velocity I’? (.x, NJ 12) for the 
2-dimensional model: 

where (, t .) means the sample average over different 
initial conditions close to a homogeneous one (see 
Fig. 30). Starting from a random initial configuration. 
convective rolls are locally formed, which leads to the 
appearance of a peak in the spatial power spectrum. 
As the pattern formation proceeds, the peak shifts to 
a lower wave number while it gradually sharpens. We 
plot the wave number k,, which gives the maximum ot 
P( t, k), versus time t (see Fig. 3 1). k,,, converges to :I 
characteristic wave number k,. for the stationary stale. 
The approach to k,. obeys a power law in time ii.c.. 
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(a) (b) 

(d) (e) 
Fig. 29. Pattern formation of convective rolls. Roll pattern for three-dimensional convection. Snapshot of the vertical velocity I+ at the 
middle plate (x,y, N,/2) is shown with the use of gray scales. The lattice size is (N,, NY) = 125 x 125 (horizontal), and N, = 9. 
Y = A = 0.2. Random initial condition were used. AT = 0.6 and (a) time step 500 (b) 1000 (c) 2000 (d) 5000. AT = 2.0 and (e) time 
step SO (f) 5000. 
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Fig. 30. Spatial power spectrum. Spatial power spectrum averaged over 10 different initial conditions. (a) r = 32, (b) t = 1024, 
A = 0.2, v = 71 = 0.2, AT = 0.01, N+ = 1024, NY = 17. 
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Fig. 3 I Scaling exponent for the domain growth. Log-log plot for 
characteristic length (the maximum of spatial power spectrum) 
versus time. A = 0.2, v = 77 = 0.2,AT = 0.01, N., = 1024, N, = 17. 

k,, - k, M t-p). The width of the peak, measured by 
((k-(k))*)where(k)=~kP(k,t)dk/~P(k,t)dk, 
also decreases with the same power t-p. By our simu- 
lation this exponent for the convergent process is l/2, 
in agreement with experiments as well as the theory of 
pattern formation. Although the present result is ob- 
tained with the 2-dimensional model, we believe that 
the scaling exponent is invariant in a 3-dimensional 
case also. 

tency, transition from soft to hard turbulence, and the 
pattern formation process. Besides qualitative agree- 
ment with experimental observations, some quantita- 
tive agreements are also obtained; the power law dis- 
tribution of laminar regions in STI with the exponent 
2 f 0.2, and the flatness of the temperature distribu- 
tion at the soft-hard turbulence transition, in addition 
to rather trivial agreements on the exponents on the 
onset of convection, the critical slowing down and the 
pattern formation. The results on soft-hard turbulence 
may be the most remarkable, since it provides the first 
simple model with an agreement on the change of dis- 
tributions. It is also noted that the role of disconnected 
plumes is confirmed with the help of the snapshot tem- 
perature field. 

Inclusion of rotation to the convection is rather 
straightforward. We introduce the centrifugal and Co- 
liolis force procedure before the Lagrange procedure: 

UHU$-20JXVfOX (wxx). (17) 

Here we show only some examples of the spatial 
patterns (Fig. 32). By increasing the rotational speed, 
spiral convective rolls appear. As the rotational speed 
is further increased, the spiral structure collapses, and 
a complicated structure is successively formed. 

Furthermore, we have also made several predictions 
here. (i) In systems with relatively low aspect ratios. 
switching between two roll patterns is found which 
occurs through high-dimensional chaos. At the onset 
of the chaotic itinerancy, the average lifetime of lam- 
nar states diverges. (ii) Spatial long-range order with 
temporal chaos is found in a system with a large as- 
pect ratio. Spatial correlations do not decay although 
the number of positive Lyapunov exponents increases 
with the system size. (iii) For the soft-hard turbulence 
transition, the calculated flatness of the temperature 
distribution increases from 3 to 6 at low Prandtl num 
bers, as is known in experiments. On the other hand 
it raises till 12 at high Prandtl numbers, which can be 
checked in future experiments. 

Correspondence of our results with experiments is 
summarized in Table I. Here a dash in the experiment 
column shows our novel prediction here. 

10. Summary and discussions 

In the present paper, we have proposed a CML 
model for Rayleigh-BCnard convection by introduc- 
ing a new procedure, i.e., a Lagrangian scheme for the 
advection. In this procedure, the advective motion is 
expressed by a quasi-particle. 

One of the merits of our modelling here lies in the 
applicability of dynamical systems theory. It is possi- 
ble to describe the convection phenomena in terms of 
dynamical systems, in particular by Lyapunov expo- 
nents. Collective motion with high-dimensional chaos 
is thus confirmed. as well as the switch between low- 
and high- dimensional dynamics at the chaotic itiner- 
ancy. Lyapunov spectra for STI and soft/hard turhu- 
lence transitions arc also obtained. 

Our model reproduces a wide range of phenom- Some, still, disagree with our CML approach only 
ena in convection; formation of rolls and their oscilla- because our model is not derived from the Navicr- 

tions, many routes to chaos, spatiotemporal intermit- Stokes equations. Our standpoint here is that the 



Fig. 32. Inclusion of rotation to the convection. Snapshot of the perpendicular velocity vz at the middle plate (x, J’, N, /2) is shown with 
the use of gray scales. The lattice size is (N,, NY) = 50 x 50 (horizontal), and NZ = 9. v = K = 0.2,AT = 1.0.(a) angular velocity w is 
0.001 (b) w = 0.004 (c) o = 0.008. 

Table 1 
Summary of our 1~u1t.s in comparison with experiments, as well as some predictions 

Phenomena Characteristics CML model Experiment 

onset of convection 
critical slowing down 
route to chaos 

chaotic itinerancy 
coherent chaos 

traveling wave 

ST1 

soft/hard turbulence 

pattern formation 

vz N ??
1/7-j"' 
quasi-periodic 
period doubling 
intermittency 
lifetime at laminar states 
spatial long-range order 

with chaotic motion 
coexistence of different 

speeds attractors 
distribution of 

laminar domain 
P(L) N L-v (onset) 

flatness 
((E - (E))4)/((E - (E))*)* 
characteristic length k,,, N r B 

0 = -l/2 
a’ = -1 
high Prandtl 
low Prandtl 
depend on I 
diverges at ATct 

(Y = -l/2 
(y’ = -1 
high Prandtl 
low Prandtl 

_ 

exists 

exists 

y = 2.0 f 0.2 y= 1.8 
3 to 6 3 to 6 
3 to 12 (high Prandtl) _ 
p= l/2 p= l/2 

salient features in convection are irrespective of the 
details of the models. Such features form universal 
classes. All of our results suggest that the qualitative 
features of convection do not depend on the details 
of the dynamics. This means that our model and real 
fluid dynamics belong to the same universality class. 

One of the advantages of our approach is the pos- 
sibility to check the robustness of a given feature of 
convection against the modification and/or removal of 
processes (see Appendix A). For example, the power 
law distribution of laminar domains in STI does not 
depend on the dynamics of the pressure effect, while it 
crucially depends on the buoyancy procedure. On the 
other hand, the buoyancy procedure is not relevant to 
the soft-hard turbulence transition, (but the pressure 

procedure is). Indeed the distribution change of a pas- 
sive scalar from a Gaussian to an exponential form is 
also observed in grid-generated turbulence and stirred 
fluids. Such universality may be related with the sta- 
bility against the choice of models. 

Thus our constructive approach is powerful for 
proposing universal classes of the phenomenology. In 
our model, for example, the soft-hard turbulence tran- 
sition is associated with the percolative behavior of 
plumes. This allocation forms the basis of universal- 
ity such as the change of the temperature distribution. 
The essence of the transition does not depend on the 
details of a model, as long as it belongs to the same 
universality class. 

The computational advantage of our model is also 
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clearly demonstrated. As we have discussed in Sec- 
tion 2.3, the NS equations are not necessarily the best 
model for numerical analysis, due to its demand of 
huge computational resources. In particular, to glob- 
ally understand the phenomenology, we must scan 
over the parameter spaces. Thus fast and interactive 
computation is important for a mode1 construction. It 
should be mentioned that all of our results here have 
been obtained by workstations. 

Last but not least, it should be mentioned that our 
Lagrangian procedure is also useful to construct a 
CML for shear flows or K&m& vortices and their 
collapse. Another important extension of our CML is 
the inclusion of phase transition dynamics, as is seen 
in boiling [ 141 and cloud dynamics. These examples 
will be reported elsewhere. 
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Appendix A. “Structural stability” of our model 

In previous sections, we have shown that our sim- 
ple model reproduces a wide range of phenomenol- 
ogy of convection (with some predictions), which 
may be rather surprising. In this appendix, we dis- 
cuss the stability of our mode1 to study the “univer- 
sality” classes of convection. Here, we use the term 
“universality” in a rather qualitative sense: if a set of 
models reproduces the same macroscopic properties 
such as flow patterns and statistical quantities, these 
models form a “universality class”. For example, spa- 
tiotemporal intermittency is believed to form such a 
universality class, since it is observed in a wide range 
of models with spatial degrees of freedom. Here, we 

address the following questions. Are there any other 
models which reproduce the phenomenology of con- 
vection? Is a given characteristic also reproduced by 
modification or removal of some elementary physical 
processes? In other words, are macroscopic properties 
robust against the structural change of models? 

The coupled map method is suitable to answer 1 hesc 
questions, because the dynamics is decomposed into 
several elementary processes which are expressed bq 
a simple dynamics (mapping). Hence, one can easily 
check the structural stability by replacing a procedure 
by another one. 

In our model, the thermal diffusion and viscosity 
procedures are rather straightforward. Hence. we stud) 
the effects of’ modifying the buoyancy and pressure 
procedures by fixing the diffusion and viscosity ones. 
Although a variety of replacements can be considered. 
here, we restrict ourselves to the changes listed in 
Table IO. 

By choosing either one of the procedures listed 111 
Table 10, we have 9 possible models as a total. Since. 
it is hard to report all simulations (onset of convcc- 
tion, routes to chaos. . . so on) for each model. tic 
report mainly the onset of convection. spatiotemporal 
intermittency and the soft-hard turbulence transition 

At the onset of the Rayleigh-BCnard convection in- 
stability, we calculate the scaling property for- the ver- 
tical velocity I:~ versus the normalized temperature 
difference E. We have found that the scaling proper{) 
does not depend on the details of modeling. All the 
models that follow from Table 10 reproduce l.‘, - 6’ “. 
while the critical temperature difference AT, depends 
on the models. This is reasonable since the scaling 
property is expected just from the bifurcation analysis. 

The distribution function of the laminar domains 
during ST1 depends on the choice of the dynamics 
in particular, on the choice of the buoyancy procc 
dure dynamics. For example. if we take a discretizeci 
d2/dy2 operator for buoyancy, the power law behav- 
ior is not obtained. In this case, laminar and globally 
turbulent states appear intermitt.ently in time without 
spatial intermittency (that is, the spatial structure ih 
not far from a homogeneous one). 

The transition between soft and hard turbulences 
also depends on the change of the procedure. The re 
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Table 2 
Dynamics of the procedures 

Buoyancy dynamics Pressure dynamics 

v; = vi + c discretized a2 E/ax2 u: = v: + r] discretized V( V Y) 
v; = I_$ + c discretized d2 Ef ay2 uJ_ = IJ: - r) exp( -yv2) 
v; = vi + c discretized a2 E/~?xdy u: = vz + 11 discretized V4 

Table 3 
Reproducibility with changing dynamics 

Model &X u V(VY) a,, u V(Vv) a,, u V(Vv) ir,, U exp(3) &x u 0 J17,, u v4 

onset 
STI : 

0 0 
: 

0 
0’ :+ 

SH 0 L L X X X 

0 : Agreement with experiments 
+ : No spatial intermittency 
t : Large fluctuation around the tail of the distribution P(L) 

311 

x : No plateau around 3 (soft turbulence regime) 

placement of the buoyancy procedure dose not affect 
the flatness of the temperature distribution. However, 
the pressure procedure is more relevant to the transi- 
tion. When the pressure procedure is substituted by the 
cut off dynamics, the flatness rises from 2 to 10 with 
the change of AT, (which does not depend on the cut 
off parameter y) . There is no plateau around 3 (corre- 
sponding to the Gaussian distribution; soft turbulence 
regime) and 6 (corresponding to the exponential dis- 
tribution) . 

The results for the structural stability against the 
change of the procedure are summarized in Table 3. 

Generally, the choice of a procedure affects some 
property. The relevance of a physical process to a given 
behavior is determined by replacing the procedure cor- 
responding to the process. For example, the scaling 
property near the onset of convection can be repro- 
duced by a wide range of models, while the pressure 
or buoyancy procedure is irrelevant to STI or the SH 
transition, respectively. The irrelevance of the buoy- 
ancy procedure for the SH transition implies that the 
mechanism of an external forcing does not affect the 
turbulence transition. In fact, the universal change of 
the distribution of a passive scalar is also observed in 
grid-generated turbulence and stirred fluids [ 62,631. 

To sum up, by determining the relevant procedures 

for a given behavior, it is possible to decide the uni- 
versality class which yields the same salient behavior. 

Appendix B. Autoregressive model 

In the Mth order AR model, the time series x(n) is 
expressed as 

x(n) = 2 a,x(n - m) + e(n), (18) 
m=l 

where e(n) is a residual error. We determine the co- 
efficient a, by using the maximum likelihood method 
[ 251. Of course we can obtain the power spectrum 
directly from the velocity time series. To get the fre- 
quency of the oscillation, however, we need a rather 
accurate form of the power spectrum, which requires 
a rather long computation. An advantage of the AR 
model is that the power spectrum inferred by it is a 
continuum function (rational polynomial function), 

/II 
2 

P(f) =a2 I-5 a, exp ( -2rifn) 
/I 

, (19) 
Ill=1 

where 

CT2 = (e(?z)e(n)). 
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Fig. 33. Power spectrum estimated by AR model. The power 
spectrum estimated by 100th order AR model near the onset of 
oscillation. Increasing AT, the amplitude of oscillation gets larger 
and the higher harmonics starts to appear. The 4000 time series 
per IO steps is used to determine the coefficient of AR model. 
AT = 0.3, A = 0.4, v = g = 0.2, N, = 17, A’, = 30. 

Then we can easily determine the characteristic fre- 
quency of the oscillation (see Fig. 33 which shows a 
power spectrum estimated by the AR model). 
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