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Abstract 

The pattern dynamics of the one-way coupled logistic lattice which can serve as a phenomenological model for open 
flow is investigated and shown to be extremely rich. For medium and large coupling strengths, we find spatially periodic, 
quasiperiodic and chaotic patterns with temporal periodicity and analyze their stability with the help of a newly introduced 
spatial map. Criteria are established for predicting the down-flow bifurcation behavior of the coupled map lattice, and for 
selecting attractors through modulation of the boundary. For smaller coupling strengths we find a novel regime in which 
chaotic defects form a periodic lattice that is shown to be the result of a boundary crisis. 

I. Introduction 

In recent years, spatio-temporal chaos has been 

studied extensively, and the use of coupled map 
lattices has been demonstrated to be powerful for 

studying universal features in complex spatiotempo- 

ral dynamics [1] - [6] .  Of particular interest is the 

existence of universality classes like pattern selection, 

frozen random patterns, spatiotemporal intermittency 

and traveling waves which have, for example, been 
discovered in the diffusively coupled logistic lattice 
(DCLL). 

In this paper we study the pattern dynamics and spa- 

tiotemporal chaos in an open flow system, observed 
typically in fluid experiments such as pipe flows and 
also seen in many physical, chemical and biological 
systems. I f  one does not aim at modeling a specific 
physical system, but at distillating some underlying 
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universal characteristics, one only needs the essential 

ingredients of open flow. In their most simplified form, 

these may be considered the possibility of local chaos, 

and the transport of information in the downflow di- 

rection. This idea yields, rather naturally, the one-way 

coupled logistic lattice (OCLL) [7]-[  12] (see also 

[ 13]-[ 15] for some other open flow models), origi- 

nally introduced in order to investigate the features of 
an open flow system from the viewpoint of dynamical 

systems. It is defined as 

Xn+l(i) -- (1 - e ) f ( x n ( i ) )  +ef(xn(i-  1)),  (1) 

where n is the discrete time and i discrete space. The 
parameter • represents the strength of the coupling 

and f(x) is the logistic map given by 

X.+l = f(xn) = 1 - t~x 2, (2) 

where a is the nonlinearity. Unless mentioned other- 
wise, the left boundary is fixed, and (as immediately 
follows from Eq. (1))  the right boundary is open. 
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(For some other conceptually related studies see also 

[16]) .  
Although we focus on the OCLL model in the 

present paper, most of the results are expected to be 

generally applicable to open flow systems. Examples 

of such general statements will be given as conjec- 

tures on the stability of spatial chaos. Some discov- 

eries (such as the defect lattice and source induced 
intermittency) will provide universality classes for 

the phenomenology of open flow systems. 

Previous studies [ 7] revealed that some of the main 

characteristics of the model ( 1 ) are: spatial bifurcation 

cascades in which the temporal periodicity of the lat- 

tice doubles in the downflow direction making space 

a kind of bifurcation parameter, and the importance of 

noise for the location of the bifurcation sites resulting 

in the absence of scaling relations. These results were 

in principle obtained for not too large coupling con- 

stants (e L0.5),  a regime in which most of the pat- 
terns are temporally non-periodic (the exception here 

being the zigzag pattern), although locally the lattice 

may very well be almost periodic with kinks traveling 

by. Recent studies of the diffusively coupled logistic 

lattice, however, have shown that larger values of • 

may yield very interesting dynamics including travel- 

ing waves [ 17] and pattern selection at high nonlinear- 

ity [ 18]. In this report we will show that in the OCLL 

too, there is a host of fascinating phenomena for • 

L 0.5, like purely spatial chaos, while for smaller val- 

ues of the coupling constant, we find several new uni- 

versality classes, including periodic lattices of chaotic 

defects. 

The present paper is organized as follows. In sec- 
tion 2, the main pattern classes are outlined and phase 
diagrams are given, for both the temporally periodic 
and temporally non-periodic areas. In order to facili- 

tate analysis, in section 3, we introduce a purely spatial 

map which can accurately reproduce the temporally 

periodic patterns, and discuss the notion of convective 

instability. In sections 4 and 5, we apply the results 

of section 3 and show how the stability of the spatial 
map can be used to predict the bifurcation behavior 

of the coupled map lattice. For an interval around • = 
0.9, we found a spatial bifurcation cascade to chaos 
which is analyzed with the help of the explicitly solv- 
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Fig. 1. Phase diagram of the open flow model. The system size 
is N = 384. Only the predominant patterns are indicated and 
labeled as SP (spatially and temporally periodic), SQP (spa- 
tially quasiperiodic but temporally periodic), SC (spatially chaotic 
but temporally periodic), and STP (spatially and temporally 
non-periodic), respectively. Random initial conditions were used 
and the boundary was fixed to x(0) = 1 (although the exact value 
does not seem to matter). 

able spatial map corresponding to a temporal period- 

icity of one. We also employ a variation of the spa- 
tial map to associate temporally non-periodic lattices 
of periodic defects with a boundary crisis. Finally, in 

section 6 we show that (chaotic) attractors can be se- 

lected by appropriately modulating the boundary and 

find that the encountered phenomena again can be an- 

alyzed with the help of the spatial map as an applica- 

tion of the results of section 3. Section 7 is devoted to 

the discussion and the conclusions. 

2. Outline of the phenomenology 

The pattern dynamics of the OCLL is extremely 
rich, but it can nevertheless be divided into two clearly 

distinct super-classes: spatio-temporal patterns and 

spatial patterns with perfect temporal periodicity. 
A phase diagram displaying the regions in which the 

major classes dominate is given in Fig. 1 (with a slight 

modification, adapted from [ 11 ] ). The super-class of 
spatio-temporal patterns is indicated by STP, with the 
remaining regions belonging to the super-class of spa- 
tial patterns with temporal periodicity being the three 
classes of spatial chaos (SC),  spatial quasi-periodicity 
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Fig. 2. The main pattern classes of the OCLL in the temporally periodic region. The system size is N = 1000 and a = 1.50. (a) Spatial 
chaos (SC) with temporal periodicity. The coupling constant is e = 0.55 and the temporal periodicity is 16 for 158 < i < 846. (b) Spatial 
return map corresponding to (a). (c) Spatial quasiperiodicity (SQP) with temporal periodicity. The coupling constant is e = 0.6 and the 
temporal periodicity is 4 for 88 < i < 1000. (d) Spatial return map corresponding to (c). (e) Spatial periodicity (SP) with temporal 
periodicity. The coupling constant is e = 0.975, the temporal periodicity is 1 and the spatial periodicity 8 for 1 < i < 1000. (f) Spatial 
return map corresponding to (e). The first 200 lattice sites were discarded as spatial transients in the spatial return maps. 
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(SQP) and spatial periodicity (SP) .  A separate phase 

diagram indicating the various classes inside the STP 

region will be given below in section 2.2. 

It should be stressed that the phase diagram is only 

intended to give a rough idea of  the locations of  the 

various classes and that it is not meant to be taken 
too literally. The boundaries between the marked areas 

are often not that sharp, and in some regions, several 

attractors may very well coexist. In such cases, only 

the dominant pattern is indicated. 

2.1. Spatial patterns with temporal periodicity 
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Fig. 3. Spatio-temporal bifurcations. The nonlinearity is a = 1.45 
and • = 0.5. The numbers indicate the temporal periodicity. 

Examples of  SC, SQP and SP are depicted with 

their return maps in Figs. 2a,b, 2c,d and 2e,f, respec- 

tively. The fixed boundary implies that the most up- 

flow temporal periodicity is one in all cases. Further 

downflow, the system may bifurcate temporally (see 

also below),  and the spatial pattern may change dras- 
tically. I f  Fig. 2a, e.g., we first have some temporally 

period one homogeneous sites, then some temporally 

period two homogeneous sites followed by temporally 

period 4 and 8 spatially quasiperiodic sites before the 

temporally period 16 spatially chaotic pattern occurs 

(for spatial chaos see [ 19,16] ). 

The occurrence of  multiple attractors can basically 

be ascribed to either the initial conditions per se, or a 

combination of  the initial conditions and a finite size 

effect. In order to clarify this distinction, first an es- 

sential feature of  the OCLL needs to be pointed out: 

spatio-temporal period doubling [ 7].  This refers to the 

interesting phenomenon of  temporal period doublings 

in the spatial direction without changing of  the control 

parameters, i.e., within the same lattice, the temporal 
periodicity of  a lattice site can be half the periodicity 

of  a site further downflow, while the spatial pattern 

may completely have changed (hence the extreme sen- 

sitivity to noise in such cases). An example is shown 

in Fig. 3. Exactly, at which lattice site such spatio- 

temporal bifurcations occur is often strongly depen- 
dent on the initial conditions. If, then, one investigates 
a finite system, sometimes the lattice may bifurcate 
before the final site and other times not. Consequently, 
the attractors may look rather different but really are 
not which is why this should be attributed to a finite 
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Fig. 4. Phase digram for the spatio-temporal patterns. As in Fig. 1, 
the regions are only intended to give a rough indication of the 
location of the various universality classes. For the meanings of 
the abbreviations, please see Fig. 5. 

size effect. On the other hand, if several patterns with 

the same temporal periodicity coexist, the initial con- 
ditions per se are in different basins of  attraction. 

Let us note that if one takes a closer look at Eq. ( 1 ), 

it readily follows that for e = 1 the temporal periodic- 
ity must be one. For decreasing values of  e, the tem- 

poral periodicity bifurcates and becomes rather high 
at the boundary of  SC and STP (periodicities of  up to 

512 can quite easily be found).  

2.2. Spatio-temporal patterns 

As can be seen in the phase diagram of  the previ- 
ous subsection (Fig. 1), below a certain value of  e, 

patterns are no longer temporally periodic (with ex- 
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Fig. 5. The main universality classes in the STP region. (a) Traveling Pattern Selection (TPS): the nonlinearity is ot = 1.65 and ~ = 0.23, 
every 4th time step is plotted. (b) Chaotic zigzag pattern below the perfect zigzag pattern: the nonlinearity is tr = 1.70 and ~ = 0.08, every 
2nd time step is plotted. (c) Defect Lattice (DL): the nonlinearity is a = 1.72 and e = 0.1275, every 2nd time step is plotted. The distance 
between defects is 11 lattice sites. (d) Source Induced Intermittency (SII): the nonlinearity is a = 1.8 and ~ = 0.17, every 8th time step 
is plotted. (e) Spatio-Temporal Intermittency of type 11. The nonlinearity is a = 1.7, and the coupling constant is ~ = 0.061. Every fourth 
time step is plotted. (f) Spatio-Temporal Chaos (STC): the nonlinearity is a = 1.8 and e = 0.25, every 4th time step is plotted. 
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ception of the ZZ area). In this area, we would like 

to distinguish the three basic spatio-temporal phases 
roughly indicated in the phase diagram Fig. 4 and 
shown in Fig. 5. These are Traveling Pattern Selection 
(TPS), the four zigzag-like pattern types of Perfect 
Zigzag (PZ), Defect Lattices (DL), Source Induced 
Intermittency (SII) and Chaotic Zigzag, and Spatio- 

Temporal Chaos (STC). 

2.2.1. Traveling pattern selection (TPS) 
In TPS, a clear downflow movement of a selected 

pattern can be seen in Fig. 5a. This pattern contains 
strong remnant chaos, however, and domains some- 

times split or merge. At first sight, TPS might appear to 
resemble the traveling waves of the DCLL somewhat, 
but the two phenomena are basically unrelated. Here, 

the motion of the domain walls is a consequence of the 
one sidedness of the model, the velocity is not quan- 
tized (i.e. there is basically one • dependent velocity), 
and chaos is never completely suppressed, while in the 
DCLL the motion is caused by local phase-slips which 

yield an additive quantized speed (where the absence 
of a phase-slip implies a non-traveling attractor), and 

chaos may completely be suppressed [17]. 

2.2.2. Zigzag-like patterns 
For small, but not too small, values of the coupling 

constant e, zigzag-like patterns, characterized by a ba- 
sic spatial and temporal periodicity of two, can be 
found up to the maximum nonlinearity a = 2. Below, 
we will briefly outline the four areas in the zigzag 

region. The chaotic zigzag area is described together 
with the perfect zigzag area in (i),  while in (iv), 
spatio-temporal intermittency of type II is described 
which is not indicated in the phase diagram since its 
area is rather small, and since it might not be a true 
phase but a transient regime. 

(i) Perfect zigzag pattern (PZ). The perfect zigzag 
pattern has exact and identical spatial and tem- 
poral periodicities. The most well known zigzag 
pattern is that with a periodicity of two. Without 
losing the zigzag structure, however, higher pe- 
riodicities exist too. In fact, one of the possible 
routes to chaos when decreasing • from within 

(ii) 

the zigzag area is a bifurcation cascade. Despite 

being given as an example of a different region 
in parameter space, Fig. 2e as such is a zigzag 
pattern. 3 

Below the zigzag area, for certain intervals 
of the boundary condition, the zigzag regime 
temporally and spatially bifurcates to chaos for 
decreasing e (see section 5.1 on the zigzag 
regime). At the end of the bifurcation cascade 
one might expect spatio-temporal chaos. It turns 
out, however, that for quite a big range of E 

there is a chaotic zigzag regime in which an 

approximate spatial periodicity of two is main- 
tained while all sites behave temporally chaoti- 
cally. This is illustrated in Fig. 5b, where per 2 
time steps 60 successive states are overlaid. For 
other intervals of the boundary condition, we 

observed spatio-temporal quasiperiodicity. This 
is likely caused by too large a mismatch of the 
boundary value and the zigzag solution. That 
is to say, certain values of the boundary cause 

such strong chaotic motion at site i = 1 that the 
lattice is prevented from reaching the periodic 

attractor. 
It is interesting to note that within or near 

the chaotic zigzag area, window-like spatially 
and temporally periodic parameter regions can 
be found. For example, t~ = 1.70 and e = 0.0675 

yields spatial and temporal periodicities of four 
while a = 1.70 and E = 0.08 yields chaotic 

zigzag patterns. 
Defect lattices (DL). Above the zigzag pattern 

we have observed the rather unexpected occur- 
rence of defect lattices [ 12] of which an exam- 
ple is shown in Fig. 5c. In this regime, when 
starting from random initial conditions, a lattice 
is formed that consists of localized defects which 
have a (usually) predetermined number of lat- 
tice sites between them. In Fig. 5c, e.g., the dis- 

3 Although the appearance of a snapshot of  a zigzag pattern in the 
SP area may be identical to that of a zigzag pattern in the zigzag 
area, we believe that it is nevertheless not inconsistent to classify 
them in separate groups since all the patterns of  the zigzag area 
(including the temporally non-periodic ones) conceptually form 
one entity. 
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tance between defects is 11 sites. We find that 

when approaching the zigzag region from the 

DL region, the distance between defects diverges 

logarithmically as a function of e - ec with ec 

the largest value of e at which all initial condi- 

tions are attracted to the zigzag pattern. The DL 
attractor always coexists with the perfect zigzag 

pattern, and consequently, there are initial con- 

ditions (although the basin is rather small) for 

which the system is either partially or entirely 

attracted to the zigzag pattern. A more detailed 

account of this regime is given in section 5.2. 

(iii) Source induced intermittency (SII).  For values 

of the nonlinearity a ~ 1.76, instead of (but 

based on) the DL, we find a type of inter- 

mittency which we would like to call Source 

Induced Intermittency since intermittent bursts 

always originate at the site following a defect. 

In this regime, some sections of the lattice 

select the zigzag pattern and others not as can 

be seen in Fig. 5d. The size and location of the 

zigzag islands within the chaotic sea changes 

continuously. In section 5.3, the mechanism of 

this regimes is outlined in somewhat more detail. 

(iv) Spatio-temporal intermittency ( type II) ( STI II) 

For a rather small area at the transition from 

chaotic zigzag patterns to STC, we observed the 

occurrence of type II spatio-temporal intermit- 
tency which is characterized by the possibility 
of spontaneous bursts within laminar sections of 

the lattice. Such a transition from a periodic pat- 

tern to STC via STI is rather general in spatially 

extended systems [ 1,5,20,4]. In this case the in- 

termittent behavior is caused by the global ex- 
istence of a tiny leak from one chaotic band to 

the other. Since the band structure is still preva- 

lent, after a site leaks from one band to the other, 
there is still a strong tendency for a site to return 
to the basic period two motion. Spontaneously 
created defects do not continue to grow while 
moving in the down-flow direction. An example 
of STI II is given in Fig. 5e. 

2.2.3. Spatio-temporal chaos (STC) 

An example of spatio-temporal chaos is given in 

Fig. 5f. Spatial structures such as small ordered is- 

lands can hardly be observed here, although some 
spatial correlations can be inferred from the many 
'rounded' sections. Spatial correlations decay expo- 
nentially within a few sites. The figure only shows the 

STC above the zigzag pattern, but the same is basically 

also true for the STC below the zigzag pattern (i.e. in- 

stead of the rounded sections, there are some zigzag 

like sections). Indeed, in the latter case, the probabil- 

ity of obtaining zigzag sites decreases drastically as 
the parameter a or e departs from the STI region. 

2.2.4. Relationship with the diffusively coupled 

logistic lattice 

At this stage it might be worthwhile to outline the 

similarities and differences between the zigzag areas 

of the DCLL and OCLL. For this regime, the parallel 

is especially relevant since for the period 2 case, the 

solutions of the two CMLs are identical due to the spa- 

tial symmetry (of course, their stabilities are different 

in general). 

Except for the just mentioned period 2 zigzag pat- 

tern, the main similarities occur at the lower transition 

from periodicity to chaos for decreasing e. In both 

cases, depending on the boundary conditions, there is 

a quasiperiodic and a period doubling route to chaos, 
and as a consequence of the band structure of  the at- 

tractor we first encounter chaotic zigzag patterns and 

then (type-II) STI [ 4]. 

Above the zigzag pattern, we discovered the DL in 
the OCLL. Since the zigzag pattern as such is sta- 
ble in the DCLL, one might expect some similar self- 
organization to also occur in the diffusively coupled 

lattice. This is, however, not the case. Instead, depend- 
ing on the parameters, we have Brownian motion of 
defects, or defects with possibly some remnant chaos 
which do not have a minimum distance between them 
[4]. The underlying mechanism, however, is the same 

for both the DCLL and the OCLL. The resulting phe- 
nomena only differ due to the effects of the asymmet- 
rical coupling. 

In the OCLL with a fixed boundary condition, the 
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Table 1 
The various characteristics of the phases in the spatio-temporally non-periodic region. The row labeled with 'attractors' is to indicate 
whether in a regime several attractor types coexist or not. The row labels with ~ > 0 indicates approximately how many positive stationary 
Lyapunov exponents each regime has. The range for C(r)  means the correlation length roughly given as the inverse of the decay rate 
of C(r) .  It should be noted that all regimes except for the periodic and quasiperiodic zigzag area have positive maximum co-moving 
Lyapunov exponents. Multiple entries in one column indicate that within the same regime various possibilities exist. It is furthermore 
notable that the number of positive stationary Lyapunov exponents is zero for all zigzag patterns, including the chaotic one. The STI II, 
which possibly is not a phase, but a transition regime, is included for reference. 

Phase TPS DL SII Zigzag (STI II) STC 
Characteristics remnant periodic ordered spatio-temp. (bursts) no order 

chaos defects islands period 2 (band) 
C ( r )  (range) short mod. co short oc (power-law) very short 
attractors single multiple multiple single (single) single 
# of A > 0 > 0,= 0 = # defects 2 0 (O(N) )  ~ N 

source of the SII is an upflow, pinned and persistent 
defect from which bursts emanate (see Section 5.3). 
The pinning of the source is not possible in the DCLL 
or in an OCLL with periodic boundary conditions, al- 
though in the latter case, non-persistent SII like dy- 
namics may be observed as transients. 

For the dynamics of the DCLL, frustration may play 
a very important role. In lattices with an even system 
size N, for example, all defects above the zigzag area 
will eventually disappear. In this sense, Brownian mo- 

tion is a transient phenomenon. For lattices with an 
uneven system size, however, one defect will live for- 
ever. Due to the one-way coupling, such frustration 
cannot affect the OCLL. Nevertheless, in an OCLL 
with periodic boundary condition, there can very well 
be a mismatch between the system size and the wave- 

length. 

2.3. Overview of the phases 

In order to provide some overview, the various re- 
sults are summarized in table 1, where C(r) is the 
spatial correlation defined by 

C(r) = ( ( l /N)  ~-~xn(i)xn(i + r) 
i 

-- ( X n ( i ) ) 2 ( X n ( i )  2) -- (Xn ( i ) )2 ) .  

With regard to previous results, we would like to note 
that two types of patterns are not represented as such 
in the phase diagram: the transmission of defects and 
the flow of random domains [21]. In the present re- 

search, we mainly observed the former either during 
transients in a pattern selection region, or near the 
boundary of TPS and temporally periodic patterns for 
certain boundary conditions. That is to say, for identi- 
cal parameters ot and e we found both the transmission 
of defects and temporally periodic patterns depending 

on the value of the boundary. We observed the latter 
as an upflow spatial transient in the TPS regime. 

3. Analytical tools: spatial maps and Lyapunov 
analysis 

3.1. Spatial maps 

In this subsection, we will introduce a spatial map 
which turns out to be an extremely useful tool for the 

analysis of (almost) all temporally periodic and some 
temporally non-periodic patterns (see also [ 16] ). 

If a lattice site xn(i) of the OCLL has a temporal 
periodicity k, the equation 

xn(i) = Fk(xn(i) ) (3) 

must hold, where Fk(xn(i)) is the kth iterate of 

F(x, ( i ) )  = (1 - e) f (xn( i ) )  + e f ( x n ( i -  1)).  (4) 

Hence we can formally define an implicit spatial 

map corresponding to Eq. (3) as 

G~(x(i) ) = -x ( i )  + F~(x(i) ). (5) 

With the help of Eq. (5) a lattice can in prin- 
ciple be generated by supplying the elements 
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x( i  - 1) . . . . .  x( i  - k) as initial conditions and then 

successively finding those roots which correspond to 

actual solutions o f  the OCLL while shifting the spatial 

index i (please note the absence of  the time index n). 

At first instance, one might expect there to be two 

major problems associated with the above scheme. 

First, an effective computer algorithm for calculating 

Fk(x ( i ) )  is necessary since one cannot just iterate 

Eq. (3) ,  and second, an equation like Eq. (5) will 

usually have a large number of  roots. 

The first problem can easily be solved by realiz- 

ing that Fk(x( i )  ) is essentially nothing but an OCLL 

with the initial conditions x(i  - 1) . . . . .  x ( i -  k) to 

be iterated k times. Since the final values of  the sites 

x( i  - 1) . . . . .  x( i  - k) have no further use, one can 

furthermore save oneself some overhead by only cal- 

culating the relevant parts of  the lattice. 

The second problem is more tricky, but we will now 

prove the surprising fact that for sufficiently large 

there is only one root. The derivative of  Eq. (5) is 

given by 

Gkl(x( i))  =- -1  + (1 -- e)k(--2ce) k 

m=k- l 

× H Km(x( i ) ) '  (6) 
m=0 
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Fig. 6. Plots of the function G8(x) for values of the coupling 
constant below and above ec(a). The nonlinearity is a = 2.0, 
while the coupling constant is • = 0.3 in (a), and • = 0.7 in (b). 

where Km(x( i ) )  is the ruth iterate of  

K(x( i )  ) = (1 - e) f ( x ( i )  ) + E f ( x ( i -  1)) 

and K°(x( i )  ) = x( i ) .  If  Gkt(x(i) ) < 0 k /x( i ) ,  there 

is at most one root. 
Since 111m=orl'n=k-1 Km(x( i ) ) l  - < 1 this will certainly 

be the case if (1 - • ) k ( - - 2 a ) k  < l, i.e., if 

> • c ( a )  = 1 - l / 2 a .  (7) 

In Appendix A, it is shown that this condition can be 

improved to • > •c(Ot) = 1 - 3/4ot in the case of  

even k, and to • > •c(a)  = 1 - 1 /a  in the case of  

spatially chaotic patterns, a line only slightly above 

the one separating STP from SC. 

It is not surprising that the differences between func- 
tions Gk(x i) above and below (the true value of) ec 

become more pronounced for larger a.  Let us there- 
fore illustrate this for maximum nonlinearity in Fig. 6, 

where G8(x i) is plotted v e r s u s  x i for ten different sets 

of  random initial conditions. The frequent occurrence 

of  multiple zeros in (a) can clearly be seen, while in 

(b) the function is nearly a straight line with slope -1. 

In the limit k ~ o¢ the function will of  course exactly 

be a line if condition (7) holds since the second term 

on the right hand side of  Eq. (6) goes to zero. 
Numerical evidence furthermore indicates that 

ec(tr) coincides with the boundary between tem- 

porally periodic states and temporally nonperiodic 

states. We therefore would like to conjecture that the 

occurrence of the temporally periodic patterns is a 
consequence of the disappearance of destabilizing 
multiple roots. 

For many sets of  parameters, including the ones 
used in Fig. 2, it was verified that the patterns gener- 
ated with the help of  the spatial map Eq. (5)  indeed 
possess all the relevant features of  the patterns gener- 
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ated with the coupled map model ( 1 ). This, however, 

does not imply that the stability of the two is iden- 
tical. Indeed the "attractor" in the spatial map is not 
necessarily an attracting pattern in the OCLL. 

The "instability" of an attractor of the spatial map 
often leads to the spatio-temporal bifurcations in the 
OCLL, absent in the former. This absence is, of course, 

a direct consequence of the definition of the spatial 
map which needs the temporal periodicity (through k) 
as a parameter, and therefore can not spontaneously 
change it. 4 To see the bifurcation and to link the sta- 

bilities of the spatial map and the OCLL, we take a 
short look at Lyapunov analysis in the next subsection, 
and then apply the results in Section 4.1. 

3.2. Lyapunov analysis 

The usual Lyapunov spectrum, which yields the sta- 

bility of the system in the stationary frame, can be de- 
termined by taking the eigenvalues of the product of 

Jacobi matrices, i.e., 

/~i = lim ( l / n )  

x ln[itheigenvalue of (Jn-I J . -2" '"  J0) ], (8) 

where the Jacobi matrix at time n is given by 

(Jn)i,j = aXn+l ( i ) /3xn( j ) .  (9) 

In this case the upper triangular matrix elements are 
all zero, and Eq. (8) yields 

n=T 

1 Z log f , ( x i )  ' (10) /~i = log( 1 - • )  + 
n=l 

where T --~ c~. Hence it readily follows that for large 
coupling constants, all the stationary Lyapunov expo- 
nents are negative due to the log( 1 - •)  term, and that 
therefore this cannot be the reason for the bifurcations 
in the OCLL which may or may not lead to spatial 
chaos. 

For systems in which flow plays an important role, 
the distinction between so-called absolute and convec- 
tive instability is an essential concept [ 13,22]. An in- 
stability which grows in the stationary frame is called 

4 A possible exception is formed by subharmonics. 

absolute, and an instability which only grows in some 

moving frame convective. With regard to Eq. (10), 
this is to say that the stationary Lyapunov exponent 
might very well be negative, but that due to a convec- 
tive instability the system as such is not stable (or at 
least not stable everywhere). 

In order to measure the growth of a perturbation in 
a moving frame, the co-moving Lyapunov exponent 
[22,8] is useful which can be calculated through a 
product of Jacobi matrices defined as 

3Xn+l(il + [v(n + 1)])  
J , =  , (11) 

Ox,(it + [vn]) 

where il is the lattice site at which the computation 
starts after discarding a spatial transient, and [ vn] the 
integer part of vn. Contrary to the usual determina- 
tion of the Lyapunov spectrum [23], the size of the 

Jacobi matrix is not equal to the system size but set 
to a certain number of sites (here we chose a size of 
I00 sites) since (a) the OCLL may bifurcate (tempo- 
rally and/or spatially) and have many types of spatio- 

temporal patterns depending on the region in space, 
and (b) the Jacobi matrix has to move in the down- 
flow direction with the speed v. 5 

Naturally, an accurate estimate of the Lyapunov 
spectrum can only be obtained if the spatio-temporal 
pattern does not bifurcate while taking the product of 
Jacobi matrices. Since such bifurcations do not occur 
in the spatial map, and since it is furthermore computa- 
tionally much more efficient, the following Lyapunov 
exponents are all determined by using lattices gener- 

ated by a spatial map unless mentioned otherwise. 
The maximum co-moving Lyapunov exponent is 

plotted as function of the velocity v for several values 
of the coupling constant • in Fig. 7. For all the cho- 
sen values of •, the pattern has a spatial periodicity 
of two, and a temporal periodicity of one. As clearly 
can be seen, one of the curves has a positive region 
while another one is negative throughout. In the next 
section, we will investigate the meaning of this result. 

5 As such, this defines of  course the spectrum of the co-moving 
Lyapunov exponents. In the present paper, however, we only study 
the maximum one. 
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Fig. 7. The maximum co-moving Lyapunov exponent ~(v) for the 
k = 1 spatial map as a function of the velocity v. The nonlinearity 
is ot = 1.5, and the product of 5000 Jacobi matrices was taken. In 
all the cases, the patterns have a spatial periodicity of 2. 

4. Pa t t e rn  dynamics  I (strong coupling regime) 

4.1. Linking the stabilities in the OCLL and the 
spatial map 

Thus far we have shown that our spatial maps can 

effectively be used for generating the associated spa- 
tial patterns of  the OCLL. As stated, however, the sta- 

bility of  the OCLL is different from that of  the spa- 

tial map. Here we study the convective stability of  our 

system, with the help of  co-moving Lyapunov expo- 

nents. In Fig. 8, the maximum co-moving Lyapunov 

exponent is plotted versus • for the case of  the k = 1 

spatial map. The spatial patterns are a homogeneous 

fixed point, a period doubling cascade of  spatially peri- 

odic patterns and spatial chaos. The non-homogeneous 
spatially periodic patterns occur approximately in the 
range 0.81 L • L 0.98, where the existence of  large re- 
gions with positive Lyapunov exponents are clearly 
visible. It should be stressed that in these regions the 
positive Lyapunov exponents are not associated with 
chaotic behavior, but with periodic patterns. 

On the x-axis of  Fig. 8, some intervals are marked 
with diamonds, triangles and circles. In these regions 
the OCLL has a temporally period one pattern with 
a spatial periodicity of  2,4 and 8 respectively, Here it 
was verified (in an OCLL with N = 10000) that these 
patterns are stable and do not bifurcate downflow. As is 
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Fig. 8. The maximum co-moving Lyapunov exponent computed 
with the help of the k = 1 spatial map versus the coupling constant 
~. The nonlinearity is a = 1.5, and for each value of ~, the product 
of  5000 Jacobi matrices was taken. Regions in which the OCLL 
has a temporal periodicity of one at lattice site 1000 are indicated 
with their markers on the x-axis. The spatial spatial wavelengths 
are 2,4 and 8 sites respectively. 

expected, a negative maximum co-moving Lyapunov 

exponent in the spatial map indicates that the same 
pattern is stable in the OCLL, and that thus the pattern 

will not bifurcate somewhere downflow. 6 

At this stage it is natural to investigate whether a 

similar correspondence between the stability of  the 

spatial map and the OCLL can also be established for 

temporal periodicities larger than one. In Fig. 9, the 

possible maximum co-moving Lyapunov exponents of  

the k = 2 and k = 4 spatial maps are plotted versus 
the coupling strength E, by starting from 20 random 

initial conditions (to see the existence of  multiple at- 

tractors). In comparison with Fig. 8, it can clearly be 

seen that the k = 1 attractors are also attractors of  the 
k = 2 spatial map, and that there is an extra dip around 

e = 0.94. This dip indeed corresponds to a temporally 

period 2 and spatially period 4 pattern in the OCLL 

6 The large dips around e ~ 0.88 and e '-~ 0.96 correspond to 
superstable patterns and fall within the regions in which the pat- 
tern is stable in the OCLL. Since there is a complete bifurcation 
cascade to chaos, this implies that in the OCLL spatial patterns 
with a spatial periodicity arbitrarily close to spatial chaos can ex- 
ist. Due to the existence of periodic windows in the bifurcation 
sequence, stable trajectories with low spatial periodicities can also 
be arbitrarily close to spatial chaos in parameter space. Accord- 
ingly, there is a fractal structure of stable k = 1 spatially periodic 
trajectories in the chaotic region, and without detailed analysis 
of the bifurcation diagram, it is impossible to predict whether a 
parameter will yield a stable or unstable pattern. 
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Fig. 9. The possible maximum co-moving Lyapunov exponents 
of the spatial map versus the coupling constant E. For every 
value of e, the maximum co-moving Lyapunov exponent of 20 
patterns generated from random initial conditions was plotted. The 
nonlinearity was ot = 1.5, and the product of 5000 Jacobi matrices 
was taken. In (a),  k = 2, and in (b), k = 4. 

which was found to be stable. It is also interesting to 

note, that the patterns of the k = 1 spatial map which 
have a positive maximum co-moving Lyapunov expo- 
nent (associated with unstable patterns in the OCLL) 
do not appear as one of the solutions of the k = 2 

spatial map. 
For all the above calculations of the Lyapunov ex- 

ponents, we basically only used the spatial map to 
easily generate a spatial pattern, which was used for 
the computation of the Jacobi matrices. In this way, 
the stability obtained, is that of the OCLL. Naturally, 
the stability of the spatial map itself, in general, will 
be different. Of course a spatial Lyapunov exponent 
(Aspa) is positive for spatially chaotic patterns, equal 
to zero for spatially quasiperiodic patterns, and nega- 
tive for spatially periodic patterns (as was verified by 
choosing the spatial map as a dynamical system.) 

All in all, we find that our numerical results pro- 

vide sufficient numerical evidence for the following 
conjectures: 

Conjecture 1. 
(a) A positive Lyapunov exponent in the spatial 

map (,~spa > 0) implies a positive maximum co- 
moving Lyapunov exponent (,~max > 0) in an open 
flow system. 

(b) A spatial pattern with a positive maximum co- 

moving Lyapunov exponent ( ~.max > 0 )  will bifurcate 
temporally at some lattice site downflow 7 

The plausibility of conjecture ( la )  can be argued 
by considering a small perturbation of the state of a 
lattice. If spatial chaos were stable, any small pertur- 
bation in an open flow system would have to decay 

in average over time at all lattice points. At the same 
time, by assuming the shadowing property [ 24], with 
the help of the spatial map, we can generate a spatial 
pattern which is arbitrarily close to the original spa- 

tial pattern, and also a periodic solution of the open 
flow system. Consequently, a perturbation chosen as 
the difference of the above two solutions cannot decay 
in time, contradicting the initial assumption of stabil- 
ity (we have to admit that this does not exclude the 
special case of marginal stability). 

The reverse of this argument does not hold, and al- 

though one might at first expect it nevertheless to be 
true too (after all, even if the magnitude of a Lya- 
punov exponent changes, qualitative aspects like its 
sign seem to remain the same) this is not the case. 
Although not that common, we found a few counter- 
examples in which spatially quasiperiodic patterns had 
a positive maximum co-moving Lyapunov exponent 
in the open flow system. 

Conjecture ( lb )  is closely related to the fact that 
any perturbation will, at some point downflow, grow 
to O( 1 ) for any Amax > 0, however small it may be. 
The growth of such a perturbation can be estimated 
by ~, cx exp(Amaxn)t3, where ~ is the amplitude of 
the perturbation. In order to find the maximal size of 
the perturbation j sites downflow from a noise source, 

7 Of course, a pattern with Amax < 0 is stable. 
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Fig. 10. Return maps of  the three coexisting attractors in the spatial 
map k = 2 with a = 1.5 and ~ = 0.964. The spatially periodic 
attractor has a temporal periodicity of 1, while the two others have 
a temporal periodicity of two. 

we need to replace n by j/Vmax, where Vmax is the 

velocity at which the co-moving Lyapunov exponent 

attains its maximum value. We then obtain as the re- 

lationship between t~ and the number of  sites j for 

which the perturbation remains below a certain thresh- 

old j ~x I n ( l / S ) .  Conjecture ( lb )  then follows from 

the fact that all physical systems include some noise. 

For the theoretical case of  an infinite precision cal- 

culation without any noise, such a pattern could ex- 

tend until infinity if the solution is linearly stable in 

a fixed frame (i.e. as long as the maximal stationary 

Lyapunov exponent A0 < 0). 

So far, we only discussed the stability of  attractors 

as such. For a given value of  k, however, several at- 

tractors (including subharmonics) may coexist, and 

we would now like to briefly consider the k = 2 spatial 

map as an example of  such a case. Around E _~ 0.964, 

three attractors coexist in the k = 2 spatial map. They 
are shown with their spatial return maps in Fig. 10. 

Not surprisingly, the k = 1 attractor with its negative 

maximum co-moving Lyapunov exponent is spatially 
periodic. The k = 2 attractor with the larger posi- 

tive Lyapunov exponent is chaotic, and the remaining 

attractor is quasiperiodic. Unlike expected, however, 

the maximum co-moving Lyapunov exponent of  the 

quasiperiodic attractor is not zero but slightly positive 
(we will come back to this below). The basins of  at- 
traction are plotted in Fig. 11, where the black squares 

mark initial conditions that are attracted to the tem- 

0.75 

0.00 
0.00 0.25 0.50 0.75 1.00 

x(O) 

Fig. 11. The basins of attraction of the three attractors of Fig. 10. 
The black dots indicate initial conditions that yield the spatially 
and temporally periodic attractor. Initial conditions in the upper 
right and lower left comer (where the insets are) yield the chaotic 
attractor, while the remaining initial conditions yield the quasiperi- 
odic attractor. 

porally and spatially periodic attractor. The basin of  

the periodic attractor is intermingled with the basin 

of  the quasiperiodic attractor, and has a fractal struc- 

ture. To illustrate this the insets show blow-ups of  

smaller scales. The boundary with the basin of  the 

chaotic attractor, which was not separately marked, is 

connected. It covers the white areas in the lower left 

and upper right corners (since the initial conditions 

are symmetric in x(0)  and x( I ), only the upper right 

quadrant is shown). Consistent with conjecture 1, the 

OCLL was only found to select the periodic attractor. 

4.2. Spatial quasiperiodicity 

Many of  the spatially quasiperiodic patterns we 

found have a maximum co-moving Lyapunov ex- 

ponent equal to zero. Some spatially quasiperiodic 

patterns, however, have a slightly positive maximum 

co-moving Lyapunov exponent, which due to the 
small value often yields patterns that exist for very 

large regions of  the lattice. In Fig. 12, the value of  

the co-moving Lyapunov exponent versus the veloc- 

ity is plotted for both situations. The insets show the 

associated patterns with their return maps. 
There is a big difference between the two types o f  

quasiperiodic patterns as far as their sensitivity to noise 

is concerned. For the case of  the attractor with a pos- 
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Fig. 12. Co-moving Lyapunov exponent versus the velocity v for 
lwo quasiperiodic patterns. The lower line represents tr = 1.60, 
• = 0.6 and k = 8, while the upper line represents tr = 1.50, 
• = 0.6 and k = 4. The calculations were performed on lattices 
generated by the spatial map, and the product of 5000 Jacobi 
matrices was taken. 
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Fig. 13. The influence of local noise on the quasiperiodic pattern of 
Fig. 12 with a positive maximum co-moving Lyapunov exponent, 
a = 1.50 and • = 0.6. 

itive maximum (co-moving) Lyapunov exponent, the 

numerical result is shown in Fig. 13, where we plotted 
the distance in space from a local noise source before 

the temporally periodic lattice is destroyed versus the 

amplitude of the noise at the source. In the case of the 

attractor with a zero maximum Lyapunov exponent, 

however, there seems to be a threshold below which 
the lattice will not be destroyed 8 

8 Although a zero maximum co-moving Lyapunov exponent 
would in principle imply that induced noise could live forever, 
one possible explanation for our result might be that the pertur- 
bation vector is not always exactly aligned in the zero direction 
since the information has to move down the lattice, and that thus 

4.3. Spatial chaos 

All spatially chaotic patterns have a positive max- 
imum co-moving Lyapunov exponent (/[max) accord- 

ing to conjecture ( la ) ,  and conjecture ( l b )  states that 

such a pattern must bifurcate. We therefore believe 
that spatially chaotic patterns do not last over large 

domains in the lattice. The stationary Lyapunov ex- 

ponent a (0) ,  however, is generally smaller than zero 

(see Section 3.2), and even in the presence of some 

noise, a spatially chaotic pattern can exist for some 
section of the lattice, before it grows to a macroscopic 

order according to exp(Amaxn) iS. This not only makes 

it possible to observe spatial chaos in numerical sim- 

ulations, but also suggests that spatial chaos could be 

observed in experiments. 

In the presence of any tiny noise spatial chaos will 

be destroyed by local noise, and will be replaced by 

a spatio-temporally irregular pattern downflow. It is 

interesting to note that thus far we have not found 
any differences between the original spatio-temporal 

chaos and the irregular patterns which are the result of 

a destroyed spatial chaos. In the Fourier spectrum, for 

example, there are no traces whatsoever of the original 

temporal periodicity. 

4.4. Spatial bifurcations 

The spatial pattern changes with the parameter e or 
a, which is seen as a bifurcation in the spatial map. 

Here we have a brief look at this bifurcation, taking 

the simplest case of a temporally period one region. 
In general, the temporal periodicity of a large upflow 

section of the lattice is one, if the coupling • is large 

enough. Here a spatial period doubling sequence to 

chaos can be observed where • is the bifurcation pa- 

rameter. Figure 14 depicts the state of the lattice before 

and after the 2 ~ 4 spatial saddle-node bifurcation. 

As a first application, we would now like to em- 
ploy the spatial map to obtain an idea of the bifurca- 
tion cascade. The OCLL has a unique solution for the 
temporally period one state, where 

small noise is damped. 
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Fig. 14. Spatial bifurcation in the OCLL. The state of the lattice 
before and after the spatial bifurcation is depicted. The temporal 
periodicity is 1, while the spatial periodicity is 2 in (a), and 4 in 
(b). The nonlinearity is a = 1.5 and the system size is N = 1000, 
although only the first 64 sites are displayed. The coupling strength 
is • = 0,9 in (a) and • = 0.97 in (b). 

x , ( i ) = ( l - e ) f ( x , ( i ) ) + • f ( x , ( i - l ) )  (12) 

must hold. The solution of  Eq. (12) immediately fol- 

lows as 

x( i )  = f ( x ( i -  1)) 

- 1 + ¢ 1  + 4 a ( l - • ) ( 1 - a e x ( i - 1 )  2 ) 

2a (  1 - • )  

(13) 

where the temporal index was dropped. In the limit 

e ~ 1 this map reduces to a spatial logistic map as can 
immediately be seen by taking the limit in Eq. (12),  

while for decreasing • the hump becomes smaller and 
smaller until it completely disappears for e = 0, re- 

flecting the fact that the lattice becomes a mere col- 
lection of  single logistic maps without spatial infor- 
mation. 
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Fig. 15. Spatial bifurcation cascade to chaos for Eq. (13).  The 
nonlinearity is a = 2.0. The amplitudes of sites 1000-1200 are 
plotted in the v-direction. 

With the help ofEq.  (13) we can now generate the 

spatial pattern of  the OCLL by starting with an initial 

value x(0)  and calculating successive iterates. Conse- 

quently, Eq. (13) can be considered as a spatial map 

corresponding to an OCLL with a temporal periodicity 

of  one, and a complete bifurcation diagram can eas- 

ily be determined. For the maximum value of  a this 

is shown in Fig. 15. Since for • = 1 Eq. (13) reduces 

to a spatial single logistic map, it follows immediately 

that the bifurcation diagram must end in the state of  

the bifurcation diagram of  the regular single logistic 

map with the corresponding a,  and thus be incomplete 

for a < 2. The single hump function o fEq .  (13) nat- 

urally leads one to expect the windows visible in the 

bifurcation diagram. Since Eq. (13) is the solution 

of  the temporally period one OCLL, these windows 

should also occur in the OCLL. Due to the difference 

in stability, however, the bifurcation diagram of the 

OCLL has many holes, and hence it is not completely 

trivial, but in agreement with conjecture 1, that they 

are indeed present as can be seen in Fig. 16 9 

9 It is notable that the fixed point of Eq. (13) is identical to 
the one of the single logistic map, x* = ( -  1 + ~ ) / 2 a ,  
independent of e, and stable if 

1 + 4 a  
< es = - (14) 

2(1 + 4 o r - -  ~/1 + 4 a )  

The minimum value E rain = 0.75 coincides with maximum non- 
linearity, and accordingly, we always should have a stable solution 
for medium coupling strengths. On the other hand, we also know 
that the fixed point corresponds to the homogeneous state of  the 
OCLL which is unstable for all chaotic values of a.  
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Fig. 16. Spatial window in the temporally period one OCLL. The 

system size is N = 1000, but only the first 64 are shown. Due 

to the high stability of  this pattern, there is virtually no spatial 

transient. The nonlineari ty is or = 1.50, and • = 0.995. 

5. Pattern dynamics II (weak coupling regime) 

5.1. Zigzag regime 

Thus far we have shown that the spatial map G(x) 
is generally applicable as long as it has a single root. 
If  more than one solution exists, the problem of which 

root to use becomes non-trivial, but, in principle, there 

should be no reason why our method could not be 

used, and indeed, we will now use the zigzag regime 

as an example to illustrate the application of the spatial 

map to situations where multiple roots exist. 

When decreasing • from values which yield DL, 

the number of domains with strong remnant chaos 

decreases gradually until it becomes zero at the up- 

per boundary of the zigzag area, where chaos is com- 

pletely suppressed. For not too small a,  the pattern 

then has a spatial and temporal periodicity of two with 

the two temporal states exactly out of phase, and the 

spatial map Eq. (5) is in principle applicable. Since 

the values of • in this regime are small, however, there 
will, in general, be multiple roots, as can be seen in 

Fig. 17, where Gk(x) is plotted for k = 2 and k = 4 
respectively. Consequently, the spatial map cannot be 

used in the same way as before to create a spatial pat- 

tern. For example, in Fig. 17a, there are three roots 
for all initial conditions. Let us denote these roots as 
L, M and R, respectively. We then have an infinite 
number of solutions of the OCLL formed by all the 
possible combinations of the three symbols, and can 
generate these solutions by selecting the appropriate 
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Fig. 17. Plots of the function Gk(x(i)) for small  values of  the 

coupling constant • for 30 random initial conditions. ( a )  The 

nonlinearity is or = 1.7, • = 0.11, and k = 2. (b)  The nonlinearity 

is a =  1.7, • = 0.10, and k = 4 .  

root of the spatial map. Despite the existence of these 

solutions, the OCLL only seems to chose one, namely 

the series LR, where the overline indicates repetition 

(of course the phase is arbitrary, so this is identical 
to RL). Since the middle root M is identical to the 

k = 1 solution, which is identical to the homogeneous 

solution that can be shown to be unstable by a simple 
calculation, it may be expected that it does not appear 

in the OCLL. Even so, there still is an infinite number 

of combinations of L and R. 

We believe, that the reason why the OCLL only se- 
lects the LR combination is again related to stability. 

First we would like to note that series with many iden- 
tical successive symbols are expected to be unstable 
(again) since the homogeneous solution is unstable. 
Therefore, we only considered some basic sequences 
and plotted their co-moving Lyapunov exponents ver- 
sus the velocity o in Fig. 18. As can clearly be seen, 
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Fig. 18. Maximum co-moving Lyapunov exponent for patterns 
generated with the k = 2 spatial map using roots as indicated 
by the symbols. The nonlinearity is ot = 1.7, and the coupling 
constant is • = 0.114. 

except for the zigzag pattern, all patterns not only have 

a positive maximum co-moving Lyapunov exponent, 

but also a positive stationary Lyapunov exponent. Thus 

it seems natural that they are never realized in the 

OCLL, as opposed to the patterns for large • which 

have a negative stationary and a positive maximum 

co-moving Lyapunov exponent that can be realized in 

the OCLL sufficiently close to the boundary but later 

bifurcate. Consequently, we would like to propose the 

following conjecture 

Conjecture 2. Symbol  sequences which yield a pat- 

tern with a negative Lyapunov exponent can be real- 

ized in an open flow system. ( I f  the maximum co- 

moving Lyapunov exponent is also negative, the pat- 

tern will not bifurcate downflow, while it will bifurcate 

if  the exponent is positive, according to conjecture 1.) 

For decreasing values of  • ,  after the period two 

zigzag pattern, we again found a spatial bifurcation 

cascade to chaos. Contrary to the cascade for large 

e, however, here a spatial bifurcation coincides with 

a temporal bifurcation, and it should be noted that 

not only the spatial and temporal periodicit ies are the 

same, but that also the sequence and numerical values 

of  the spatial and temporal phases are identical. 

With regard to the spatial map this means that the 

situation becomes slightly more complicated as can 

be seen in Fig. 17b, where the number of  roots de- 
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Fig. 19. Maximum co-moving Lyapunov exponent versus • for 
patterns generated with the k = 2 spatial map by the LR rule. 
The nonlinearity is a = 1.70, and for each datum, the product of 
5000 Jacobi matrices was taken. The boundary was fixed to 1. 
The opaque diamonds indicate the region where the OCLL selects 
a zigzag pattern which does not bifurcate downflow. 

pends on the initial conditions. It turns out that again 

the pattern of  the OCLL can be reproduced if one se- 

lects the appropriate roots. I f  we number these from 

left to right as L1,L2,L3,M,R1,R2,R3, the sequence 

corresponding to the OCLL is L1,R3,L3,R1. This is 

identical to the sequence of  roots o f  the stable period 4 

single logistic map (although for the present value of  

the period four fixed points are unstable of  course) ,  

and we have indications that also for higher periods, 

this correspondence holds. 

In order to check whether our conjecture on the rela- 

tion between temporal bifurcations downflow and pos- 

itive maximum co-moving Lyapunov exponents also 

holds in the present case, we used the LR rule for 

generating k = 2 zigzag patterns and determined their 

stability. The results are shown in Fig. 19, where the 

opaque diamonds indicate the region in which the 

OCLL selects a zigzag pattern (when starting from 

random initial condit ions) which does not bifurcate 

downflow. Interestingly enough, this region is rather 

small (0.112 L e  L0.113)  and coincides with only 

slightly negative maximum co-moving Lyapunov ex- 

ponents. For (0.155 L • L 0.165),  the spatial map fre- 

quently yields a homogeneous solution which is of  

course unstable in the OCLL 10. 

10 Between (0.113 ~ e L 0.167) we usually observed our defect 
lattices in which some sites show strong remnant chaos while 
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5.2. Defect lattices 

Above, we showed that the spatial map is also ap- 

plicable in the case of  the zigzag pattern. In Fig. 19, 

there is no indication whatsoever though as to why 

random initial conditions would yield defect lattices 
for 0.113 L • L 0.164. However, as a nice confirmation 

of  its usefulness, the spatial map can be associated 

with this phenomenon by considering the number of  

roots. In Fig. 17a, it can be seen that smallest right 

hand maximum is rather close to zero. It turns out that 

for • ~ 0.115 it can become smaller than zero imply- 

ing that for some initial conditions there is only one 

root. Translated to the OCLL this means that some lat- 

tice sites will have values which force the next site to 

the same root. That is to say sometimes an L solution 

will be followed by another L solution. Successive L, 

however, were shown to be unstable and thus (rem- 

nant) chaotic motion seems to be a reasonable conse- 

quence. At other times, an L solution will be followed 

by an R solution yielding a rather stable combination 

as long as the zigzag pattern has a negative maximum 

co-moving Lyapunov exponent. 

As for the chaoticity of  the lattice sites, if we look at 

the (stationary spectrum of) Lyapunov exponents in 

Fig. 20 (see also Section 3.2), we see that every defect 

is formed by only one chaotic site. In this case we have 

not ordered the exponents in the usual way such that 

~1 >_ A2 >_ . . .  >_ AN since due to the upper triangle 

of  the Jacobi matrix being zero, the index i contains 

actual spatial information and thus corresponds to the 

(local) chaoticity of  a site. 

It is furthermore remarkable that when approaching 

• c from the DL regime, the damping rate does not de- 
crease like in a usual critical phenomenon but remains 

constant. This can clearly be seen in Fig. 21 where 

others are periodic. At first this might appear to be somewhat in 
contradiction with our conjecture, but this is not the case since a 
stable zigzag pattern can very well exist in the almost the entire 
region with a negative maximum co-moving Lyapunov exponent 
(i.e. for 0.112 L • L 0.164) if suitable initial conditions are chosen. 
Indeed, the easiest way to achieve this is by sweeping e from a 
value around e ~ 0.112. Starting from random initial conditions, 
the basin of the zigzag pattern is very small, however, and there 
clearly is some sensitivity to the value of the boundary (for Fig. 19, 
we used x (0 )  = 1). 
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Fig. 20. Stationary Lyapunov exponents (spectrum) for DL, 
a = 1.72 and e = 0.1275. The horizontal axis represents space, and 
the Lyapunov exponents represent the local chaoticity of  a site. 
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Fig. 21. Distance between the defect lattice and the zigzag pat- 
tem. The numbers in the graph indicate the values of  • for the 
corresponding lines. The nonlinearity was a = 1.72. 

the distance between the zigzag pattern and the de- 

fect lattice is plotted for several values of  the coupling 

constant. We can now use this fact to approximate the 

second iterate of  Eq. ( 1 ) as 

x.+2(i)  = (1 - E ) f ( ( 1  - E ) f ( x n ( i ) )  + e f ( x ~ ) ) )  

+ e f ( x ~ ) ,  (15)  

where x~" and x~ are the zigzag solutions which can 

easily be calculated as 

1 + V/4(1 - 2e)2ot + 4e - 3 
* = ( ~ 6 )  X1,2 2( 1 - 2e) cr 

In Fig. 22 Eq. (15) is plotted just above and below 
the critical value ec in (a)  and (b)  respectively. What 
we can infer from these figures is that above Ec there 
are two distinct basins of  attraction, one for the chaotic 
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Fig. 22. Plots of Eq. (15) just before and just after the critical 
point E¢. The nonlinearity is a = 1.72 and the coupling strength 
is • = 0.1269 in (a), and • = 0.1268 in (b). 

attractor and one for the zigzag attractor, while below 

ec there is only the basin for the zigzag attractor. A 

boundary crisis occurs at •c. Thus we can associate 

the occurrence of  a periodic lattice of  chaotic defects 

with a boundary crisis through the following steps: 

When starting from random initial conditions, some 

lattice sites will be attracted to the zigzag pattern and 

others to the chaotic attractor. I f  the zigzag sites were 

exactly on the attractor, Eq. (15)  would also hold ex- 

actly, and consequently the chaotic sites would remain 

in their basin forever. A chaotic site, however, cannot 

be followed by a site precisely on the periodic attrac- 

tor due to the downflow coupling. The chaotic mod- 

ulation of  a site means for Eq. (15)  that leaks are 

created from one basin to the other. Hence sites fol- 

lowing a chaotic site will be attracted to the periodic 

solution. Due to the negative Lyapunov exponent of  

this solution, the chaotic modulation will be damped 

more and more in the down flow direction, until it is 

too small to create leaks to the attractive basin. I f  then 

a site happened to be in the chaotic basin it will remain 

there. Since the damping rate is determined by the pa- 

rameters, it is constant throughout the lattice, and thus 

the number of  lattice sites necessary to damp chaotic 

modulation below the threshold that allows for leaks 

is predetermined. Thus there is minimum distance be- 

tween defects. When the distance between two defects 

is shorter than this minimum, the downflow defect has 

to move further downflow. Consequently, virtually ev- 

ery site will at some stage be in the chaotic basin mak- 

ing it very probable that the distance between succes- 

sive sites is equal to the minimum distance. Thus, in 

general, we eventually obtain a lattice in which the 

chaotic defects are evenly spaced. 

We note that the present scenario actually deter- 

mines only the minimum distance between defects. 

This can easily be verified by taking a zigzag pat- 

tern as the initial condition, and adding some defects 

manually. I f  the distance between defects is smaller 

than the minimum distance, the down flow defect will 

move further down flow, while otherwise nothing will 
happen l l 

Below the zigzag regime, it is again possible to 

roughly analyze the dynamics of  the OCLL with the 

map of  Eq. (15) .  When decreasing • from •c, we 

first have a bifurcation cascade to chaos, in which 

both the spatial and temporal periodici ty double. Even 

when the dynamics has become chaotic though, the 

period two band structure is still maintained. Although 

it is not possible to directly employ Eq. (15) ,  we can 

still use it as an approximation for obtaining some 

qualitative information. As can be seen in Figs. 23a, b, 

if • is not too small, it is impossible for a site to escape 

from the basin of  attraction near the right hump, and 

a period 2 chaotic band structure is the result. Only 

when • is lowered much further, a second boundary 

crisis occurs and the chaotic basin suddenly increases. 

II We would like to note that for tr < 1.67 the transition from 
the defect lattice to the zigzag pattern becomes less distinctive, 
i.e. large distances between defects are rather hard to observe, 
since it involves the zigzag pattern with a spatial and temporal 
periodicity of four. Depending on the boundary value, we also 
often see quasiperiodic behavior instead of defect lattices. 
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Fig. 23. Plots of Eq. (15) before and after the boundary crisis. 
The nonlinearity is a = 1.72 and the coupling strength is E = 0.04 
in (a), and e = 0.03 in (b). 

With regard to the OCLL this means that at a certain 

moment the chaotic motion of  an upflow site is strong 

enough to create leaks leading to spontaneous bursts 

and thus leads to (type-II)  STI. 

Of  course we have to again note that the approxi- 

mation of  Eq. (15) may be rather rough, in the case 

of  chaotic zigzag patterns. Nevertheless, qualitatively 

this is not of  essential importance. 

Just as in the case for smaller a above the zigzag 

pattern, we also have encountered quasiperiodicity be- 

low the zigzag pattern. Depending on the boundary 

condition, we either observed a period doubling cas- 

cade to chaos in which both the spatial and temporal 

periodicity double simultaneously, or a route to chaos 

through quasiperiodicity. 

5.3. Source induced intermittency (SH) 

For values of  the nonlinearity a > ac ~ 1.76 

we found a somewhat new type of  spatio-temporal 

intermittency just above the regular zigzag area. In 

this regime, the mechanism which yields the DL is 
still at work but bursts may spontaneously be created 

and spread downflow while destroying the following 

zigzag sites. Due to this, in a space-time amplitude 

plot, it appears as if zigzag 'islands' dynamically ap- 

pear, disappear and change. 

Like in the DL region, the perfect zigzag attractor 

also stably exists in the entire SII area. Consequently, 

if a section of  the lattice is on or near the zigzag 

attractor, bursts will not spontaneously occur. Bursts 

can only be created at the site following a defect, as can 

be argued by considering the same two-dimensional 

function Eq. (15) as for the DL, and its return maps 

in Fig. 22. In the DL area, once a site has entered 

the upper basin of  the periodic fixed point, it will stay 

there as long as the previous site remains in the chaotic 

basin. In the SII area, however, the motion of  the site in 

the chaotic basin is strong enough to sometimes create 

leaks from the periodic basin to the chaotic basin, 

yielding a burst which may propagate downflow. 

Due to the one-sidedness of  the coupling, the cre- 

ation of  a burst does not affect the defect itself, and 

hence defects will no be destroyed unless a burst cre- 

ated further upflow collides with it. Because we have 

a fixed boundary, this implies that all the way upflow, 

when starting from random initial conditions 12, there 

will always be a persistent defect somewhere which 

acts as a source of  bursts (hence the name of  this in- 

termittency). An overview of  the possible dynamical 
transitions of  a site is given in Table 2. 

In Fig. 24, the maximum stationary Lyapunov spec- 

trum for SII is depicted. Just like in the DL case, the 

horizontal axis represents space, and all the exponents 

thus give the local chaoticity. As clearly can be seen, 

only the exponent corresponding to the source and the 

one following it are positive. This is due to the fact that 

12 With the exception of the measure zero probability (for N ---* 
oo) that all the randomly chosen initial conditions are very close 
to the zigzag pattern 
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Table 2 
The various possible dynamical transitions in the SII regime. The 
left column indicates the initial states, and the right column the 
states after the transition, and the conditions under which the 
transition can occur. 

zigzag ~ defect only when colliding with a burst 
approaching from apflow 

zigzag --~ burst not possible 

defect ---* zigzag only when colliding with a burst 
approaching from upflow 

defect ~ burst finite probability 

burst ~ zigzag always possible 

burst ~ defect possible if upflow sites zigzag 
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Fig. 24. Maximum stationary Lyapunov exponents for SII, a = 1.80 
and e = 0.17. The horizontal axis represents space, and the Lya- 
punov exponents represent the local chaoticity of a site. 

all other sites are sometimes regular, (while contribut- 

ing some negative value to the exponent), and some- 

times chaotic, (contributing some positive value). The 
average of the two turning out to be negative. 

Since bursts are not created spontaneously but are 
always created at the first site after a defect site, this 

type of intermittency is reminiscent of type I spatio- 
temporal intermittency (STI I) which does not allow 

for spontaneous bursts, and in which laminar regions 
can only change at their borders [ 1,20]. Thus, in the 
STI I for finite lattices, the intermittency terminates 

after a huge number of steps [ 25 ], while the SII lasts 
for ever. 

We will now briefly discuss the dynamics of the 

system when approaching the zigzag and DL regions 
from within the SII area and show that except for the 
approach of one special point, the average spatial size 
of the laminar regions does not diverge towards the 

Physica D 86 (1995) 428-455 

boundaries of the SII region. 

In the DL regime, the distance between defects di- 
verges, when decreasing e. Since bursts can only be 

created near defects, at first one might expect the size 

of the laminar regions in the SII area to also diverge. 

This is not the case however, for the following reason. 

Due to the small change in • the probability of a burst 

to occur does not change significantly when approach- 

ing the zigzag regime from above. Consequently, the 

average, time between bursts is more or less fixed and 

thus the average time the lattice has to relax to the DL 
state. Hence the average size of a zigzag domain does 

not diverge. 

For • < •c, with •¢ the value of the coupling con- 

stant that yields zigzag patterns, all defects (includ- 

ing the source, although some remnant chaos may re- 
main) will move downflow and disappear since any 

site can now reach the basin of the periodic attractor. 

As • approaches •c from above, the speed with which 

the defect moves downflow goes to zero, and the tran- 

sient time is increased. 

When decreasing a towards the DL area, the prob- 
ability to create bursts from defects goes to zero, and 

thus the average time between bursts diverges. Again, 

however, the spatial correlations do not diverge, since 
for constant • and decreasing a, the distance between 

DL defects remains more or less the same regardless 

of the frequency of the bursts. The only possibility for 

obtaining a divergence in the average size of the lam- 

inar sections of a lattice is when approaching the DL 

from the SII area staying just above the perfect zigzag 
region. 

6. Modulation of the boundary 

In dynamical systems with multiple attractors of 
which one or several may be chaotic, being able to 
assign or influence the selection of a specific attractor 
(and thus obtaining the means of controlling chaos) 

is of utmost importance. This was our original moti- 

vation for investigating the effects of modulating the 
boundary, a technique which is also used in the ex- 
perimental study of flowing films, see e.g. [26]. We 
will now show that not only attractors can be selected, 
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Fig. 25. Maximum co-moving Lyapunov exponents for several values of  k. The numbers indicate the values of  k, and the insets depict 
lattice sites 5436-5500. The product of  5000 Jacobi matrices was taken. (a) tr = 1.7, e = 0.5. (b)  The k = 8 pattern of  (a) and its spatial 
return map. (c) a = 1.9, ~ = 0.6. (d) Return maps of the patterns with parameters indicated in the figure. 

but also that the spatial map can be used to predict in 

which cases this will be successful. 

Thus far we only used the spatial map to gener- 
ate lattices that correspond to patterns in the OCLL 

with a temporal periodicity of k = 2 t, l E N. Although 

this is a natural choice from the point of view of the 

coupled map lattice since other (non-trivial) period- 

icities have never been reported, there seems to be 

no a priori reason why the spatial map could not be 

used to generate patterns with k E N. In Fig. 25, pat- 

terns generated with k = 3 - 8 are shown for two sets 
o f  parameters ce and e, with the corresponding maxi- 
mum co-moving Lyapunov exponents. Spatially peri- 

odic, quasiperiodic, and chaotic patterns are obtained 

depending on the period k. 

It is interesting to note that the k = 8 case in (a) 

is periodic as can clearly be seen in its return map 
given in (b) despite the maximum co-moving Lya- 
punov exponent being zero. This phenomenon can be 
associated with the downflow motion of the periodic 
pattern as shown in Fig. 25b, obtained from the sim- 

ulation of the OCLL. The speed is one lattice site per 

two time steps, and, since the shape of a domain re- 

mains the same, this implies that the entire lattice is 
invariant per 8 time steps. In Fig. 25c, the attractors 

for k = 3 and k = 6 are identical and quasiperiodic, 

as is the k = 8 pattern which has a slightly positive 

maximum co-moving Lyapunov exponent. The return 

maps of these two cases are given in Fig. 25d. 

As in the examples given, we found that for large 
regions in parameter space, some k exist in which 

the maximum co-moving Lyapunov exponent is ei- 
ther zero or negative. Reversely, we also found that 

for many given values of k, parameter regions ex- 
ist corresponding to all three basic patterns (spatially 

and temporally periodic, spatially quasiperiodic with 

temporal periodicity, spatially chaotic with temporal 

periodicity). An example for k = 3 is given in Fig. 26. 
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Fig. 26. Co-moving Lyapunov exponent for patterns generated 
with the k = 3 spatial map. For SQP we have a = 1.80, e = 0.6, 
for S P a  = 1.80, e = 0.7 and for SC a --- 1.80, ~ = 0.8. 

6.1. Selection of attractors 

The question which arises now is whether these pat- 

terns are an artifact of the spatial map, or whether 
corresponding patterns also exist in the OCLL. In or- 

der to find an answer, we used the fact that pertur- 

bations grow in patterns that have positive maximum 
co-moving Lyapunov exponents. Near the boundary, 

virtually all lattices start with a short homogeneous 

section. In the chaotic region of the single logistic map 
this yields a positive maximum co-moving Lyapunov 

exponent and we should therefore be able to set a fun- 

damental frequency for the lattice by modulating the 
boundary x(0)  periodically with a frequency k and a 
small amplitude. 

This idea turns out to work extremely well. Fig. 27 
shows the final state of the lattice (sites 200-264) for 

a fixed boundary condition in (a),  and for a modulated 
boundary in (b).  As can clearly be seen, the unmod- 
ulated lattice is spatially chaotic while the modulated 
lattice is periodic. The fact that it is both, temporally 
and spatially periodic implies that the pattern is sta- 
ble against local and global noise, where by local and 

global noise, we mean the addition of noise to one and 
all sites respectively. 

On the other hand, conjecture ( 1 ) is still valid here, 
and thus a spatially chaotic period 3 pattern bifurcates 
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Fig. 27. Effect of  modulating the boundary. The nonlinearity is 
ot = 1.8 and the coupling strength is e = 0.7. In (a ) ,  the boundary 
is fixed to 0.0, and the pattern is spatially chaotic while having 
a temporal periodicity of four. In (b), the boundary is modulated 
by a period 3 sawtooth-like wave with an amplitude of le - 2. 
The pattern is spatially periodic (period 9) and has a temporal 
periodicity of 3. in both cases, lattice sites 192-256 are shown. 

at some stage downflow. Naturally stepping through 
the sequence 3-6-12-24 • - .. 

Modulating the boundary is very effective in select- 
ing an attractor if the pattern associated with the fixed 
boundary is unstable, and the pattern associated with 

the modulated boundary stable. In such cases, even a 
tiny modulation amplitude (e.g. in the order of 10 - l ° )  

will drastically affect the dynamics of the system. If  

two spatially and temporally periodic attractors co- 
exist, however, the modulation amplitude will likely 
play an essential role in determining which one will 
be selected. It should be noted that, of  course, a fixed 
boundary corresponds to a modulation frequency of 1. 

By modulating the boundary, a large variety of pat- 
terns can be selected. Let us for example consider ~ = 
0.5, a value of the coupling constant for which spa- 
tially and temporally periodic pattern are particularly 
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Table 3 
Periodicities of the patterns at site i = 1280 as a function of the modulation frequency of the boundary (vertical direction) and the 
nonlinearity (horizontal direction). The coupling constant is ~ = 0.5, and the amplitude of the modulation I e - 3. The temporal periodicity 
and spatial periodicity are indicated with tp and sp, respectively. A dash indicates that no periodicity could be detected. 

a:=~ 1.65 1.70 1.75 1.80 1.85 1.90 
freq. ~ tp sp tp sp tp sp tp sp tp sp tp sp 

1: 8 4 32 32 32 - 8 4 8 4 
2: 16 - 32 8 4 8 4 32 - 8 4 
3: 12 6 24 24 48 - 48 - 24 12 
4: 8 4 8 4 8 4 8 4 8 4 8 4 
5: 5 5 5 5 10 10 5 10 10 10 40 
6: 12 6 24 48 48 48 - 8 4 
7: 28 - 28 14 28 28 - 28 14 56 - 
8: 32 16 8 4 8 4 8 4 8 4 8 4 
9: 18 9 36 18 27 18 18 18 18 36 - 

10: 5 5 5 5 5 40 20 - 40 20 40 - 

common. The results of our simulations are given in 

Table 3, where the periodicities of the patterns at site 

i = 1280 are shown as a function of the modulation 

frequency and the nonlinearity. All the patterns are 

temporally periodic, while nearly two thirds are also 

spatially periodic. In all cases, the spatial periodicity 

can be derived from the modulation frequency indicat- 
ing the existence of strong correlations. This is quite 

different from the diffusively coupled logistic lattice 

where the spatial periodicity is usually unrelated to the 

temporal periodicity. The patterns which have a tem- 

poral and spatial periodicity of five, seem to be par- 

ticularly stable since they can be observed in a much 

larger range around e = 0.5 than the other ones. 

6.2. Inverse bifurcations 

In general, modulating the boundary yields a bifur- 
cation cascade which has a basic frequency equal to 
the modulation frequency and which may stop at some 

point or continue until the pattern becomes temporally 

chaotic. If, however, a rather stable attractor with a 
temporal periodicity different from the modulation fre- 

quency exists, we observe the interesting phenomenon 
of the system (inversely) bifurcating to it as soon as 
the temporal periodicity equals the smallest common 
denominator. An example is shown in Fig. 28, where 
(for increasing i) the lattice has the following tempo- 
ral periodicities: 3 ~ 6 ~ 12 ~ 24 --~ 8. The inverse 

1.0 ! 0.0 // 

-0.5 

every time slep piolled 

-I.0 
0 15 30 45 6011001125 1150 1175 1200 

i i 

Fig. 28. Inverse bifurcation in the OCLL. The nonlinearity is 
a = 1.7 and the coupling constant ~ = 0.6. The boundary is 
modulated with a period 3 sawtooth wave whose amplitude is 0.01. 
Initially, the lattice steps through the bifurcations 3-6-12-24, but 
then inversely bifurcates to 8. At the left side of the figure, 6 
successive states of the lattice are overlaid, while at the left side 
3 states sampled per eight time steps are overlaid. 

24 ~ 8 trifurcation around site 1125 can clearly be 

seen in the right half of the figure. The (final) attrac- 

tor with a temporal periodicity of  8 is quasiperiodic, 
and its maximum co-moving Lyapunov exponent is 0. 

This kind of scenario seems to be quite general, and 
40 ~ 8 inverse multifurcations were also observed. 

Here we would like to note that these results again 
form a nice confirmation of our conjecture in Section 
4.1 according to which patterns with a positive maxi- 
mum co-moving Lyapunov exponent bifurcate. 
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7. Discussion and condusions 

In this paper we have reported several new phases 

which we discovered by studying the one-way cou- 
pled logistic lattice. The first question arising then is 
whether these phases are unique to the present system 
or whether they are representatives of larger universal- 
ity classes that can also be observed in other systems 
and experiments. 

We believe that TPS, the zigzag pattern, defect lat- 
tices, and intermittency are excellent candidates for 

universal characteristics of open flow type systems 
that might be experimentally confirmed in fluid flows, 

electric convection in liquid crystals, Josephson junc- 
tion arrays (these would be a particularly suitable sys- 
tems to research, since every junction can be associ- 
ated with one site in our model rendering the thermo- 
dynamic limit completely irrelevant), or optical array 
systems [ 16]. 

In several regions of parameter space we found 
spatial chaos with temporal periodicity. In the case 
of infinite precision computation without noise, these 
patterns can in principle be infinitely long. In prac- 

tical situations however, there will always be some 
noise which eventually leads to spatio-temporal bifur- 
cations, and in the thermodynamic limit spatial chaos 
might not exist as such. Nevertheless, it could be 
observed for rather large sections of the lattice, and 

we speculate that it should also be possible to en- 
counter spatial chaos in experimental systems whose 
phenomenology (or at least certain aspects of it) is 
described on a macroscopic scale sufficiently well by 
the OCLL. 

In order to analyze the patterns of the OCLL, we 
introduced a novel class of spatial maps which turned 
out to be an extremely valuable tool. One of its mer- 
its is that it allows us to formally define spatial chaos 
as a spatial sequence which has a positive Lyapunov 
exponent with respect to the spatial map. This is im- 
portant since the relationship between the stabilities of 
the spatio-temporal and the purely spatial systems is 
not trivially given. Related to this it should also be in- 
teresting for future work to investigate the dimensions 
of the spatial attractors by examining the generated 
spatial sequences. Another merit is that it can be used 
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for investigating the properties of the OCLL without 
needing to worry about bifurcations downflow. This 

application also leads to to an accurate and efficient 
computation of the co-moving Lyapunov exponents. 

In order to link the dynamics of the OCLL with the 
stability of our spatial map we have proposed a con- 
jecture according to which a pattern with a positive 
maximum co-moving Lyapunov exponent is unstable 

in the one way coupled logistic lattice. All our nu- 
merical results support this conjecture which makes it 
possible to predict the downflow behavior of a very 

high-dimensional spatially extended system with the 
help of a low-dimensional map that is much easier 

to handle. We also gave a plausible argument for our 
conjecture, but further mathematical proof is still nec- 
essary. Nevertheless, we believe that the line of rea- 
soning is general enough to assume that the conjecture 
may also hold in other open flow like systems. In this 
context it might be worthwhile to mention that spa- 
tial chaos was also found to be unstable in the optical 

array system by Otsuka and Ikeda [ 16]. 
The spatial map's advantage of corresponding to 

only one temporal periodicity also includes a restric- 
tion. Without actually computing the maximum co- 
moving Lyapunov exponent for every pattern in the 

(spatio-temporal) bifurcation sequence of the OCLL 
it is not possible to draw conclusions on their stabil- 
ity. If the maximum exponent is negative, this poses 

no problem, since the OCLL will remain stable. If the 
maximum exponent is positive however, all one can 
do is compute it for the next higher periodicity, and 

a priori it is impossible to predict whether its pattern 
will be periodic, quasiperiodic or chaotic. At this mo- 
ment, with regard to the thermodynamic limit, it re- 
mains unclear whether the spatially chaotic patterns 
will continue to temporally bifurcate, and thus be- 
come both spatially and temporally chaotic at some 
stage, or whether they finally all end up on a peri- 
odic or quasiperiodic attractor. We would like to note 
however, that due to the one way coupling we are as- 
sured that regardless of the thermodynamic limit, all 
of our results remain valid in the upflow section of a 
lattice. Since the coupled map lattice model in princi- 
ple acts on a macroscopic or semi-macroscopic scale, 
this means that any universal properties should be ap- 
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plicable to actual physical systems of a finite size. 

Even though the temporal periodicity of the attrac- 

tors of the OCLL can be very high, implying spa- 

tial maps of a correspondingly high power, there is 

only one solution for sufficiently large values of e. We 

found that this uniqueness of the solution itself plays 

an important role for the dynamics of the OCLL, since 

our simulations indicate that (with exception of the 

perfect zigzag pattern) non-uniqueness of the spatial 

map coincides with temporally non-periodic patterns 

in the OCLL. 

The construction of our spatial map is quite straight- 

forward in the case of the OCLL. It is, however, not 
limited to this case but can also be applied to other sys- 

tems including the diffusively coupled logistic lattice. 

So far, we have not observed spatial chaos or quasiperi- 

odicity with temporal periodicity in the DCLL. This 

may be related to the fact that, in general, the co- 

moving Lyapunov exponent A(v) has its maximum 

value ~.max around v ~ 0. In the case of spatial chaos, 

however, we have that ,Ama x > 0 and thus that the sta- 

tionary Lyapunov exponent A(0) > 0. Accordingly, 

spatial chaos is unstable even in the stationary frame, 

rendering its observation impossible. 
In the region of spatially and temporally non- 

periodic patterns, we found the zigzag pattern to be 

located below two novel states. Above the zigzag pat- 

tern, for nonlinearities smaller than a certain critical 

value, we observed the periodic lattices of chaotic 

defects which were associated with the occurrence of 

a crisis. For larger values of the nonlinearity, a novel 

type of spatio-temporai intermittency was found, 

which is maintained by the bursts of a persistent 

defect, and hence called source induced intermittency. 
We have demonstrated the possibility of selecting 

attractors through the modulation of the boundary, 

which may have interesting implications for the con- 

trol of chaos. For some parameters, for example, there 

might not be any stable attractor along the regular bi- 
furcation sequence, while there is one for an odd tem- 

poral periodicity. In such a case, chaos could be con- 
trolled solely by acting on the boundary. This is quite 
different from some other proposals for controlling 

chaos that require large numbers of feedback terms 
throughout the system. In actual physical applications 

the latter seems to be close to the impossible, while a 

modulation of the boundary can easily be achieved. 
In this context, it might be interesting to point out 

that the OCLL can be related with the time-delayed 

map (introduced in Ref. [27] ). Control might then be 

achieved through adopting a delayed feedback by em- 

ploying the delay-time as a variable which could indi- 

rectly induce the desired modulation frequency with- 
out overly artificial procedures. 

Several of our results indicate that the system prefer- 
ably selects a pattern with the lowest possible max- 

imum co-moving Lyapunov exponent. For example, 

the OCLL quickly bifurcates to a temporal periodicity 
of two when the k = 1 spatial map has a positive maxi- 

mum co-moving Lyapunov exponent, but remains sta- 

ble even if, for identical parameters, the k = 2 spatial 

map has two other coexisting attractors with larger ex- 

ponents. Finally, the ease with which patterns with an 

odd temporal periodicity can be selected through the 

modulation of the boundary, and the occurrence of in- 

verse bifurcations also point into this direction. All in 

all we might be so bold as to speculate on the exis- 
tence of a minimum expansion principle 13. We also 

found many patterns for which the relation '~max > 

Aspa seemed to hold. It would be rather interesting to 

see whether or in which cases this is true since that 

would allow us to formulate conjecture ( 1 ) quite a bit 

more strongly. 
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re=k- 1 

= H [1 - (1 - e ) a . ~ 2 ] .  ( A . 4 )  
m=O 

A p p e n d i x  A.  I m p r o v e m e n t  o f  the  c o n d i t i o n  for 

s ing l e  roots  

If  we furthermore assume the random variable to be 

uncorrelated, as is reasonable for high iterates, we ob- 

tain 

If  the periodici ty of  the spatial map is a multiple 

of  two, the condit ion for a single root can be im- 

proved by calculating the worst case maximum of  
m=l 

Hm=o gm(x(  i) ): 

m= 1 

I X K m ( x ( i ) )  < (1 -- (1 - • )ax2( i )  )x 
m=O 

2 
- ( A . 1 )  

3v/3( 1 - • ) a "  

Inserting this into Eq. (6)  for k = 2 we obtain 

• > • c ( a )  = 1 - 3 / 4 a ,  (A.2)  

(mi  ) 111 - (1 - E)a£2m] 

\ m---0 

= [(1 - (1 - e ) a ~ ) ] *  

= [1 - (1 - e ) a / 2 ]  k, (A.5)  

where we used that the left hand term just  a logistic 

map with a '  = (1 - • ) a .  Inserting Eq. (A.5)  into 

Eq. (6 ) ,  the condition for monotony becomes 

• > • c ( a )  = 1 - l / a ,  ( A . 6 )  

yielding a line which is only slightly above the line 

separating STP from SC. 

which enlarges the monotonic region in the phase di- 

agram by about 50%. 

In the case of  spatial chaos further improvement 

can be achieved by considering that for sufficiently 

high iterates, the logistic map can be thought of  as the 

generator of  a random variable with a mean value of  

< £ > =  1 - a/2. For large enough k, we can then use 

the approximation 

m=k- 1 
H Km(x( i ) )  
m---O 

re=k- 1 

H [ ( 1 - - e ) f ( £ m ) + e f ( £ - m - 1 ) ] ,  (A.3)  
re---0 

where the subscript m in Sm indicates that the variable 

needs to be randomly chosen every time it is used. 

Since we only need to be concerned with positive right 

hand sides in Eq. (6 ) ,  we have 

m=k- 1 

H [(1 -- e)f(YCm) +ef(YC--m--I)] 
m=O 

re=k-- I 

< H [ ( 1 - - e ) f ( £ , ~ ) + e ]  
m=O 
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