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Doubling of Torus®
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“Doubling of torus” is found in three-or four-dimensional dissipative mappings. In these
models, doubling occurs only a finite number of times before chaos appears. An explanation is
attempted by a numerical study on the stablility against perturbation of the direct product state

of coupled logistic and torus maps.

Transition from torus to chaos in dissipa-
tive systems has been extensively studi-
ed."'® Phase motion on a torus has been
investigated by the one-dimensional map?~"

Gns1=0n +% sin(276,)+ 2{(mod 1), where

various critical phenomena among locking
states have been found. Inclusion of the
amplitude motion has been considered in two-
dimensional mappings,” where the distortion
of torus is found, which is explained in con-
nection with the oscillation of an unstable
manifold of a periodic saddle.” These maps
can be regarded as a Poincaré plot {or just
the phase motion part of it) of three-dimen-
sional flow.

What happens to a torus in a higher dimen-
sional flow? In this paper, we report the
discovery of “doubling of torus” in dissipative
mappings. Since more than three variables
are necessary for the doubling of torus in a
flow system, the Poincar@ plot includes at
least three variables for the system with no
conservation law. Therefore, we study
three- or four-dimensional mappings to
search for this phenomenon.

Before proceeding to show the specific
maps, we note that two types of doubling of
torus are possible for mappings, that is, the
case in which the cross section of a torus is

* Ppart of this work was reported at the
conference on turbulence held at Kyoto (Jan. 6
~ 10, 1983).
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Fig. 1. Schematic illustration of two types of
doubling of torus in k-dimensional mappings
(kZB) Pn— Pria.

separated (see Fig. 1(a)) (type a) and the
case in which it is still connected but two-fold
(see Fig. 1(b)) (type b).

The maps investigated here are
(1) Xaa=AX.+(1—AX1—DYx%),

Yus1=2Zn, Zns1=Xn; A=04,

(II) Xnn=AXa+(1—A)X1-DY.?),
Yae1=2Zn,

Zner=Wa, Waey=Xn;
A=03 or A=04,

(II1) Xnn=AXa+{(1—AN1—DY»?),
Yar1=AYa+(1—A)1—DZ*),
Zni1=AZn+(1—AN1—-DXA*);

A=04,




) ~ Biasaus ; . EPSRTSSSNEES N
. AL . M - - coaaa® i el AR Riieatuc s s ~

A L o bt a0 il

|
!

June 1983

and

(1IV) Xna=AXa+(1-AN1—-DYn?),
Yne1=2,
Zn1=AZx+(1—A)Y1-DW,?),
Waa=Xn;, A=0.3,

where D is changed from 1.0 to 2.2 as a
bifurcation parameter and A is fixed at the
listed values.

These maps show the transition “fixed
point = torus — doubling of torus - chaos”,
with frequency lockings intervening. The
doubling is of type (a) for map (I), while it is
of type (b) for maps (II)~(IV).

Some examples of the attractors are given
in Figs. 2(a)~(c) (for map (I)) and in Figs.
3(a)~(c) (for map (IV)), where projections
onto (X, Y )-plane are depicted. Lyapunov
exponents are calculated to confirm the suc-
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cessive bifurcations. As an example, the
first and second Lyapunov exponents for map
(IV) are shown in Fig. 4 (the third and fourth
exponents do not change drastically and they
are omitted in the figure). .

The parameters at which the doubling
occurs are given in Table I. As is shown in
this table, the doubling cascade stops after a
finite number of times and the system under-
goes a transition to chaos (torus = 2Xtorus
- 4Xtorus —~ chaos etc.).

Thus, there arises a problem, whether the
doubling cascade of torus can continue
infinitely in general or not. Following es-
sentially the idea in the celebrated paper of
Ruelle and Takens,” we simplify and restate
this problem as follows: Is the direct prod-
uct state of the torus map (e.g, Yar1=Ya
+C (mod 1)) .and the map which obeys
Feigenbaum’s theory'”(e.g., Xns1=1— AX:?)
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~ Fig. 2. Projection onto (X, ¥)-plane of the attractor
of map (I) with A=04.

(a) D=211(torus)

(b) D=2.16. (2®torus)

(c) D=219. (chaos)
If we take only the points (Xazn, Y2a) in Fig. 2(b),
only one torus remains. Thus, this doubling is of
type (a).
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Fig. 3. Projection onto (X, Y )-plane of the attractor
of map (IV) with 4=0.3.

(a) D=1.515. (4Xtorus)

(b) D=15206. (8xtorus)

(¢) D=15212. (chaos)
For (b) and (c), only one part of the attractors (0.75
£X<085 and —0.25< Y < —0.15) is depicted.

. ' (c)

stable against a perturbation or not?

002 We performed a numerical simulation
of the map

0 ‘s{‘ {Xn+l=1—Aan+Eg(Xn. Yn),
Yea=Yat Cc+ Eh(Xn, Ya ), (mod ].)

;}d (1)

-002 where g and % are perturbations chosen to be

9{Xn, Y.)=sin(27Y.) and h(Xn, Yn)=X»

for simplicity*’ and the parameter C is fixed

-00% at (V/5—1)/2, i.e, the inverse of golden mean.

When =0, variables X and Y are decoupled

and the transition “torus —2®torus

-O.OSM 5 v 52 — 4®torus — - - chaos” proceeds as A is in-

creased. From the simulations up to ¢

Fig. 4. The first and second Lyapunov
exponents for map (IV) with A=0.3. We
made 50000 iterations for calculations, with
double precision.

*) When ~£=0, the problem reduces to the
logistic map with incommensurate perturba-
tion.'®
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Table I. The parameter values at which the dou
models (I)~(IV). The values D. denote the
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bling occurs and the value of the onset of chaos for
parameter values at which the doubling 2*-* X torus

- 2*Xtorus occurs, while the values D¢ denote the onset of chaos, The times of doubling observed

before the onset of chaos are also shown.

Lyapunov exponents and the graphs of the

These values are obtained from the calculations of

attractors.

model

D,

D,

Ds

D,

times of
doubling

(1)

A=04

2.151

2.163

1

(1)

A=03

1.539

1.62

(I

A=04

1.694

1.90409

1.90455

(1)

A=04

1.740

1.941

(iv)

A=03

1.470

1.5106

1.5199

1.5209
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Fig. 5. The phase diagram of map (1). The
longitudinal axis denotes (A=—A), where
A= (=1.4011551- )*" js the value of the onset
of chaos for the map Znr1=1—Ax.®. The
transverse axis denotes ¢. This diagram is
obtained through calculations of the first and
second Lyapunov exponents and the graphs
of the attractors. “C” and “n@T” repre-
sent chaos and »®torus respectively.

=107", however, it has been found that the
doubling cascade stops after a finite number
of times for finite ¢ and the chaos appears
from the state 2‘®torus, where / is a finite
integer, which increases as & approaches
zero. A rough phase diagram is given in Fig.
5, which was obtained from the calculations

of Lyapunov exponents and from the patterns
of the attractors. The shape of the torus is
distorted” before the onset point of chaos as
is the case of maps (I)~(IV) (see Fig. 3(c)).

Thus, the direct product state of the torus
and the doubling becomes unstable by the
introduction of the above perturbation. This
result gives a qualitative explanation to the
conjecture that the doubling of torus stops
after a finite number of times generically.
Figure 5 reminds us of the bifurcation gap,
found by Crutchfield and Huberman'® for the
period-doubling in the presence of a random
noise. Detailed results will be reported else-
where, including the scaling relation 'V
between the perturbation & and the number of
doublings /, with some theoretical considera-
tions."™*®  The doubling of torus reported in
this paper will be found experimentally, if it
is observed that the peak positions of the.
power spectrum show the change “nw, + mw,
= novt mw:/ 2 - nwy+ mwa/ 2*~ contin-
uous spectrum” (w:\/w:=irrational, &
=integer, and #, m=0, 1, 2, --). It will be of
interest to search for such a phenomenon in
the Bénard or Taylor problems.
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