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The present series of papers clarify the physical mechanism of a critical slowing down in
stochastic processes. It is classified into three categories, namely (i) deterministic, (ii) marginal
and (iii) noise-induced critical slowing downs. In this paper, some general aspects of critical
slowing down are studied in multiplicative stochastic processes. The value of the long-time
exponent is derived on the basis of the dynamical scaling theory for general nonlinear stochastic
processes as well as conditions for the appearance of the noise-induced long-time tail. Some
exactly soluble examples are discussed.

§1. Introduction

One of the most fundamental features in critical dynamics is the phenomenon
of critical slowing down, which means that the relaxation of the relevant order
parameter becomes very slow near the critical point. The simplest phenomeno-
logical explanation of this phenomenon is given by the Landau-van Hove theory
as follows. The temporal evolution of the order parameter, say m(¢), may be
described by

%m(t)=4f4g%; F=Fo+é—7'om2+%gom“+--- » (1-1)

in the mean field approximation. That is, we have
—;;—m(t)Zrm(t)—gm(t)s (1-2)
with y=—1 and g=1g.. Here, I" denotes a bare kinetic coefficient, and 7
o« T— 7. The solution of (1-2) is given by" .
m(t)=m(0)e™ {1+ 7y gm(0)2 (2 —1)} 2. (1:3)

If T>T7T, ie., y<0, then the asymptotic behavior of m(¢) is given by m(¢)
~exp(—t/r), where r=|y["'oc(T— T:)™", as was discussed in a previous paper.?
At the critical point y=0, m(¢) shows the following long-time tail:

m(£)= m(0){1+2gm(0)? £} ~ 47177 (1-4)

Practically, this long-time tail is observed in the region 7/<1 and the exponential
decay is observed for y¢>1. Thus, the crossover effect occurs in the time region
t~7~'. Namely, the crossover time becomes larger and larger, as the tempera-
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ture approaches the critical point 7c. The above arguments are all based on the
mean field theory,” in which fluctuations are neglected. In fact, due to the
fluctuation effect the exponent 4 of critical slowing down is, in general, larger
than® the susceptibility exponent which is usually bigger than unity.

In the present paper, we discuss the fluctuation effect due to a random force
on the critical slowing down or long-time tail, by the use of nonlinear Langevin
equations of the form

A= flx)+glx)n(t). (1-5)

Here, 7(#) is a random force which is, for simplicity, assumed to be Gaussian and
white, that is,

(gt )>=2e8(t—1"). (1-6)

Throughout this series of papers, the stochastic differential equation is inter-
preted as the symmetrized one,* whose calculus is the same® as the ordinary one.

In the previous paper,” we defined the phase transition point 7» at which the
profile of the stationary distribution function changes drastically,” and we
discussed the slowing down of relaxation at the phase transition point. There is,
however, another interesting point of the relevant parameter space y contained in
f(x), that is, a critical point at which the system begins to change from a stable
state to an unstable one in the deterministic limit €=0. We call this a deter-
munistic critical point. What happens at this deterministic critical point in the
presence of a random force? Does the critical slowing down appear at the
deterministic critical puint? Dekker and van Kampen® studied numerically the
minimum (in magnitude) non-zero eigenvalue of the Fokker-Planck operator
corresponding to the following nonlinear Langevin equation:

“éi?x:?’x*gﬁ-%??(z‘). (1-7)

They found that the minimum eigenvalue A: is non-vanishing even at the deter-
ministic critical point 7 =0, and consequently that the relaxation time rx<A;! is
finite at y =0, i.e., there occurs no critical slowing down for €+0. On the other
hand, Brenig and Banai‘”v “studied the following multiplicative stochastic

process:»"1Y

#’;x:rxhgx”xv(t), (1-8)

using Carleman’s method,'”™'* and they found the following noise-induced long-
time tail:

*) Figure 1 in Ref. 2) has a simple error. 7> 7, in (b) should read y<7,.
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Kx2(t)>~(elg’ )P ~1717, (1-9)

at y=0. This is clearly more dominant than the deterministic critical slowing
down <x*(#)>e=a=x%(0){14+24gx2(0)¢} '~ ¢' which is immediately obtained from
(1-4). This is an intrinsic noise-induced long-time tail. Now arise some in-
teresting questions why it happens and what is the general condition for the
appearance of long-time tail. To answer these questions is the purpose of this
series of papers.

Without loss of generality, the stationary point xe in (1-5) can be put zero at
the critical point, because a nonvanishing xe is shifted by a simple transformation
x —xe=x and because re=00 can be mapped into x."=0 by the transformation
= 1/x. Thus, hereafter we assume that xe=01is the final stationary point of the
system (1+5) at the critical point and that all the moments <x?(#)> for »>0 go to
zero in power laws for £— <0 at the critical point. The condition of this second
assumption will be discussed in detail in the succeeding sections. As we are
interested in the asymptotic behavior of the solution of (1-5), we may retain only
the dominant terms as follows:

flx)=rx*—gx™+o(x™) and g(x)=x"+o(x"), (1-10)

where ¢ >0, >0 and m>[>0. Since we assume that <x?(¢)>—0 as y—0, the
noise has no additive part (i.e.,, g(0)=0). In the general situation where g(0)
+0, our arguments hold in the time region where <x"™(#)>> ¢(0), after which the
crossover to the system with the additive noise occurs. More mathematically the
above asymptotic forms (1-10) can be obtained in a generalized singular pertur-
bation method.'® Thus, our skeletonized nonlinear Langevin equation is®

E,d[xzyx‘—gx”’-i-x”n(t). (1-11)
The case /=#n=1 has been discussed already by several authors™®® in connec-

tion with chemical reaction for fluctuating reaction rate and with laser amplifica-
tion for fluctuating pumping rate. To discuss the physical meaning of the
nonlinear Langevin equation (1-11), we first consider the simple example (1-7).
If there exists no random force, i.e., € =0, then Eq. (1-7) expresses the temporal
evolution equation of the macroscopic variable x which is obtained in the mean
field approximation.” Interaction of x with the remaining infinite degrees of
freedom may be taken into account approximately by introducing a random force
7(t). Secondly when the growing-rate y is fluctuating in (1-2), we obtain the
multiplicative stochastic process (1-8).

As Mori'® has shown, the true Langevin equation projected from the relevant
original Liouville equation has a memory effect and its random force is, in
general, very complicated. Our nonlinear Langevin equation (1-5) or (1-11) may
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be regarded as the simplest idealization for a single macrovariable.

In § 2, the scaling property of the nonlinear Langevin equation is studied and
the relation between the critical slowing down and the singularity of moments in
the stationary state is derived on the basis of the dynamical scaling law.’” In
§ 3, we clarify three different kinds of mechanism of critical slowing down in
multiplicative stochastic processes, and we obtain explicitly the value of the
critical exponent of slowing down in each situation. In particular, the physical
mechanism of the noise-induced long-time tail is explained in general situations
under some appropriate conditions. In § 4, conditions for the appearance of long-
time tail are studied in detail, on the basis of the general criterion of appearance
of the slowing down and also by the help of the Schriédinger-type equation
corresponding to (1:5). Summary and discussion are given in § 5.

§ 2. Dynamical scaling law and critical slowing down

We study first the scaling property of the nonlinear stochastic process (1-11)
by introducing the following linear scaling transformation:

g=¢%, t'=¢%, €=8¢"e, '=8%x, Y=8y (2-1)

with?®
Cm—142a(n—1) «_ —(a+1) _ (U—2n+Da—(m—1) .
B=""0 o1 O Tm—gnti YT m—2n 1 - (2:2)

Using that the Gaussian white noise 7(¢) satisfying (1:6) has the same scaling
property as (&/t)'?, we can easily show that (1-11) is invariant for the above
linear scaling transformation (2-1) with (2-2).

Hereafter we treat the case /=1, which corresponds to a linear growing-rate
model. For this case, we find that .
7’, (_L/>z(n—1)/(m-1):_y<_g>2(n—1)/(m—1) (2.3)

Yt =7t and T\ e\ y ,

namely that these two quantities are independent dimensionless invariants for the
transformation (2-1). It is easily shown that there is no other independent
invariant. Therefore, such a part <@Q(#)> of any moment <x?(#)> of the solution
z(#) in (1-11) that does not depend on the initial value has the following form:

QU K@= rort, Z(L)"T), (2-4)

where <Q)s: denotes the stationary value of Q. Therefore if (Q(#)> does not
depend on the nonlinearity g, then it is a function only of 7¢.

*) The second equation of Eq. (5-3) in Ref. 2) should read y=—(a+1)/(m—2n+1).
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Next, we study the asymptotic behavior of <Q(#)> near the critical point ¥
=(0. We assume here the following dynamical scaling law:

CQUE /K Qs = FENrt/10), (2-5)

where 7o is a dimensional parameter to make the scaling variable y“#/zo dimen-
sionless, and it may depend on ¢g and €. Here 4 denotes the dynamical critical
exponent to express the time scale near the critical point y=0. If <Q>st takes the
following asymptotic form

{@Q>st~7%, (2-6)
then we have
CQUEN ~ 7P f& (v t/T0)
~ 1M gy tfro) ~ £ (2:7)
with g§9(x)=x%"f§x). Thus, we arrive at the following scaling relation:
bo=90ao/d . (2-8)

The above relations (2:6)~(2-8) are also applicable to the case that ¢¢<0and ¢¢
<0, in which <@>st and <@(#)> diverge as y— 0 and {0, respectively. We may
assume that the present stochastic system (1-11) has a unique time scale in-
dependent of physical quantities such as {x”(#)} near the critical point, namely
that 4 is universal irrespectively of @ or p.

More explicitly we consider a moment of the form <x?(#)> and we study the
corresponding two exponents ¢» and ¢». The scaling relation (2-8), i.e., ¢»=¢p
/4 vields the statement that the p-dependence of the long-time tail exponent ¢ is
the same as that of the static exponent @». This proposition will be very useful
in the succeeding section. In particular, this relation will be used to obtain the
critical value pc above which ¢» does not depend on p.

It will also be interesting to note some invariant properties for the following
nonlinear transformation:

y=x?. (2-9)
Applying (2-9) to (1-11), we obtain the following transformed equation:
v _ omr o
5Ty gyt Yy () (2-10)

with ¥'=qv, ¢'=qg, 7' (t)=qn(t) and
m' =(m—1+q)/g, w=(n—1+q)lqg. (2-11)

The quantity @ defined by @:'=g{m — (2% —1)} is invariant for the above
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nonlinear transformation (2-9), that is,
QU=qg{m' —C2n' —1))=m—2un—1)=Q: . (2-12)

There is another interesting invariant quantity concerning the moment
xP()> =<y (¢)> with p" = p/g, namely

Q'=q{t—(W~1}=p~(n—1)=Q.. (2-13)

Consequently the sign of p—(#z—1) is invariant for the above nonlinear transfor-
mation. This property will also be useful in § 3.

The nonlinear Langevin equation (1-11) for /=1 with (1-6) is equivalent to
the following hierarchy of equations of moments

d ., » — P
7 Pt =pr<x?(t)

—pglx™ PN+ pn+ p—1)ex?PT(8)> (2-14)

18),4)

where we have made use of Novikov’s theorem. The above equations of

motion (2+14) will be discussed in detail in § 3.

§3. Critical slowing down in multiplicative
stochastic processes

Now under the assumption that all the moments <x?(¢#))> for some positive
range of p go to zero in power laws for #— o at the critical point, we discuss the
long-time tail of <x”(#)> in the nonlinear Langevin equation

d m n
G E TR +x"7(t) (3-1)
at the critical point ¥ =0, namely in the “critical equation”

Wx:—gx”‘-%x"?y(t). (3:2)
We are interested in the long-time tail exponent ¢» defined by
xP(E)y=t* (3-3)

at y=0for ¢—oo. There are three different situations, namely, (i) deterministic,
(ii) marginal and (iii) noise-induced long-time tails. Each long-time tail appears
in the following situations:

(1) A=B>C, (3-4)
(i) A=B=C, (3-5)
(i) ALB=C or BLA=C, (3-6)
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where A, B and C denote the scaling dimensionality in time for 4<x?(#)>/dt,
g<x™P7(¢)> and <x"*?7'n(t), respectively, namely

A= t—(¢p+l) , B~ t‘¢m+p—1 , CZ t—¢2n+p—2 . (3.7)

(i) Deterministic long-time tail (m<2n—1)

If the noise term is asymptotically smaller than the deterministic term in
(3-2), namely if (3-4) is satisfied, then we obtain the deterministic long-time tail

Pty =t  gp=—=L (3-8)

m—1
from the balancing condition that A= B, that is, '
¢p+1:¢m+p—1 . (3'9)

The condition that B> C gives the inequality
m<2n—1 (3-10)

together with m>1.
The stationary moment <x?)s: takes the following asymptotic form:

CxPyse=(y/g)P1m=Y (3-11)
near the critical point y=0. Thus, the static exponent ¢, is given by
__ D )
Po=""7- (3-12)

Therefore, the dynamic critical exponent 4 is found to be equal to unity (i.e., 4
=1) through the scaling relation (2-8), namely ¢»=@s/4.

The simplest example of the deterministic case is the deterministic limit e=0
such as (1-2). Another exactly soluble example is the SKS-model?

%Zﬁ-gx”%x”‘n(t) (3-13)

for m>1. It is easily shown that
Pty ={(m—1)gt}~?'™ D (3-14)

for p<m—1. Clearly we have <x">s:=(7/9)"™ V. For more details, see
Appendix A. The restriction that p<m—1 can be removed, if we include terms
of higher order in (3-1). For details, see Appendix B.

(ii) Marginal case (i.e., m=2n—1)
In the case m=2#n—1, the nonlinear term in (2-14) becomes of the same order
as the noise term in (2-14). The condition (3-5) yields
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¢p+1:¢m+P—1:¢2n+p—2 . (3'15)
A monotonic solution of (3-15) is

gp=—L— (3-16)

T om—1-
This case corresponds to the following model:
#‘;xzyx—gxz"‘lex"n(t). (3-17)

As was discussed in the previous paper,? this model can be solved rigorously by
using the eigenfunction expansion method as

Ce(£)y= FEE) oint [ (1) g0 x) d (318)

with an eigenfunction ¢m(x) for the eigenvalue An=2my(n—1). An explicit
expression of (3-18) is given by

/oy PN (@ 1-1/2N) & TCm+1/2N) 0 {7265 —am
<I“)>“<2ezv> FA/ZN) & FmtatD) - '”( SN )e s

(3-19)

where ¢ =g¢/(2¢eN)— % N=#n—1and L.*(x) is a Laguerre polynomial.
Equation (3:19) can be resummed in such a more convenient form as

1 1/2NP<a+1 2N> Yo
<x(t)> ( NE (1 e‘27Nt)> I"(a+1) 1F‘1< ZN 5 LY"’]_, 1 2N7t>
(3-20)
with vo=7yro2"/(2eN). Here, we have used the formula
o0 k
Filrx;y; 2)= 5Lkt x) L) 2 (3-21)

e T'(kty) T'(x) k-

The above expression (3-20) leads to the long-time tail of the form <x(¢)>
~ $~MZR-DI gt the critical point y=0.
The above result (3-20) is a special case of the following more general result:

, 1 mNF(cH-l _L2N>
()= <2Ne 1— e‘“’”) I'(a+1)
X1E<§§‘V—,Q+I,T_-§N7;>, (3-22)

which is calculated from a compact solution of the distribution function P(x, #).
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For the derivation of (3-22), see Appendix C. Clearly, we have

__b_
<IP>St:<mL__1)k>p/2<n41)F(‘;j(_al_FlZ)N) . (3-23)

Thus, we get @»=p/{2(n—1)} for p<mn—1+gle. The long-time behavior of
{x?(t)> is given by
p ~ $—¥p . :——2— .
at y=0 for p<m—1+g/e. This indicates that 4=1, i.e., ¢»= @».
This long-time tail appears even for €¢=10 or g—0. This is the physical
meaning of the “marginal case”. :

(iii) Noise-induced long-time fail. (m>2n—1)

When the noise in (3+1) is more dominant than the nonlinear term in (3-1) or
the former is balancing with the latter, we call the long-time tail a noise-induced
one. As ¢p=¢q for p=g>0, this noise-induced long-time tail appears when m
>2n—1, because Ym+p—1=Pan+p—2 in this case. It is more convenient to divide our
arguments into the following two cases, namely #=1 and »>1.

(iti-a) »=1  This corresponds to the random growing-rate model

d

Tﬁ—x:(y+77(t))x—gx”’. (3-25)

The stationary distribution function? Pe«(x) is given by™?

Pse(x )= Cx7~9* exp{—-e-(Tni_—ITx”‘"l}. (3:26)

Therefore, the stationary value of the moment takes the following asymptotic

=R () ()

=y for y—0. (3-27)

form:

Thus, we have @p=1 for any positive value of p. The time scale exponent 4 is
estimated as follows. In (3-25), » and #(¢) play the same role with respect to the
time scale. On the other hand we have

@GO =EES (1= 1) =Sty | (3-28)

Consequently, we obtain
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70 =—Fn(0). (3-29)

1/2

Therefore, the quantity y¢'? is the scaling variable in the model (3-25). That is,

we obtain
4=2. (3-30)

The dynamical scaling relation (2-8) yields
GEUP=E do=guld = (3-31)

for any positive value of p. This is a quite remarkable result in comparison with
the fact that ¢, is proportional to p in the other two cases (i) and (ii).

The result (3:31) can also be obtained rigorously from the following formal
solution®? of (3-25):

xoexplyt+ W(t)]

x(t)=r f /M (3-32)
[1+gxo“’11/1f0 exp{M(yt + W(t'))}dz"]
where M=m—1, xo=x(0) and
wn= [ 7t . (3-33)

The detailed derivation of (3-31) from (3-32) will be reported in the second paper

of the present series.'?

It is of great interest to try to understand the intuitive and physical
mechanism of the noise-induced long-time tail, particularly the unexpected result
that <x?(¢)>~¢t"* for p>0 in the random growing-rate model. This pheno-
menon occurs due to the balancing of the noise term and nonlinear term in (3-1).
More explicitly we consider the balancing condition

¢m+p71:¢2n+p‘2 (3'34)

in the equation of moments (2-14). A monotonic solution of (3:34) is given by ¢»
=constant=c(m) for £>0. This constant may depend on m. In order to
evaluate this constant ¢(m), we apply the nonlinear transformation (2-9) to get
the relation

clm)=c(m'y=c(l+(m—1)/q) (3-35)

with use of the relation (2-11) between m and m’. Note that »'=n=1. By
taking the limit ¢—0 in (3-35), we arrive at

c(m)= c(c°)=independent of m . (3-36)
Therefore, we study now the limit m—o°. This corresponds to the following
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linear system:

f%*ﬂw+xﬂtk 0<xr<1 (3-37)
with a reflecting wall at x =1. The solution of (3-37) with y =0 is expressed by

- the following distribution function:

P(y, t):\/4}ret [exp{— (yZ;O)Z }+exp{-—(%%i}] (3-38)

with y=Ilog x and yo=log xo. The moment <x”(¢)> is given by

<xP(1)> :%etﬂetggd %P0 ErfC(M>

T (4et)'?
__1_e—yoz,4et§ (—1)Y"(2n—1)!! { (def)'? }2n+1

4 A=o 2n+l o= 2pet+ ovo
2;(72W+ o0(™%) (3-39)

at y=0. Thus, we obtain C(OO):%. Therefore, we arrive at the conclusion
that

b= c(00) = (3-40)

for p>0. It is also instructive to remark that the moment <x?(#)> shows the
following scaling behavior:

<xP(t) ( e )”2 <_12_L 1 ( 72t>_
(s T wit) P 46) ﬁErfC 4e )

<Ip>st =

e (3-41)
near the critical point (i.e., y=0). This is a nice example of (2-4) for =1 and
also of (2-5) with 4=2. ‘

The special case that p=2 and m=3 has been studied first by Brenig and
Banai.'® They obtained ¢.=1/2. Our present investigation clarifies the physi-
cal reason of their result.

(iii-b) »>1. The stationary distribution function for the case »>1 is given by

_ gx
2An—1)e (m—2n+1l)e

(3-42)

-2(n-1) m—-2n+1 }

Plx)=Cx™" exp{ -

The stationary moment <x”>s: takes the following asymptotic forms:

=gz n) T wnk)/ T(3) (3-43)
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namely ¢p=p/{2(n—1)} for p<n—1

12 F(m)
<xp>st2< Y ) 2(n—1) <S(m—2n+1))“"“’“”"”*2”*“ m—2n+1
2e(n—1) m—2n+1 g 1 ’
r(3)
2
(3-44)
namely ¢»,=1/2 for p>n—1, and
oy L 2(n—1)f Y }”2 {Z(n*l)e} .
{xPlst= F<i> 2(n-1)e log 5 (3:45)
2
for p=un—1.
By the help of the dynamical scaling relation (2+8), we obtain
<x‘°(t)>2t_”"; ¢p:¢p/d R (3'46)

where @»=p/{2(n—1)} for p<un—1 and ¢»=1/2 for p>n—1. It is interesting
that there are two kinds of p-dependence of ¢», namely ¢ is constant for p>n—1,
and ¢pocp for p<m—1.

The value of 4 cannot be calculated phenomenologically and it remains a
problem in future to evaluate explicitly the value of 4 for given values of m and
# in the case of the noise-induced long-time tail for »>1. As was discussed in § 2,
we have 4 =1, if the scaling form (2-4) for the moment <x?(¢)> does not depend
on the nonlinearity g. :

The above situation is well understood if we study the limit m—co. This
corresponds to the following model:

%x:n-i-x"??(t); 0<xr<1 (3-47)

with a reflecting wall at x =1. The solution of (3-47) for y=0for »>1 is given
by

. x—ﬂ _ (x—(fl‘-l)_xo—(n—l))Z} {_ (x_(n_l)+x6(n_l)_2)2
P(x, t)= (47et)'? {EXD{ 4(n—1)%et texp d(n—1)et }}
(3-48)
The moment <x”(#)> takes the following asymptotic forms:
» ~ L_¢>/ (L)} 132 g\ - PHE(I— 1) .
@ ep={r(g—5277)/ T (5)fa-1ren (3-49)

for p<m—1, and
<xP(t)>=log(et)/{(n—1)(4net)'?} (3-50)
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for p=un—1, and
(1) ={(p—n+1)(xet)"?}™ (3-51)

for p>n—1 at the critical point y=0. Since @»=p/{2(n—1)}for p<n—1and ¢»
=1/2 for p>n—1, we obtain 4=1 in the limit m—co. If 4 does not depend on
the nonlinearity exponent m, then we may have 4 =1 even for a finite value of m
in the case »>1. It should be noted that the boundary between the two regions
(3-49) and (3-51)is given by p=pc=n—1. Thesign of p—(n—1)is invariant for
the nonlinear transformation (2-9), as was discussed in § 2.

The long-time tail ¢ is also derived for »>1 by the balancing condition that
A< B=Cin (3-6), namely (3-34) in the case p>n—1 to give ¢»=1/2 and by the
balancing condition that B A= C in (3-6) for p<n—1to give ¢»= p/{2(n—1)}.

§4. Conditions for the appearance of long-time tail

In the preceding section we have clarified the physical mechanism of the long-
time tail at the deterministic critical point, assuming the existence of the long-
time tail. Now we study conditions for this existence in two different methods;
namely on the basis of our general criterion® of appearance of slowing down and
using the spectrum of the Schrédinger-type equation corresponding to (3-1).

(1)  Conditions based on the previous gemeval critevion of slowing down

It will be instructive to repeat our general criterion® of slowing down:

For a slowing down to appear, at least one physical mode Q should exist such that
{QPst= 00 at some point yo or the stationary distribution Ps(x) ov the initial
distribution Pulx) should become unnormalizable at some point 7e.

A necessary condition of the appearance of long-time tail is that the relevant
system satisfies the above criterion of slowing down at y 0. We assume that the
initial distribution is normalizable in our problem. Furthermore we are now
interested in the case that all the moments <x?(#)> for »>0 go to zero for t—©,
namely <x?>st=0 (finite) at the critical point. Thus, our criterion of slowing
down reduces in our problem to the requirement that Ps:(x) becomes singular at
y=0, namely Ps{x)xd(x) as y— +0 in our situation. In order to study the
condition for Psi(x) to become a delta function §(x ), we make use of the Fokker-
Planck equation®®

0 0 , 2
D pa, n=—2] r(x)+eg)g' 1)| P+ eatoln)rP, (D)
which corresponds to (1-5). The stationary distribution is given by?

Pulr)=Noexs| Lo(x) | elr)=—elog o)+ [ mav, @2
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where N, is the normalization constant. From this expression, we find easily
that Pst(x) becomes a delta function, as y— +0 in the cases (i) 2n>m+1>2, (i)
m+1>27n>2 and (iii) m+1=2»=2 with additional conditions /[<2n—1or I=#xn
=1.
(ii)  Conditions based on the distribution of spectra in the Schrodinger-tvpe
equation

As was discussed in previous papers,?”#'” the Fokker-Planck equation (4-1)

can be expressed as the following Schrodinger-type equation:

—0le ) LTt vz, ), (4-3)
where’
V(2)= (1274267 (2)), 7(2)=F(x(2))fa(x(2) (4-4)

and the new variable z is introduced through z=/(*g(y) 'dy. Several explicit
expressions of V(z) have been given for (1-11) in the previous paper.? If it is
possible to calculate all the eigenvalues and eigenfunctions of the above Schré-
dinger-type operator, then we can get any information about the temporal evolu-
tion of the moments <x”(#)>. In fact, the temporal evolution of a physical
quantity @ is expressed in the form

QU (= [~ e Moa(A)dA (4-5)

with Ao >0, where pg(A) is the spectral density corresponding to @. When Ao >0
even for y=0, no long-time tail appears. If Ao=0 for =0 and po(A) has the
spectral edge like 0o(A)~A® near A=0 for y=0, then we have <Q(#)>~ ¢t **V if
{(@>st— 0. However, it is, in general, difficult to calculate the spectral density
po(A) explicitly. We are here satisfied with the discussion about the condition of
long-time tail. From the above general argument, if the spectrum is continuous
up to A=0 (i.e., A0=0) for y =0, it is expected that the long-time tail appears for
any physical quantity €. In thisreason, we study the asymptotic behavior of the
effective potential V(z):

V(z)24%(VeLz—geMz)zﬂL%(VLe“-gMe"”) (4-6)

for n=1 (see Fig. 1), and

NZ
4e

k) sa- )]

LIN __ 7M/N)2

Viz)= 2 rz gz
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V(z) /

viz)

—
-7
= 7
Fcontinuous —
—, ,I
_________________ 7’ Vc 7
/| continuous

‘%Ldiscrete ?,1
] 7 - z
N/ ¢ 9 44=0

(a) (b)

Fig. 1. Effective potential V(z) for /=1, and »=1 and distribution of spectra, (a) 7 >0,
Ve=7%/(4¢), (b) y—0.

for n>1, where L=[—1, M=m—1 and N=#u—1 From the asymptotic be-
havior of these potentials, it is easily found that the continuous spectra appear up
to A=0 (i.e, Ao=0) at the critical point, and consequently the long-time tail

appears in the cases discussed in § 3.

§5. Summary and discussion

In the present paper, we have discussed some general aspects of critical
slowing down in multiplicative stochastic processes on the basis of the dynamical
scaling law. We have classified the critical slowing down into the three cat-
egories, (i) deterministic case m<2x—1, (ii) marginal case m=2#z—1 and (iii)
noise-induced case. In the noise-induced case, we have found the interesting
result that there appears a situation in which the long-time exponent ¢» of the
moment <x?(¢#)> is constant in some range of p. The physical mechanism of this
noise-induced long-time tail has been found. It is caused by the balance of the
nonlinear effect and the noise term. We have evaluated the long-time tail
exponent explicitly in general situations (1-5) or (1-11) under certain conditions
which have been confirmed on the basis of our previous general criterion of
slowing down and also using the distribution of eigenvalues of the corresponding

Schriodinger-type equation.
Some exactly soluble models have been discussed to explain the long-time tail

explicitly.

It will be desirable to perform the Monte Carlo simulation for the models
(1-5) or (1-11), and also to make experiments corresponding to the present
nonlinear Langevin equations, for example, by using nonlinear electric circuits.

The present arguments will be easily extended to multicomponent systems
such as the Brusselator,?” and to the periodic spinodal decomposition.?”
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Appendix A
—— Long-Time Tail in the SKS-Model —

In the SKS-model (3+13), the origin x =0 is a natural boundary but x = is
a regular boundary, because the latter can be reached in finite time. This is
easily seen not only by examining the Keilson conditions,*” but also by rewriting

(3-13).as

dy.

gt =g—(m—Dyy+a(t) (A1)

in terms of the transformation y=x""""/(m—1) and by noting that Eq. (A-1)
has no singularity at y=0.

The boundary condition for x =o© should be determined by physical con-
siderations. In most cases the reflecting wall is more physical than the absorbing
one, because in a physical problem the function f(x) in (1-10) usually has higher
order terms, for which r =2 becomes inaccessible (¢f. Appendix B.). Hereafter
a reflecting wall is assumed to exist at x = (accordingly at y=0).

The Fokker-Planck equation corresponding to (A-1) is given by

2P, D=5 Am =1y =g) Ply, )+ 2P (v, 1. (A-2)

The stationary distribution function is obtained easily as

P =l P e\ )]

<o~ =ty ) | (A3)

where Erf(x)=/fe * du, and consequently the moment <x®>s: in the stationary
state is expressed by

(xPyee=(m—1)"PmD) fo TP P () dy (A-4)
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Here (A-3) is valid for 7 >0 and the integral on r.h.s. of (A-4) converges only
when p<m—1. When 7 is small, the moment <x®)>s: takes the following as-
ymptotic form <x?dst ~(7/g)”™ Y, being derived easily. On the other hand, when
y=0, the time-dependent solution of (A-2) is available, namely we have

_ 1 _(Q—a)gw _(y—oyo—gt)?
Py, )= Janet d=2¢1 exp{ 2¢ det }
ayie

where Erfc(x)Zf:e‘”zdu. Then, the asymptotic form of <x?(¢))> for large ¢ is
given by <x?(#)>~{(m—1)gt} ?™ Y using (A-5). Thus we arrive at (3-14).
Appendix B
—— Effect of Higher Ovrder Terms ——

In the case m<2x—1 in (3-1), the moments <x*> cannot exist for p=n—1,
namely they are divergent. In the marginal case m=2#—1, a similar behavior
appears when p>»n+g/e—1 as is seen in Appendix C. If higher order terms are
present in f(x) and g(x) in (1-10), however, those moments may exist. As
Schenzle and Brand? studied, the condition that all the positive moments should
exist is given by the inequality F>2G—1, where F and G are determined by the
following relations: f(x)=0O(x%) and ¢g(x)=0(x°) as x—oco.

To study long-time tails for this case, we consider the following equation:

’%‘:71“gx”‘—g'xz”“—g”x’”rx"v(t), (B-1)
where m<2n—1, £>2n—1, »n>1, ¢ >0 and ¢’ and ¢” are assumed to be positive.
For simplicity g(x) is set as a single power, but the following discussion can be
directly extended to other cases, and the conclusion does not change.

By the presence of the fourth term in the r.h.s. of (B-1), both x =0 and x =©
become natural boundaries. The stationary solution of the Fokker-Planck
equation corresponding to (B-1) is given by

Pst(x)=Nox ""9"¢ exp{ — bx 2" V4 qx @7 71"™M — gy k1) (B-2)

where Ny is a normalization constant and a=g¢/(2n—1—m)e, b=y/2(n—1)¢e and
c=g"/(k—2n+1). When 7 >0, stationary moments <x?>s are finite for all p’s
and are expressed by (x">st=F(p)/F(0) with

F(D)E‘/(;wxp—n—gr/s exp{_bx—z(n—1)+ax—(zn—l—m)_cxk—znﬂ}dx . (B3)

According to the dynamic scaling theory in §2 we need only to find the
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b-dependence of <x’>s¢ in order to know the critical slowing down of the mo-
ment, because 4 is supposed not to change through the higher order terms.

We examine first the case g >0. We use hereafter the notations K=4,—1, M
=m—1, N=un—1land G'=g'/e. The quantity F(p) diverges due to the contribu-
tion of the neighborhood of x=0 as 4—0. Therefore the term — cx®* 2"*! ig
irrelevant to the asymptotic evaluation. It has only a role of a convergent factor.
Using the transformation x = 4"y, (B-3) can be evaluated as follows:

F(p): b(p_N_G/)/Mf ypfn-G' exp[_ b—(ZN—M)/My—ZN(l_ayM)_ Cb(K*ZN)/MyK—ZN]dy

b(p & 1/2)/M 2N >(p—c’)/MeXp[ Mp~@N-—Mum < a(ZN M))zzv/M]
VN a(ZN M) ZN—M ZN

(B-4)

Using that aocg and b7, we arrive at the result <x”>st~(7/g)*"™ V. It should
be remarked that the term —¢'x*"~" in (B-2) plays no important role, and that g,
is essentially determined by (3-1). From the dynamic scaling theory, the long-
time exponent ¢» is given by p/(m—1) for all p’s. Thus, the restriction that b
<n—1 can be removed, if we include higher order terms in (3-1). ’

Next we consider the case g =0 which is a marginal example. If p< N+ G,
higher order terms are irrelevant, and the asymptotic form of stationary moments
for small 7 coincides with the exact form (C-7) in Appendix C. If p>N+ G/,
F(p) is convergent even if =0, namely we have

—(P— G —N)K— 2N)F<p N— G > (B'S)

ImF(p)="3— ZNC K—2N

Thus the asymptotic form of <x”>s: is expressed by

P>~ KZE\Z/N BN+ G VN (b= G = NIIK ~ 2N)F<DKN2+NG >/p< N+ G ) (B-6)

The absolute value of (B-6) depends on K but the power of & does not depend on
it. This means that higher order terms do not affect the long-time exponent.
From (C-7) and (B-6), we obtain the long-time tails as <x?(#)>~ ¢ ?2""V for »
<n—1+g' /e and <xP(#)>~ 7" 1D for p>u—1+g'/e at y=0, using the
dynamic scaling theory. Therefore the quantity n—1+g'/e is equal to the
critical value pc in this case.

In a noise-induced case m>2xn—1, higher order terms in f(x) have no

essential effect.
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Appendix C
—— Exact Solution of the Marginal Equation (3-17) ——

—2(n-1)

The marginal equation (3-17) is transformed by the variable y=x into
the following equation:
L —2(n—Dg—2n—1)y—2n—DV37(1). (C-1)
The corresponding Fokker-Planck equation takes the form
2 p(y, 1)=—L2(a— )Py, )+ L59P(y, 1) (C-2)
at ’ ay y ’ ayZ y y) ’

where a=2(n—1){g+(n—1)e}, b=2(n—1)y and & =4(n—1)*c. Using the
Laplace transformation Q(k, t)=.(P(y, t)) we obtain the following partial
differential equation of first order:

2 QUe, 1)= = akQ(k, 1)~ b+ BY-2-Qk, D). (C-3)

This equation can be solved by the usual method of characteristics. The solution
of (C-3) with the initial condition P(v,0)=38(y— ) is given by

= E L e 7Y {__ yoke™® } .
Ok, £) {1+ K- )} exp| — ey ) (C-4)
The inverse Laplace transformation of (C-4) yields

bt \asze’—-1/2
P(y, t):i, *1—m<‘&)

g 1—e Yo
+ - bt —bt/2 1/2

This result was obtained first by Wong.?® The moment <x”(#)> can be repre-
sented in terms of confluent hypergeometric function as

» _ ¥ 1 pi2(n—-1)
x (t»_[ 2An—1)e 1— e'z‘"_””]

y Naone 2~ 5n)
Mootne+3)

yxo—z(nﬂ)

N I
2n—1)’ 2An—1)e 2’ 2An—1)e(H" V77 —1)

><1F,< ) (C-6)

for p<m—1+g/e, where xo is an initial value. When p=>n—1+ g/e, the moments
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<xP(t)> diverge.
Stationary moments and long-time tails are obtained from (C-6) for y fixed

and t—o0, and for ¢ fixed and y—0, respectively. That is, we have

y p/z(n—l)r<.‘2(—n—g:T)z+%— 2(n—1)>
<x1’>st:[m] F(ﬁ—k%) (C-7)
n—1)e

for >0, and

<xp(t)>=[m

at y=0.

1)
2)
3)

1 ]p/z(n—l) F(ﬁﬂL%—z—(;{T))

e ts)

p . g 1. xg¥? )
XlFl(Z(n—l)’ 2(n—1)6+2’ 4(n—1) et
~ PN (o 00) (C-8)

Thus we arrive finally at (3-22)~(3-24).

References

M. Suzuki and R. Kubo, ]J. Phys. Soc. Japan 24 (1968), 51.

M. Suzuki, K. Kaneko and F. Sasagawa, Prog. Theor. Phys. 65 (1981), 828.

H. Yahata and M. Suzuki, J. Phys. Soc. Japan 27 (1969), 1421.

See also H. Takano and M. Suzuki, Prog. Theor. Phys. 67 (1982), 1332, and references cited
therein.

M. Suzuki, Prog. Theor. Phys. Suppl. No. 69 (1980), 160.

H. Dekker and N. G. van Kampen, Phys. Letters 73A (1979), 374.

See also R. Kubo, K. Matsuo and K. Kitahara, J. Stat. Phys. 9 (1973), 51.

L. Brenig and N. Banai, Physica D (in press).

A. Schenzle and H. Brand, Phys. Rev. 20A (1979), 1628.

M. Suzuki, Adv. Chem. Phys. 46 (1981), 195.

W. Horsthemke and M. Malek-Mansour, Z. Phys. B24 (1976), 307.

Y. Hamada Prog. Theor. Phys. 64 (1980), 1127; 65 (1981), 850; 66 (1981), 1554.

See also M. Fliess, Lecture Notes Informat. Control Sci. (Springer-Verlag, Berlin) (in press).
T. Carleman, Acta Math. 59 (1932), 63.

E. W. Montroll and R. H. G. Helleman, Topics in Stat. Mech. and Biophys. AIP Confer. (New
York, 1976), vol. 27, p. 75.

L. Brenig and V. Fairén, J. Math. Phys. 22 (1981), 649.

W.-H. Steeb and F. Wilhelm, J. Math. Anal. Appl. (in press).

A. H. Nayfeh, Perturbation Methods (John Wiley and Sons, New York, 1973).

H. Mori, Prog. Theor. Phys. 33 (1965), 423.

M. Suzuki, Prog. Theor. Phys. 51 (1974), 361. )

E. A. Novikov, Soviet Phys.-JETP 20 (1965), 1290.

M. Suzuki, S. Takesue and F. Sasagawa, Prog. Theor. Phys. (to be submitted ).

I. Prigogine and R. Lefever, J. Chem. Phys. 48 (1968), 1695.

R. Lefever and G. Nicolis, J. Theor. Biol. 30 (1971), 267.

A. Onuki, Prog. Theor. Phys. 66 (1981), 1230; 67 (1982), 768, 787.

J. Keilson, J. Appl. Prob. 2 (1965), 405.

E. Wong, Proceedings of Symposia in Applied Mathematics (American Mathematical Society,
1964), vol. 16, p. 264.



