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Fractalization of Torus®
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For a certain class of two-dimensional mappings, torus oscillates more and more strongly as the
bifurcation parameter is increased. It becomes fractal at a critical point and chaos appears above the
critical point. The discovery of this phenomenon, the calculation of fractal dimension, and the universality

of the phenomenon are reported.

Various nonequilibrium systems show transi-
tion from torus to chaos. Its mechanism and
critical phenomena have extensively been studied.
Especially, the instability of phase motion has
been analyzed in detail using a one-dimensional
circle map.”~” The amplitude behavior of torus,
however, has been less investigated.®~'® In this
letter, we study the oscillation of torus, which was
observed in various two-dimensional map-
pings?~'" and also in experiments.'"™® In usual
two-dimensional mappings, however, the region
of frequency lockings increases near the onset of
chaos, which masks the oscillatory behavior.

To study the oscillatory behavior in more
detail, we introduce here a model which has no
locking by its construction. It is a modulation
map given by

[r,m=_f(rn}-l-sk(0n), (1)
Ori1=8n+c, (mod1)
where ¢ is fixed at an irrational number, thus, no
locking appears and A(4) is a periodic function of
period 1. This type of mapping has also been
studied in the doubling of torus'® and in the
problem of three-torus.'” We take here f(x)
=gax+bx® and h(0)=sin(2x#), and consider the
case that there is a stable torus for small e. For
e~(0, the torus is almost straight. As e is in-
creased, it oscillates more and more strongly till it
collapses at some critical value € =&, and chaos
emerges (see Fig. la), b) and c) for the
attractors). The value &. is numerically
confirmed by the calculations of Lyapunov
exponents.

In order to investigate the oscillations of torus
in more detail, we study the equation for the

* Some parts of this work were reported at the
KSI Conference “Chaos and Statistical Mechanics”
(Kyoto, 1983, September ).

invariant curve. The invariant curve x =g(#), if
it exists, must obey the functional equation

gl8+clmod 1))=f(g(8))+eh(a). (2)
If f(x) is linear (ie, 6=0), Eq. (2) is solved to
give
g(0)=¢e(sin2x(8—¢)—asin2xf)
/ {(1—acos2rc)*+ a*sin®2xc). (3)

When f(x) is nonlinear, it is difficult to obtain the
analytic solution of Eq. (2). Thus we search for
the solution of Eq. (2) numerically by iterating the
functional mapping

gn(@+clmod 1))= f(g.(8))+eh(d). (4)

As a numerical technique, we replace ¢ by a
rational value ¢, using a continued fraction

expansion'®

cx=1/{m+ U nat U nate1fnn) ). (5)

We study mainly the case c=(+/5—1)/2, when cx
is given by Fu./F. where Fy is the Fibonacci
sequence.’” Thus, functional map (4) is replaced
by the F,-dimensional mapping. The conver-
gence of iteration (4) becomes slower and slower
as ¢ approaches &, and no convergence is
obtained for &= e. within our numbers of itera-
tions (5000).

The figures of the attractors tell us that the
torus seems to be fractal’ as e~¢.. To confirm
this property, we measured the length of torus by
changing the scales, i.e., we calculated the follow-
ing quantities:

L(j)= ?i[{y((i-l-j)fﬁ}(mod 1))

=

— gl Fe) P+ LR 2, (6)
If L(7)ec;j 7 for small 7, the torus is fractal with

the dimension dr=1+a.'"" The log-log plot of
L(7) vs j is shown in Fig. 2, which was obtained
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Fig. 1. Attractor of the map (1) with /{x)=—x+r?
and #(0)=sin(2x0) and ¢=(v¥5—1)/2. The val-
use of & are 0.36 (torus) for (a), 0.46 (torus) for
(b) and 0.49 (chaos) for (c).
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from numerical iterations’ of map (4) with e
=0.472~¢. and F.=28657 or 46368. As is seen
from this figure, the torus at e~ e is fractal with
the fractal dimension d»=1.77+0.04.

We also counted the number of extremum
points N. by changing F. by calculating the
number of the integers j which satisfy {g((j+1)
;"'IFk)_g(}"/Fk)} X {Q'U;"'IF&)_Q((J._1).-"{Fk)}<0 (1
<j<F.). For e€e., the number N, approaches
a constant as [ is increased, while it goes to
infinity, showing the behavior N.ocF, for e~e..
This result also confirms the fractal property of
the torus at the onset of chaos (see Fig. 3).

As another example we consider the case c=+2
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Fig. 2. Log-log plot of the length L(j}. The value
of € i3 0472 and Fi is 28657 (A ) and 46368 (@ ).
The function f(x ) is given by f{x)=—x+x*and
h(@)=sin(2x0).
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Fig. 3. The number of extrema N, as a function of
o for flr)=—x+x* The values of ¢ are (0.45
(D), 0.46 (A, 0.465 (1), (.47 (@) and 0.472 (4 ).
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—1, where the continued fraction expansion is
given by Cr— Gk—l,‘JIGk (Gri1=2Gs+Gr1). The
log-log plot of L(7) is given in Fig, 4. As is seen
from this figure, the torus becomes fractal at the
onset of chaos, but its dimension (1.8540.03)
differs from the case ¢=(v/5—1)/2.

To study the universality of fractalization of
torus, we consider the case [f(x)=x—0.2
xXsin(2zr). In this case also, fractalization
phenomena occur as & is increased. Log-log plot
of L(7) is given in Fig. 5, where ¢ is (v56—1)/2 or
¥2—1 and their continued fraction expansions
have been used (F,=46368 or G.=33461). The
dimensions seem to agree with the case f(x)=ax
+bx® respectively, but we have to leave the
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Fig. 4. Log-log plot of the length L(7) for flx)=—x
+r® and h(d)=sin(276). The value of € is
0.55417 and c.=13860/ 33461.
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Fig. 5. Log-log plot of the length Lij) for f{x)=x
—(2sin(2xx ) and k(8)=sin(2z#). The values
of ¢ are 0.6644 (&) and 0.6837 (@), where c. is
given by Fi\/F.= 28657/ 46368 (&) and Gei/ G
=13860/ 33461 (@), respectively.
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detailed study on the universality as a future
problem.

Fractalization of torus is also seen for the
doubling of torus.!*~'® The torus seems to be
fractal when the doubling cascade of torus stops
and chaos emerges. This problem will be studied
by choosing f(x)=1-—ar® as was shown in
Ref. 15). Fractalization is also found in a prob-
lem of a three-torus,'”"** where a.coupled circle
map is investigated.

In this letter, we reported the discovery of
fractalization of torus, which may give a new
critical phenomenon at the transition from torus
to chaos. Fractal torus was investigated as a
basin boundary of the attraction for a complex
mapping.’®*" In our case it appears as an
attractor and will be more relevant to physical
observations. It will be of importance to search
for this phenomenon in differential equation sys-
tems (a system with incommensurate modulation
will be a candidate) and also in experiments.
Detailed results on critical phenomena with renor-
malization group analysis will be reported else-
where.
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