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Transition from Torus to Chaos Accompanied
by Frequency Lockings with Symmetry Breaking

—— In Connection with the Coupled-Logistic Map ——
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Transition from torus to chaos is studied using the coupled-logistic map. We observe the
period-adding sequence, which obeys the critical phenomena of a one-dimensional mapping.
The fixed Lyapunov exponent is also obtained. The locking that appears after the sequence
breaks the symmetry of the system. Self-similar stripe structure of basins is also found.
Various properties and a phase diagram of the map are given. The mechanism of the distortion
of torus and transition to chaos is also discussed.

§1. Introduction

Transition from torus to chaos with or without frequency locking is a
fascinating and interesting problem in the field of nonlinear physics.”~" In
previous papers,®® we studied the regularity of the frequency locking using a one-
dimensional mapping. We investigated the “period-adding” sequence and found
various scaling properties and explained them by the theory of intermittency and
the ansatz of a fixed point function. Shenker studied the F ibonacci sequence for
this one-dimensional mapping.®

When we take the Poincaré section of a torus, there remain still two vari-
ables, i. e., amplitude and phase. In the previous study of the one-dimensional
mappings, we restricted our interest only to the phase variable. It will be of
importance, however, to study two-dimensional mappings. We study dissipative
systems in this paper and use a map with a non-constant Jacobian. Particularly,
we take a coupled-logistic map, that is,

{In+1=1—AIn2+D(yn_In),

1-1
Yn+1=1“AJ/n2+D(xn_Yn ). ( )

Using the well-known transformation A =AMA/4-1/2), x'=(x—1/2)/(A/ 4
=1/2), and ¥'=(y—1/2)/(A/4—1/2), we can write Zn1=Axn"(1—x,")+ D(ya’
~zn') and ¥re1 =AY 2 (1—yn" )+ D(xx"—v»’). Thus this map represents a system
with two logistic models coupled by a linear term. It can be regarded as a simple
model of two coupled systems,'®~'? each of which exhibits a period-doubling
bifurcation route to chaos. This map may serve us to understand how coupled
oscillators, such as Josephson junction or chemically reacting cells, show various
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behaviors, for example, entrainment, quasi-periodicity and chaos.

The map (1+1) is simple among maps with non-constant Jacobian, which have
been less studied than the case of a constant Jacobian. 1t exhibits, however,
various phases, such as cycles, torus, frequency locking, chaos and hyperchaos, as
will be shown later. In this paper we focus our attention mainly on the me-
chanism of the frequency locking at the transition from torus to chaos.

In § 2, a phase diagram and some general results for the map (1+1) are given.
Various types of the attractors (torus, chaos and hyperchaos'?) are classified by
the Lyapunov exponents.

In § 3, the period-adding sequence of the frequency locking is studied accord-
ing to the theory of a one-dimensional mapping ¥ Various scalings and the
similarity of the Lyapunov exponents will be checked.

In §4, we discuss the frequency locking accompanied by the symmetry
breaking, which was found for the map (1-1). After this symmetry breaking
occurs, the oscillations of the two cells (that is, x and y ) become different and two
types of the oscillations appear. The basin of each oscillation is also studied. It
is very complicated and it will be difficult to tell which type of oscillations
appears from a given initial value. Especially, two basins form a stripe structure
in a self-similar manner near the line y==x.

The transition from torus to chaos has been observed in various two-dimen-
sional mappings. If we restrict ourselves to the local properties of the frequency
locking, the previous theory of scalings in a one-dimensional mapping” is valid.
However, global properties must be studied in order to understand the transition
to chaos and how the dimension of the attractor grows. We discuss this problem
in § 5, but detailed study of the global properties are left to future.

This work is essentially based on the unpublished note, which was completed
earlier than the one-dimensional theory.®®

§2. Phase diagram and general aspects
of the coupled-logistic map

In this section, we give some analytic properties and the phase diagram of the

0.3 0.56 086 1.0 12
! 2 \fgizzlz Fig. 1. The rough phase diagram of the coupled-
T |c logistic map (1-1) with D=0.1. The n-cycle
1.2 1,25 1.7 1.361.3% 1405 144 with r =y is denoted by 7, while the one with
_______ L 18 |¥lgé 2 14 r%y is denoted by n. The m-torus and
(2: l ¢ n-chaos (see the text for these terminologies)
are represented by mT and nC, respectively.
144 148 1,495 1.62 For 0.86<A<1.26, the attractors are splitted
4 l? lé (2: C {60 0 into two basins, which are written in two lines.
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map (1-1). [Especially, the case D=0.1 is studied in detail. For the case D=0,
the map (1-1) is decomposed into two independent logistic maps, which show the
period-doubling bifurcations to chaos'¥ (1-2 at A?=0.75, 2—+4 at A°=1.25, 4~8
at A®=1368, -, and A°'~1.401155--*). If a uniform state (z =y) is stable, the
phase diagram is the same as D=0. The condition for the stability of a uniform
state is given as follows.

Using the transformation £,=(x.+yx)/2 and 7.=(x»—y.)/ 2, we have,

—1— 24 2
b et @
Thus, 7. is given by
7n=(~2AAést+ D). (2-2)
The stability of the state rx=y.=¢&(ie., 7=0) is given by
I (—2(ax+DYI<1, (2:3)

where p is the period for the logistic map and it takes infinity for chaotic states.
For example, the fixed point (x =y =(/1+44 —1)/ (24) for A<3/4) is stable for
2D~1++/1+4A|<1 and the two-cycle (x:1:=y:.=(1+v44—3)/(24) for
A<5/4) is stable for [1+D+ D?*—A|<1/4. Perturbation theory for uniform
states are given in Ref. 10).

We note that from Eq. (2-2)

H(-2(a6+D)=1 (2-4)

for the general p-cycle point with r #y.

Afterwards, the results for D=0.1 is shown in detail. The rough phase
diagram is given in Fig. 1. For A<0.56 the fixed point is stable and the two-cycle
with r =y is stable for 0.86< A<1.25 from the stability condition given above.
There exists a two-cycle point with x #y, which is given by

{512522(1/2—0)/14:0.4/14 ,

m= —025 {A_[(1_D)2‘1/4]}1/2=(A—0.56)”2 (2-5)

for 0.56< A<1.010. At A=>1.010, this cycle loses its stability via a Hopf bifurca-
tion and a two-torus appears. (In this paper, we use a terminology ‘torus’,
regarding that the map is a projection onto a surface from higher dimensional
motions, and use a word ‘zn-torus’ for the torus separated by = times (i. e., n-th
iterated map gives a single torus).) As we increase the value of A, the transition
from torus to chaos with frequency lockings occurs. We note that the cycle with
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x=y (period-two for A<1.25 and period-four for A>1.25) and the state with
x+y coexist for 086<A<1.26. At A=1.26, the chaos with x#y becomes

unstable and only the 4-cycle with x =y remains.
The 4-cycle becomes unstable at A=1.317, and an 8-cycle with x £y appears,

y
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Fig. 2. (a)A=1350 (8T)

y
0.1

%
A D,
W

-01

(b)A=1.3525  (8T) (only the region 1x1<0.2 and |y|<0.2)
(continued) '
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which becomes unstable and an 8-torus appears at A=1.34. The torus goes to
chaos accompanied by frequency lockings. We study this transition in detail in
latter sections. The figures of the attractors are given in Figs. 2(a), (b) (8-torus),
(c) (8-chaos), (d) (4-chaos) and (e) (two-chaos). We use a word “»-chaos” for

y
e 0.15

(€)A=1.355  (8C) (only the region |z|<0.2 and Ivl<0.2)

y
1.0

-1.0

1-1.0

()A=1373  (4C)
(continued)
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the chaos decomposed into 7 regions. The fusion of chaos (8C—4C-2C) is
analogous to the band merging in a logistic map,'¥ but it is not clear, whether the
mechanism of this fusion can be explained through a one-dimensional mapping or
not. As we increase the value of A further, a 4-cycle appears via intermittency,

Y

-10

1.0

(e)A=140  (2C)

-1.2

(f)A=155  (hyperchaos)
Fig. 2. The attractor of the map (1-1) with D=0.1 for (a)~(f)
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Fig. 3. The first and second Lyapunov exponents. We took 200000 iterations for the
calculations.

which loses its stability through a Hopf bifurcation and again the transition from
torus to chaos with frequency lockings occurs.

In order to check this phase diagram quantitatively, the Lyapunov exponents
are calculated, which are shown in Fig. 3. Two Lyapunov exponents are positive
for A21.50 and Réssler’s hyperchaos'® exists (see Fig. 2(f) for the attractor).

Thus, we can see the transition “cycle— (doubling)- longer cycle- (Hopf
bifurcation)—> torus— various frequency lockings—chaos— evolution of chaos—
(fusion of chaos)— hyperchaos” in our model.

§3. Scaling of the period-adding sequence
at the frequency locking

In this section we study the similarity of the locking states. Here and in
what follows, we express the period by the value divided by 8 (i. e, #-cycle means
8n-cycle for the original map (1-1)), since the 8th-iterated structure as is seen in
Fig. 2(a) is always conserved for A<1.3555, where the transition 8C - 4C occurs.
The periods of the stable cycles which appear from A=1.3500 to 1.3544 are given
in Figs. 4(a), (b) and (c).

b The sequence of the periods that is easiest to observe in this region is given
y

Q»=8n—1 (3-1)
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Fig. 4. The periods of stable cycles (lockings) which appear
(a)from A=1.350 to 1.353 (we increase the parameter A by 0.000025),
(b)from A=1.353 to 1.3533 (we increase the parameter A by 0.000005),
(c)from A=1.35330 to 1.35345 (we increase the parameter A by 0.000001).
We regard the attractor as p-cycle if (Zi00000, Yio0000) coincides with (Zie0000+80,
Yeooooavar) With the accuracy of 10™*. The values of p are written below the line.
If no value is written, there is no cycle with the period shorter than 2500.

with the rotation number
C wa=Pn/Qn=2n/(8n—1), (3-2)

where P, is the number of the rotations around the center of a torus during @»
cycles. We define A by the value at which the @=-cycle appears. As n goes to
infinity, the rotation number converges to 1/4 and A to A==1.35343075---, after
which the stable 4-cycle appears. We have plotted log(A=—Ax) vs log 7 in
Fig. 5, which shows

Aw—A.=0.0148X 272 (3-3)

as n goes large. The width 4 A»=A."— Ax(A," is the value of A, where the Q-
cycle loses its stability) obeys the scaling 4 A» o< n~* (see Fig.5). We have also
studied the distance of nearest periodic points 4 R» and verified 4 Ra<n™.
Thus, the critical exponent is the same as the one-dimensional case.

Next, we study to which category of Ref. 9) this sequence belongs. The local

8)9)
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exponent A.. The Lyapunov exponent is
Fig. 5. Scaling properties of the period-adding scaled by »~', while (A—A,) is scaled by
sequence ((87—1)-sequence). The quantities n? @ A, ¥ and O show the scaled
(Aa—As)(-)and A, (®) vs » are plotted. exponents for »=14, 18, 30 and 101, respec-
tively.

period-doubling bifurcation occurs for #>5 (e. g., 39-78-156-312—-- > chaos),
which obeys the theory of Feigenbaum. Thus, this sequence belongs to the Case
IIl of § 4 of Ref. 9). The scaled first Lyapunov exponent (z4, as a function of
n(A—An)) is given in Fig. 6, which seems to assure the existence of the fixed
point function.¥ We note the similarity between Fig. 6 and F ig. 6(c) or Fig. 9 of
Ref. 9). The second Lyapunov exponent is large in magnitude compared with
the first and the variation of it is small. The application of the theory of the one-
dimensional mapping, therefore, seems to be justified.

Thus, the numerical results reproduce the one-dimensional theory based on
the tangent bifurcation and the existence of a fixed point function.

§4. Frequency locking with symmetry breaking

According to the theory based on the map®*
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Fig. 7. Two types of the 4-cycles (32-cycle for
the original map) at A=1.35344. @ and &
denote the two 4-cycles respectively. We
have plotted only 8 points nearest to the
origin. We note that the cycle A is a mirror
image of the cycle ® about y=1x.

K. Kaneko

Oni1=0.+A sin(2m9n )+ D(mOd]. ),
(4-1)

there is a sequence with the rotation
number (gn+s)/ (pn+7r) (n=1,2,
------ ) between the lockings with ¢/p
and s/r. In this case p and q are
relatively prime. The sequence with
the rotation number 27/ (82—1)in § 3,
however, does not satisfy this prop-
erty. We also have to note that the
period of the locking which appears at
A is not 8 but 4. What is this me-
chanism?

First, we note that two types of 4-
cycles (32-cycle for the original map)
coexist. The basin for the attraction

breaks into two parts. The attractor is symmetric about y=x for A< A, but
each 4-cycle at A> A= is not symmetric about y=x (see Fig. 7). One type of the
4-cycle is a mirror image of the other 4-cycle about y=zx. Thus, the symmetry

(a) We have studied the map (1-1) with the
initial values (xo, ¥0)=(—1.0+2:/100, —1.0
+25/100) (¢, 7=1,2, ---, 100). If the point

(xo(1), ¥(7)) is a basin for the 4-cycle of the
type ® of Fig. 4, we have put a dot, while we
have not put a dot, if the point is a basin for
the 4-cycle of the other type.

Fig. 8. The basin for the attraction for each 4-cycle at A=1.35344.

0.091

—0.1@I

g .

-0.16 % 0.04

(b) We have increased the resolution of
Fig. 8(a). We have studied 100100 points
in —0.16<20,<0.04 and —0.109<y,<0.091.
In this region the 4-cycle of Fig. 7 exists.
We note the stripe structure near the line
y=1x.
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breaking occurs at A= A..

For A< A, the cycle (or chaos) consists of two types of the oscillations (i. e.,
points near one type of the 4-cycle at A= A« and points near the other type) and
the transition between the two regimes. The time for the transition grows by
(A=—A) ' (tangent bifurcation mechanism), which diverges at A= A, and thus
the symmetry is broken for A>A.. The locking near A< A«(e. g., (87—1)-
sequence in § 3) is made of the points close to the 4-cycles at A>A-(® and A in
Fig. 7) and of the points between these points. The number of the former points
increases as A approaches A (it increases in proportion to » for the (82—1)-
sequence), while the number of the latter does not.

Thus, the period-adding sequence is not (4z—1) but (82—1). In general, we
can conclude that the period-adding sequence with the rotation number (2gn+s)
{ (2pn+ r) appears before the locking q/p, which breaks some symmetry and has
two basins.

Next, we study the structure of basins. In Figs. 8(a) and (b), it is shown
which type of the 4-cycles appears from a given initial value (xo, ¥o) at A4
=1.35344. The figures are antisymmetric about y=ux, in the sense that if the
point (x, ¥) belongs to the basin for one 4-cycle, the point (ys, xo) belongs to the
basin for the other 4-cycle. This is due to the fact that the map (1-1) is
symmetric and the two 4-cycles are mirror images of each other about y=1.

First, we note that the structure is very complicated. This will be due to the

effect of stretching and folding which
y= appears only in the transient phenome-

—§5 non for this value of A, and which
causes chaos for larger A. Near the

E’E line y=x the basins form a self-simi-

: lar structure (see Fig. 9). Around

= this value of A, there exists a periodic
saddle of period-4 on the line y=z

% (this is a 4-cycle of the original map

(1-1); see §2). The matrix of the

fourth iteration of the map (1-1)

linearized around this saddle has an

£ egienvalue > —~1.73(< —1). Thus, a

Fig. 9. The stripe structure of the basins around  zone of a basin at x <y is reduced as
y=x. The shaded region is a basin for one la"“ and appears at r >y (because «
4-cycle, while the blank region is a basin for is negative ) This process is repeated

the other 4-cycle. When we enlarge the infinitel d k If-simil
figure and increase the resolution by ¢*~3.0, niinitely and makes a  self-similar

the same pattern appears. structure of the basin near y=x. The
(The scale of this figure is arbitrary in this value of the scaling factor |e|™! is
sense.) verified through numerical results (see
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Fig. 9). We can construct an example of a self-similar structure of basin by
using symmetric one-dimensional mappings.'?

It is interesting to regard that x and y represent the observables of two cells.
Then the frequency locking with symmetry breaking of this section can be
regarded as the appearance of a spatio-temporal order. At A> A., the oscilla-
tions of the two cells become completely different. The formation process of
order is treated by many authors for a simple case, that is a relaxation from an
unstable point of a double-well potential.'® The self-similar structure of basins
in our problem may give a new aspect of the formation process of order.

It is also important to study the global structure of frequency lockings. For
the one-dimensional mapping (4-1) the locking states (devil’s staircase)'” are
constructed as follows:

i) 1/2‘*1/3—'1/4'*1/5-*"'—'l/n—”"-*()/l, (n=2)
i) 1/(n+1)-2/@n+1)>-= 1l (in+1)>~1/n
between 1/(n+1) and 1/n, (1=1)

i) (+D/(U+Dn+D)-»@I+D/ {{In+D)+{I+D)n+1} =
(ml+1)/ {m(In+1)+({+1)n+1}---~ 1/ (In+1)
between ({+1)/ {({+1)n+1} and i/ (In+1), (m=1)

where each sequence is the period-adding sequence (the value q/p is a rotation

0.09 D 015
134 /

136 P ai

Fig. 10. The frequency lockings around the transition from torus to chaos. The
number (1~9) is the period of the stable cycle. We have plotted only cycles with
the period shorter than 10. The n-cycle (8n-cycle for the original map) which
appears after the fusion 8C—4C is represented by 7, which is better to be regarded
as 4X2n cycle.
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Fig. 11. The attractor of the map (1-1) with 2=0.14 for
(a)A=1.35704, (only one of the two types of the attractors)
(b)A=1.35710.

The chaos is of the type “4C” in our notation and only the
region nearest to the origin is shown in these figures.
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number and p is a period). We can study in this way the steps of devil’s staircase
and its similarity, for a one-dimensional mapping.

In our problem, the global structure of lockings is more complex, since there
are two types of lockings, i. e, with or without symmetry. The rough phase
diagram of frequency lockings is given in Fig. 10, where the number “»” denotes
a locking of n-cycle (8#n-cycle for the original map).

First, we note that there is a period-adding sequence 3—+4-5-26—(->7--).
These cycles break the symmetry, that is, the attractor is not symmetric about
vy =z and there exist two types of cycles as is the case for the period 4. There
appear lockings with the period 7 (between 3 and 4), 9 (between 4 and 5),
11(between 5 and 6), etc, which is symmetric about y=x. The (82—1)-sequence,
studied in previous sections, appears between the periods 7 and 4. The lockings
of longer periods are constructed in a way similar to the one-dimensional
mapping (i), ii), iii), ). As is seen in Fig. 10, the locking with symmetry
breaking (e. g., 3 or 4 or 5 --*) occurs at various values of 4 and D.

For D=1.355, the transition 8C—4C has already occured, and the cycle for
these parameters (5 or 9 in Fig. 18) has not 8 but 4-iterated structure (i. e., 10X 4
or 18 x4). The symmetry of the attractor is also broken for the 5-cycles and thus
the window with symmetry breaking also occurs for the chaos which has under-
gone the fusion.

The window (5 in Fig 10) goes to chaos by the period-doubling bifurcation,
as the parameter A is increased. The attractor of this chaos is not symmetric
about y=1x (see Fig. 11(a)). As the parameter A is increased further, the strange
attractor with symmetry appears again (see Fig. 11(b)). = Thus, the chaos-chaos
transition with symmetry breaking is also observed in our system.

§5. Discussion

Transition from tours to chaos accompanied by frequency lockings have
frequently been observed in dissipative two-dimensional mappings. The scenar-
io is as follows: :

i) Torus appears via a Hopf bifurcation.

ii) The shape of torus is distorted (see Fig. 2(b)).

ili) As the process ii) goes on, the regions of frequency lockings increase.
They form a structure of devil’s staircase.

iv) Chaos appears through a period-doubling or a tangent bifurcation of

some frequency-locked cycle at some value of the bifurcation parameter.

v) The dimension of the attractor'® increases, which is seen in the increase

of two Lyapunov exponents.
vi) As we increase the bifurcation parameter, the sum of two Lyapunov
exponents become positive and the attractor covers a two-dimensional
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area (see Fig. 2(e)).

vii) Two Lyapunov exponents take positive values (hyperchaos).
This process [i)-vii) ; it may stop at some step and the inverse process or
transition from chaos to cycle through other mechanisms'®~?" can occur] was
observed in our map (1-1) in various parameter regions and was also observed for

other two-dimensional mappings, such as
{r,.+n=rru—grn3+/frnsin(2ﬂ0n), (5:1)

Oni1=6ntars’®. (mod 1)

The distortion of torus ii) was always seen in these examples. It will be related
to the oscillation of unstable manifolds of periodic saddles,”® which is analogous
to the heteroclinic oscillation, well-known in conservative systems.

At the frequency lockings iii), it is easy to observe the period-adding
sequence. The scaling properties given in previous papers®® hold in these
examples. Thus, the critical phenomenon of the period-adding sequence seems to
be rather universal in two-dimensional mappings.

Though the local mechanism of the onset of chaos can be understood through
Feigenbaum’s theory®® or Pomeau and Manneville’s one,*"’ we have to consider
global properties, in order to understand the whole process i)—vii). This prob-
lem is left to future.

Our mapping (1-1) has a symmetry under the exchange of variables r<y. It
is reflected in the properties of the attractor.?® The attractors shown in Fig. 1
(such as m, mT, C, mC : (m=2, 4, 8)) are symmetric about y=x. The attractor
with broken symmetry we observed in our map is a cycle, which appears as a
frequency locking or chaos, which appears through the doubling of the locking.
The critical phenomenon near this locking is ruled by a tangent bifurcation.®*"
In this case, however, the period of the period-adding sequence with similarity is
not (pn+q) but (2pn+q) (p is a period of the cycle which appears at n— ).
The symmery breaking of this type has not yet been studied well. It may give a
new insight upon the onset of a spatio-temporal order.

The basin of each cycle with broken symmetry is very complicated, as was
shown in Figs. 8(a) and (b). Thus, it will be rather difficult to predict the final
state form a given initial value. The complicated structure is typically seen near
the sadlle line (y =x) as a self-similar stripe structure. This structure is expect-
ed to appear near unstable cycles, if one stripe structure of a basin exists. Thus,
this structure of a basin may be observed in various nonlinear systems. It is also
interesting to study the effect of this structure on the transient phenomena,
especially concerning the effect of a noise.

We have reported in this paper the transition phenomena from torus to chaos
of a symmetrically coupled logistic map. Numerical calculations were carried
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out using mainly the double precision.
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