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Period-adding sequence at the locking from torus to chaos is studied with the use of a one-
dimensional mapping. Similarity and various scaling properties of each cycle are found
numerically, which can be explained through a “phenomenological theory” based on the
existence of the fixed point function. We classify the sequence into three cases. We also apply
our theory to the case in which the sequence is a window among chaotic states.

§1. Introduction

In recent years, theoretical and experimental studies have been focused on
the bifurcation to chaos in nonlinear systems. Especially, period-doubling bifur-
cations have formed a new paradigm based on the celebrated theory by Feigen-
baum.” However, there is also an interesting phenomenon, namely a transition
from torus to chaos,accompanied by the frequency locking at the rational values.?
Recently Kadanoff and Shenker have studied the critical behavior of a KAM
surface in area-preserving two-dimensional mappings.” In dissipative systems,
however, theoretical studies are very few,” except the pioneering work by Ruelle
and Takens.® We have studied a two-dimensional coupled-logistic map (that is,
Ini=1— Az +D(¥n—2n),¥n+1=1— Ayn’+ D(xn—yn))and found a period-add-
ing sequence at the frequency-locking and discussed its critical phenomenon.”
In a previous paper,™*’ we studied the map**”

Tns1i=1zn+Asin(21z2)+D (mod1) (1-1)

and found the same critical phenomenon. We also discussed its mechanism and
related the problem of frequency locking to the theory of intermittency.'” Since
the intermittency has been studied extensively,'”™" we can understand the fre-
quency locking through the study of intermittency.

In this paper we study the similarity of period-adding sequence in detail using
the map (1-1). As we have already conjectured in a previous paper,” there is a
similarity for the Lyapunov exponents of each periodic orbit. In § 2, we summa-
rize the various critical phenomena and show the numerical results of similarity.

) In Ref. 7), the term A sin(2x8.) in Eq. (2) should read A7 sin(2768») and the left-hand side of Eq.
(5) should read F*(x)—x.".
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In § 3, we assume the ‘scaling ansatz’, which is justified through numerical results
and we assume the existence of a fixed-point function. Since we cannot deter-
mine its form analytically as yet, we approximate it “phenomenologically” in a
simple form, which seems to reproduce the numerical results well.

In § 4, we classify the period-adding sequences into three cases according to
the forms of fixed-point functions and we illustrate them by numerical results for
the map (1-1). '

Period-adding sequence has also been found in various fields, for example, in
the windows of a logistic map'? and in the devil’s staircase of the commensurate-
incommensurate transition.'®¥ For Belousov-Zhabotinsky reaction, periodic-

chaotic transition has been found theoretically'¥ and experimentally.' In our
map (1-1), this type of the transition has also been observed. We found
5-»chaos—6—chaos—-* -1 (1-2)

as we increase A from 0.15 to 0.25 with the value D fixed at 0.25. This sequence
obeys the same critical phenomenon. We study it in § 5 and discuss the similarity
of each n-period.

Discussion will be given in § 6, where we comment on the universality of our
critical phenomena and on the future problems such as the renormalization group
approach.

§ 2. Critical phenomena of period-adding sequence

In this section we study the map (1-1) with D fixed at 0.25. As we described
in the previous paper,” frequency locking at 1/5 (the notation of Q/P is the same
as that in the previous paper) occurs at A=0.1567168--- and this cycle loses its
stability at A=0.18189--- and chaotic state appears through a tangent bifurcation.
We found that the cycle »/ (57— 1) appears at A» and studied its critical phenom-
ena in the previous paper.” We found A=—Anxn~? which was explained
through the theory of intermittency. Since the locking occurs through a tangent
bifurcation, this phenomenon is rather general. (Of course, there may appear the
type of a tangent bifurcation with £n+1=2Xn + &+ x.* with a general value of z in-
stead of z=2 in our case. Then the relation that A,— Aecn~*¢"" follows and
the values of various exponents to be described later will also change in a similar
way.)

We also found 4Anxn X dAn=Ar"— An and A, is the value at which (57
—1)-cycle loses its stability) and that the minimum Lyapunov exponent obeys AR®
ocn~! (see Fig. 1). This suggests the following property that the scaled
Lyapunov exponent as a function of A, defined by

An(x)=nAn(An+n’xc) (2-1)
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Fig. 1. Various scaling properties for the (5n for n=62, 191 and 296, respectively. The
—1)sequence at D=0.25. The quantities line denotes the results of the pheno-
log(dA»), log(dx,) and log A3 are depicted menological theory of §§3 and 4. (We
versus log 7. take C=0.54.)

approaches a fixed point function A(x) as n goes to infinity. Here ¢ is a
constant, which we introduce in order to have Aa(0)= A.(1)=0. We have plotted
I.(z) in Fig. 2 for =62, 191 and 296. Thus, our prediction that An(x)~ Alx)
as n— oo is verified. We note that A(x)oc —z'* near x~0 and A(x)x—(1—z)"
near r=1, which was checked numerically. We cannot find the asymmetry
about z =0.5. Here, we have to note that this function is not universal. As an
illustration we considered the sequence with the rotation number %/ (52—1) for
D+0.25. As we increase D, the value of A at which 5-cycle appears increases (it
becomes larger than 1/ 2x) and the function A(x) gets steeper and it becomes to
take an infinite value (superstable cycle). (See § 4.)

Before proceeding to the detailed study, we show the scaling of dx», which
is the distance between the nearest periodic points of the (5n—1)-cycle. The
quantity 4x» obeys dxno< n~? as is given in Fig. 1. This scaling property will be
important later.

We focus our attention on the structure of /" "(x) later in this section and
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Fig. 3.(a) f**(x)~x at A=0.14813 and (b) at A=0.14842.
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Fig. 4. /**(x)—x at A=0.156673819 for 0.2070

Fig. 5. The scaling properties of /**"'(x). The
< x<0.2074.

notations X and © denote 10X dy» and dxx
respectively.

in the next section. Here, f(x) is defined by
f(x)=r+Asin(2zz)+D. (modl) (2-2)

Since each (5n—1)-cycle appears via a tangent bifurcation, y=/*"""(x) is
tangent to y=x at (5#2—1)-points for A=A, and A= A,’. (See Fig. 3 for f*(x)
—z1 at A= A and A< A{.) As 7 increases by 1, the number of extremum points
increase by 10. They appear near {r.'} (v=1, -, 5), where {z."} denotes the
periodic points at Ae.

Now we study the structure of /" "(x ) near r1.*. (See Fig. 4 for /***(x) near
x =0.207.) As is expected from the scaling of 4z, the quantity 8x ., which denotes
the distance between the nearest extremum points x»" and x»" near x.", obeys the
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scaling 8x»<n~%. We note that the quantity 8y =1/ (z)—f (zn*)| also obeys the
scaling 8yncn~?. (See Fig. 5.) This is a key to understand the similarity of
Lyapunov exponents.

Before closing this section, we note that the scaling of 4z is easily obtained.
We have for A A= .

fila; A)=x+alz—xn')te (2-3)

for r=~x,"." Since dxn is the distance between the nearest periodic points close
to z,*, it is given by f*(x.,")—x.", where 1.” is the periodic point nearest to x5
Using Eq. (2+3), we obtain dxn=¢&% n-%. Thus, the scaling (n7?) of dxx, 8xn and
Sy is expected from our picture based on the tangent bifurcation.

§3. “Phenomenological theory” of the similarity

In this section we give a simple frame to understand the results in §2. We
consider the case that the sequence of the cycle with the rotation number (rn+s)
/(pn—q) (that is, the locking between (r+s)/(p—q) and 7/p) appears at An
(disappears at A»") and at A« the p-cycle appears. We follow the notations in
§ 2, since we always keep the case of §2 (p=5, g=r=1, s=0) in mind in this
section, but the results of this section hold in general.

Taking the results of Figs. 1 and 5 into account, we make the following
scaling ansatz. Namely, concentrating only on the interval between z».* and z»’
(that is, the nearest periodic point near z,*), we assume that

Limfn(z)ﬂ‘igx’a;‘(f"""'(anz +xo"; An)—x")="(2). (3-1)
We take zo" so that f(0)=0 and choose the scaling factor a» so that fr(1)=1
(that is, y=f*""%(x)istangenttoy=x at x = 70" and £ =Io"+ an; We restrict our
attention only to the interval [zo", zo"+an]). Since y= f*(z)is tangent to y=2
at z =0 and z=1, it is convenient to define g*(z) by

g (2)=/(2)—-z (3-2)

(see for example Fig. 4). The results in § 2 suggest that @nocn™?

As we change A from An, the form of f£7"-9(x) also changes. Since we
confine ourselves only to the smallest structure of f?*"%(x), the main change is the
addition of constants. Thus, we have approximately

7 x A)=anf‘(a;‘(x—xo"))+xo”——)}—"—(A—An) (3:3)

for An< A< A, and xo"<x <xo"tan.
Numerical results show r»< n~', which can be easily understood as follows:
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Using the chain rule, we have

N FPL: Ant8A)— Fm9(r: A,)= af”_;z’? An) 54
N n

o
. =8A{ Af (X pin-1)-g; A) + f (X pin-21-q; A) f P(Xpin-21-0; An)
0A An 0A An 5Ip(n—z)-q
4o O2o-0; A) | Of*(Zpin-21-g; An)
d0A An OZp(n-2)-q
3fp(xp(n-3)—q; An) N 3fp(1p—q; An) .
e X 0% p(n-3-q 0Tp-g }’ (3-4)

where 1, denotes f*(x). Since each term is independent of » as # gets large and
the number of terms is #, we have

Sz At 8A)~ 7 (x, An)x ndA , (3-5)

which means y.<n™'. Though 7. can depend on x in principle, we can approxi-
‘ : mate it as a constant, since x goes to xo” as n gets large and a» goes to 0.
Now, we consider the Lyapunov exponents. We can write

= 1 -q) * .
An n=a logl /¥~ (1), (3-6)
where x." is an arbitrary fixed point of the map r - f#*~%(x). We choose such

a fixed point z,° that satisfies xo" <z»*<zo"+as. Using Egs. (3-2) and (3-3), we
have

An=

1 (gt .
on—q loglll+g¥ (2"}, (37)

where z»*=aa'(za"—x0"). The fixed point r»* is given by

8 xn‘+ang‘(a;‘(.t..‘—x))—%(A—A,,)=x,.‘. (3-8)

' Thus we have z,*=g*""((A— An)/anys), where g*"? is an inverse function of
a ¢*(z). The Lyapunov exponent is given by
) — l o ( &(-1) -9
y | An(A)=— " log{i1+g%(g* (&), (3-9)

where é»=(A—An)/anr». Thus we have

/f(z)=—},-1og{|1+g"<g°<-"<z)>|} (3-10)

- : as n—~oo. Therefore, the existence of the fixed point function g*(z) means the
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existence of the fixed Lyapunov exponent A(z) and vice versa. Since @,ocn?
and ynocn!, &, is scaled by »7%, which is consistent with the numerical result
dAnccn™3.

Up to now, we could not determine the form of g* analytically. First we
note that ¢*(0)=g¢*(1)=0 and g¢*(z)xz? ¢*(1—2z)x(1-2z)" for z<1. We
expand ¢*(z) by Fourier series. Taking only the lowest order and noting the
above property of g*(2), we have

g*(z)=C(1—cos 21z). (3-11)

We take this simple form, because it gives an analytic expression for A,(A4) and
a qualitatively correct result. The numerical results in § 2 (see Fig. 4) seem to
support this simple approximation for the (5n—1)-sequence at D=0.25. Then
we have sin27z"= £n(2— Ex) where En=E./C=(A—An)/ (Cany») and we
obtain

An(A)= Ml_q log{i1—27CV &.(2— &) . (3-12)
There are three possibilities of the behavior of An(A) according to the value of o)
=2xC.
Before going to the detailed discussion, we comment on the properties of
Eq. (3-12):
a) An(A)is scaled by @nyncn™>.
b) An(£n)oc— EL2 and An(2— Ex)oc —(2— Ea) for £.<1.
¢) Aa(£.) is symmetric with respect to £.=1
We note that properties a) and b) are not dependent on the approximate choice
(3-11) of g*(z). The property c) is valid if g* is symmetric.
We discuss three possible cases in the next section.

§ 4. Classification of period-adding sequences
As was discussed in § 3, the similarity of period-adding sequence can be

understood through ¢*(z). There are three possible cases according to the
curvature of g*(2):

Case | Each (pn—q)-cycle does not have a superstable one and loses its
stability through a tangent bifurcation.
Case I Each (pn—g)-cycle has two superstable cycles and loses its stability

through a tangent bifurcation.
Case 111 Each (pn— g )-cycle loses its stability through period-doubling bifur-
cations. (That is, the Floquet multiplier changes from +1to —1.)
If the original map is invertible, there is no superstable cycle and the possible
case is only I. Thus we have Case I for the period-adding sequence for the map
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Fig. 6. The scaled Lyapunov exponent obtained from the phenomenological theory.
The function log{l1 - Cv/ (2~ 7)) (see Eq. (3-12)) for (a) €=05,(b) C=15. (c)

C=2.1 are depicted.

(1-1) with A<1/(2r).

We study these three cases using the function ¢*(2)=C(1—cos(27z)) (see
Eq. (3-11)). Three cases are classified by the value C=2sC. We have plotted
A(&) given by Eq. (3-10) for these three cases.

Casel 0<C<1

This condition corresponds to the case that the map is invertible. Thus, the
attractor is torus or frequency locking. The Lyapunov exponent behaves like
Fig.6(a). This exponent has a minimum at &,=1, and AT"(A Yc1/(pn—q)oci/n
for large n. This is the case for the (52—1)-sequence which was discussed in
§2.

We can fit the value € from Fig. 5 for this case. Using this value and Eq.
(3+12), we can plot A.(A4), which is shown in Fig. 2, which agrees well with the
numerical results. We note that the Schwarzian condition is broken both for the
map with A<1/(2x) and f*(x) with C<1.

Case Il 1<C<2

The (pn—q)-cycle has two superstable cycles at £,=1~—,]— 1/C? and at £,
=1+vV1—-1/C?. It loses its stability at £,=2 via a tangent bifurcation. The
Lyapunov exponent behaves like Fig. 6(b).

As an example of this case we consider the map (1-1) with D=0.253. For
this case the locking at 1/5 occurs at An=0.161625--(>1/2x). The sequence
with the rotation number »/(52~1) appears for A<Au. The Lyapunov
exponent for this sequence behaves just like F ig. 6(b). The approximate value of
C which we estimate from f*""Yx)is 1.9. Thus this is an example for Case II.
We note that there exists a chaotic region between (52—1)-cycle and (52+4)-
cycle since A is larger than 1/2x.

Case Il C>2

The (pn—q)-cycle loses its stability at &, n=1—v1—4/C? at which the
Floquet multiplier crosses —1 and period-doubling bifurcations occur. At £.=1
+V1—-4/C% the (pn—q)-cycle restores its stability via inverse period-doubling
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bifurcations. If C is large enough and the interval 0-v1-4/C? 1+V1-4/C?]
is long, the period-doubling cascade reaches chaos. If C is not large enough, the
period-doubling cascade stops at some order and the period gets half by half.!®*
(That is, the bifurcation “(pn—q)—=2-(pn—q)—--=2*(pn—q)-2*(pn—q)~
2 (pn—q)—=--=(pn—q)”’ occurs as we increase the value of A.) We can
roughly estimate the condition on whether the period-doubling reaches chaos,
using Feigenbaum's §.

Let us consider the example of Case IIl. As we increase the value of D from
0.254, the (57—1)-sequence loses its stability through period-doubling bifurca-
tions. For D=0.254, the period-doubling bifurcation stops at some order. We
have observed such sequences as 119—238-+476—952-+476—238-119 (n=24) or
234468936 1872936 — 468+ 234 (72 =47) for example. For larger values of D,
period-doubling bifurcations go to chaos. Here, we note that the inverse cas-
cade for (57—1)-sequence (“chaos—--=2-(52—1)-(52—1)") can appear after
the period-doubling cascade for the (5m—1)-cycle, where m is larger than . At
D=0.256, for example, the cascade “(52—1)—2-(52—1)----—chaos” appears
before the cascade “chaos—-+-=2-(5(n—2)—1)-5(n—2)—1" for large » as we
increase the value of A. We also note that the period-doubling cascade for (5m
—1)-cycle and the inverse cascade for (5z—1)-cycle (m>#n) can appear
simultaneously at the same value of the parameter A. Thus the attractor is
divided into multibasin. We have observed this phenomenon by changing the
values of A and D.

We note that the Schwarzian condition is satisfied for the function f*(x)
corresponding to Eq. (3-11) with C>1 (Cases II and III). Thus, the period-
doubling cascade in Case III always obeys the theory of Feigenbaum," if the
doubling goes to infinity.

Thus, all the three cases appear for the map (1-1). We note that this
classification is independent of the special choice of g*(z) (Eq. (3:10)). For the
sequence which appears at large A, the form (3-10) does not seem to be good, but
the scaling and similarity hold just like in § 2. We give a typical example in the
next section.

§5. Periodic-chaotic transition near A=D

In our map (1:1), we have found the period-adding sequence (1:2) as A
approaches D =0.25, at which a stable fixed point appears via a tangent bifurca-
tion. We study this sequence (526-7—8—---). Thus, this is an example of
periodic-chaotic transitions observed in Belousov-Zhabotinsky reactions.'¥'®
We have plotted in Fig. 7 the attractor for the map (1-1) with D=0.25 and for 0.18

*) The stop of the period-doubling cascade was first pointed out by Tsuda'® when the Schwarzian
condition is not satisfied. (In our case, it is satisfied.)
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" Fig. 9. Scaled Lyapunov exponent for the
sequence with the rotation number /2.
The Lyapunov exponent is scaled by »".
S0 o while (A—A.,) is scaled by »~*, We have

plotted the results for 7=63(O), 118( X )and
Fig. 9. 554(A).

14

n-Ay

<A<0.25. Though the 5-period cycle changes to chaos via intermittency, the »n-
cycle (n>5) goes to chaos via period-doubling bifurcations. Thus, this is Case
III in § 4.

First, we have checked A=—A,xn"? (see Fig. 8), which agrees with our
theory. Since the tangent bifurcation at A=0.25 is of the type “Ins1=Xn+ar,’
+¢” (type I intermittency with z=2'"), this is rather obvious. We have also
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checked 4Anxn % and drn<n 2. We note that dxn=A«— An, since €= Auw—An
holds in this case. (Since the superstable point exists, AT does not exist.) The
scaled Lyapunov exponent behaves like Fig. 6(c), as is shown in Fig. 9, which
seems to show the fixed Lyapunov exponent.

The function f*(x)—x, however, is very complicated even if we look only at
the interval between the nearest periodic points. It has a lot of extremum points
in the interval and the simple choice of the function f*(x) corresponding to Eq.
(3-11) is impossible. This may be due to the fact that A is large and the non-
invertible regime of the function f(x) is wide. Since the scaling properties are
valid, some modifications of §§ 3 and 4 may be possible for this.case.

§6. Discussion

In this paper we have discussed the similarity of the period-adding sequences.
Since various scaling properties and phenomenological theory are based on the
fixed-point function ¢*(z), it will be possible and necessary to construct a renor-
malization group approach.”*'" It has some difficulties, since the function
¢*(z) is not universal at all and the scaling factor @» is not a” but »~? and the »-
independent recursion relation is not at hand. This study is now in progress.

In this paper, we have confined ourselves to the one-dimensional map (1+1).
Our theory in §§ 3 and 4, however, is rather general. It can also be applied to the
two-dimensional mappings®'” or differential equations, by projecting onto one-
dimensional space of the angle “x,”. Recently Sano and Sawada'® have found
the period-adding sequence and checked that (A-—A.)x#"? for the coupled-
Brusselator model (differential equations with four variables). It will be inter-
esting to search for this phenomenon in experiments such as Bénard or Taylor
problems.?

As to the observation of frequency locking, we have to note that any locking
with the rotation number (ng+ ms)/ (np+ mr) appears in principle between the
lockings with the rotation numbers ¢/p and s/r. Whether it is feasible to be
observed or not depends on the regions of the parameter where the cycle is stable
(i.e., the size of 4A.) and the stability of the cycle (i.e., A»). Since 44, is scaled
by #7% and A by n~', the shorter cycle (i.e. smaller n) is easier to be observed.
This result about the observability for shorter cycles seems to be rather general,
since 7:' is proportional to the period (see Eqgs. (3-3) and (3-4)). In this sense,
the most stable sequence between the cycles with the rotation numbers with 1/ (p
—1) and 1/p (p=5 for § 2) is the sequence with the rotation number »/ (pn—1).
For dissipative systems, therefore, the period-adding sequence will be easier to be
observed than the Fibonacci sequence.'®®

As for the related problems for the conservative systems, we have to note
that the devil’s staircase of commensurate-incommensurate transition'® may be
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related to the theory of intermittency for area-preserving maps,'® similarly to the
present argument for dissipative mappings.

When we come back to the map (1-1), there are many problems left for
future, such as the effect of small noise, the similarity of chaotic regions between
periodic orbits, and the mechanism of the development of chaos for A>1/ (2r).
These problems will be reported elsewhere.
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