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Fates of three-torus are investigated by two- or four-dimensional coupled mappings. Three-tori exist
for a weak coupling, which become feasible to lock into a torus as the coupling increases. Transition to
chaos occurs only via a locking into a cycle. The locking into a torus forms a “double devil’s staircase”,
which is studied by the modulated circle map. Mechanism of the locking is also discussed.

§1. Introduction

In recent years, transition from a torus to chaos has been extensively studied.”~?"

"The phase motion of torus is investigated using a one-dimensional mapping®~*9~?
On+1=0n+ Asin(276,)+ D, (1-1)

where various scaling properties of the locking state are found and renormalization group
approach®® based on Feigenbaum’s theory has been executed. The amplitude motion of
torus is also studied with the use of two- or three- dimensional mapping, where the
distortion of torus and doubling of torus are discovered®'? and their mechanisms are
clarified.’® The intermittency of torus has also been studied.'® These results of map-
pings are also confirmed in flow systems.'”~!? :

There remains, however, a fundamental problem, that is, a transition from three-
torus® to chaos. Three-tori appear via a Hopf bifurcation of a torus. In 1971, Ruelle and
Takens pointed out the structural instability of a three-torus and the emergence of a
strange attractor.”'?’ In experiments, however, three-tori have seemed to be
observed,'®?® but it is not so clear whether the attractor is three-torus or two-torus in the
experiments. Numerical studies on a three-torus, however, are very few except the
simulation of a 56-mode truncation of the Navier-Stokes equation by Yahata.?? Thus, it
will be of importance to study the features of a three-torus in a simple system.

The successive Hopf bifurcations can be modeled by the equations -

w;=(ro— d()w;i— (g1 + igNwil*w;+ehi(ws, wi*, wa, wa*, -, wn, wn*), (1-2)
(]=1, 2, ., N)

where 7o is a bifurcation parameter and w is a complex order parameter. When ¢ is zero,
successive Hopf bifurcations occur at yo=d (i) and a k-torus appears (% is a number of j
which satisfies 70>d(5)). As the perturbation e/ sets in, the direct product state may
become unstable, and the %:torus can be destroyed. Though it will be of interest to study

*) In the present paper, the terminology “three-torus” means the quasiperiodic motion with three incommen-
surate frequencies, while the terminology “torus” (or two-torus) means the one with two incommensurate frequen-
cies.
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Eq. (1-2), we make a further simplification in the present paper, that is, we make use of
a coupled map. A

Since the dimensionality is reduced by one by taking a Poincaré map from a flow
system, the three-torus in a flow corresponds to an attractor in a map with the first and
second Lyapunov exponents vamshlng Thus, we choose the following mapping as a
model of a three torus:

Zns1=f(Zn, Yn; @)+hi(Zn, Yn, Zn, W),
Yu1=9(Zn, Yn; @)+ ehaZn, Yn, Zn, Wn),
Zni1=Ff(Zn, Wn; @' )+ ehs(xn, Yn, Zn, Wn),
Wn1=9g(Zn, Wn; @' )+ ha(Xn, Yn, Zn, Wn),

(1-3)

where the mappings xn+1=/(Zn, Y1} @), Yn+1=9(Zn, Y=, @) show the transition from torus
to chaos as the bifurcation parameter ¢ is increased, and ek:(i =1, 2, 3, 4) are perturba-
tions. In §2, we take the delayed logistic model (see Appendlx and Ref. 13)) for {f, g},
to study the stability of a three-torus.

If our interest is restricted only to the phase motlon of the three- torus, a further
51mp11ﬁcatlon may be possible just as in the study of two-torus by map (1 1). Thus, a
coupled circle map

{ One1= 05+ A sin(270,)+ D+ sin(27r¢\n), (1.'4)

Pnr1=@n+B Sin(27[¢n )+C+ S'Sin(27l'0n)

will be of relevance to the study of the phase motion of a three-torus. = In §3, the simplest
case among mappings (1-4) is investigated, that is the “modulated circle map”. Various
lockings into torus are found. The winding number as a function of a bifurcation
parameter forms a “double devil’s staircase”, which will also be shown in §3.

The main purpose of the present paper is to give only qualitative features of a three-
torus with various figures. In this sense, the understanding of three-torus remains rather
incomplete. Discussion including the unresolved problems will be given in §4.

§2. Three-torus in a 4-dimensional mapping

In this sectlon we show numerical results on the ‘coupled delayed logistic map to
discuss the stability of three-torus. Delayed- logistic map is given by

'xn+1'=Axn+Dxn_1(1—xn-1), . (2'1)

which shows a transition “fixed point - (Hopf bifurcation)» torus — locking
—chaos—hyperchaos” as D is increased (see also the Appendix for the properties of a
delayed map). According to the idea in §1, we couple two delayed- loglstlc mappings and
add a perturbation. The model equations, constructed in this way, are

{ In+1:Axn+-D1xn—1(1“xn—l)+6h1(xn, Xn~1, Zn, anl), (2.2)

Zn1=Azn+ D2z2n-1(1—2n-1)+ha(xn, Tn-1, Zn, Zn-1).

Equation (2-2) is a 4-dimensional map (x», ¥», 2n, -wn)-*(x;m, Yn+1, Zn+1, Wn+1), Where
Yn=Zn-1 and wa=2n-1. In the present paper the value 4 is fixed at 0.4, though the
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1. Phase diagram of map (2-2) with D:1=D.
+0.1,hi=2n—2Zn-1 and h:=Za-1—x.. The
notations P, T, 37, C and nC denote periodic
state (cycle), torus, 3-torus, chaos and hyper-
chaos with # positive Lyapunov exponents.

qualitative behaviors are insensitive to the
change of A. As is given in the Appendix,
the delayed logistic map shows a Hopf bifur-
cation at D=D.=3—24=2.2 and a torus
appears for D> D., which is destroyed via
lockings and chaos appears for D=2.59.
Thus, the direct product state, such as T® P,
TRT, CRT, CRC (P, T, and C denote
periodic state (cycle), torus, and chaos re-
spectively) exists correspondingly to the
values D: and D., for e=0.

As the perturbations set in, the direct
product state can become unstable.

Here,

we chose the perturbations as %1 =2»— 2Zn-1
and h:=2x»-1—Z» and made simulations of
map (2-2) for various values of Di, D: and ¢,
to study the stability of the direct product
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state.

In Fig. 1, a rough phase diagram for the map is given, where the parameter D; is taken
as D1=D.+0.1. We classify the attractors into cycle (P), torus ( 7"), 3-torus (37"), chaos
and hyper*-chaos (kC),”” by calculating the Lyapunov exponents from the first to the
fourth.”?® Examples of Lyapunov exponents as a function of D; for €=10"% 5%10"% and
1072 are given in Figs. 2(a)~ (c), while examples of the attractors for e=5X10"2 are shown
in Figs. 3(a)~ (f), where the projections onto the (x», z»)-plane are depicted. In the rest
of this section, we describe what is learned from these figures and other numerical results

-of map (2-2). ‘

As is seen in these figures, there exists a three-torus for a small coupling . As the

coupling increases, the region of three-torus decreases and it vanishes for e 9X1073,

i 2

3 A7 1

(c) ‘ (continued) (a)
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‘ (e) (f)

Fig. 3. Projection onto the (x», z») plane of the attractor of map (2:2) with Di=D,+0.1, h=2z»
—2n-yand h2=xn-1—x». The parameter ¢ is fixed at 5X1073 and the values of D: are 2.35(a),
2.37(b), 2.45(c), 2.46(d), 2.47(e) and 2.48(f), respectively. ’

Thus, the three-torus loses its stability as the coupling increases. The attractor that '
emerges through this instability is not a chaos” but a torus. . We note that the chaos
appears only via a cycle which has appeared as a locking of a torus, which again appeared
as a locking of a three-torus. This fact is an extension of the recent observation that the
transition from torus to chaos occurs only via a locking into cycle for the circle map
(1-1)'P12 (je,, in the case that the instability in phase dynamics is relevant).

. Let us see the cases of €=107% 5X10* and 1072 in more detail. For £=107% the
second Hopf bifurcation occurs at D,=D.=2.2 (see Fig. 2(a) and note that the 2nd and 3rd
Lyapunov exponents are degenerate for 2.13< D, <2.2) and a three-torus appears. As the
nonlinearity D: is increased, the region of the locking into torus increases. The locking
into torus occurs wia a tangent bifurcation, which is the same for the locking into
cycle.® The appearance of chaos occurs at D,~2.48, the mechanism of which is the
same for e=5X10"%, which will be discussed in detail. ' ;

For e=5X1073, the second and third Lyapunov exponents are degenerate for 2.14< D,
<2.18, but they are split before D,=2.2, and the second Hopf bifurcation does not occur
(see Fig. 2(b)). The attractor at D:=2.35 is given in Fig. 3(a), which is regarded as a
locking from a three-torus. This locking disappears via a tangent bifurcation and a
three-torus appears (see Fig. 3(b)). As we increase D, further, various lockings into
torus appear (see Fig. 3(c)). These lockings are characterized by the rotation numbers
oz and pz, which are defined by » '

n .
Li_r.aﬁiﬂ arg( PiPi+1, Pis1Piy2),

where P:=(x:, x:-1) or (z:, z:—1) respectively. The locking in Fig. 3(a) is characterized
by pz=pz. The bahaviors of lockings with rotation numbers are investigated in detail in
§3 for a simplified model. For D»X2.458, the chaos appears (Fig. 3(e)) via a locking into
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“acycle (Fig. 3(d)). As D. is increased further, the second and third Lyapunov exponents
become positive successively. We note that the picture of a “direct product state” is
recovered (see e.g. Fig. 3(f)) as the Lyapunov exponents get large.

For ¢=1072, the region of the locking into a torus increases, and the three-torus has
disappeared (see Fig. 2(c)). Transition from torus to chaos via lockings into cycle occurs
for D.=~2.50, just as in the case for two-dimensional mappings.

‘Numerical simulations on other cases, such as D:=D; or e<0 were ‘also performed.
For D.= D, the locking into the torus with oz =p: is more dominant and the three-torus
is not observed for e2107%. For the case with € <0 or with another type of perturbations
(such as #1=2z»—2x», ha=1x.—2Z»), the qualitative feature is the same as the above case.

Thus, the three-torus exists for a small coupling, which becomes feasible to lock into
torus as the coupling is increased and is collapsed above some “critical” coupling.

§3. Double devil’s staircase in modulated circle map

In this section we study the phase motion of a three-torus with the use of a coupled
circle map given in Eq. (1-4). Here, the simplest case B=¢&’ =0 is treated, that is, the
“modulated circle map”,

On+1=0n+ A sin(270,)+ D+ ¢ sin(27on), -
(3-1)
Prn+1=—Pn +C.

The parameter C is chosen to be irrational, which is fixed at (v5—1)/2, i.e., the inverse

Table I. Lockings of the modulated circle map with C=(v/5—1)/2 and A=0.15. The values ¢/p and
. s/7 where ps=gq/p+ C+s/r are written. If the values are not listed, the locking with simple
integers g, p, s, » does not occur. - For Table I(a), € is 0.01 and D is changed from 0.606 to 0.619
* by 0.001. The value of ¢ is 0.1 for the other tables, where D is changed from 0.58 to 0.69 by 0.005
for I(b) and it is changed from 0.6355 to 0.6395 by 0.0005 for I(c).

(a) (b) (c)
D alp s/ D - alp slr D “afp slr
0.606 0 1 0.580 0 1 06355 | —4 | 15/2
~ x x N ~ x 0.6360 | 5/3 —5/3
0.610 0 1 0.630 0 1 0.6365 .| 5/3 -5/3
. 0.611 5/18 | —5/9 0635 .| 1/5 7/10 0.6370 5/3 —5/3
0.612 5/11 3/11 0.640 5/2 -3 0.6375 - —
0613 | 5/9 /1 0.645 1/2 1/4 0.6380 | —3/4 9/4
0.614 5/7 17 : 0.650 3/5 1/10 0.6385 | —3/4 9/4
0.615 5/6 -1/3 0.655 2/3 0 0.6390 | —16/3 | 29/3
0616 | 5/6 -1/3 0.660 2/3 0 0.6395 | —11/5 | 23/5
0.617 5/6 | —1/3 0.665 - 1}
0.618 - | = 0.670 1 ~1/2
0.619 1/2 3/14 ~ ~ x
0.685 1 -1/2
069 |. — —
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(c) @
Fig. 4. Attractor of the modulated circle map (3-1) with C=(+/5—1)/2, A=0.15 and £¢=0.01. The
points (8, ¢:) (5000< § <25000) with the initiai values (6, ¢o)=(0.5, 0.5) are plotted. -The values
of D are 0.6052(a), 0.6055(b), 0.612(c) and 0.62(d), respectively.

of the golden mean. .

One of the Lyapunov exponents is always zero and if the other is also zero, then the
attractor is a three-torus (to be precise, it is the phase part of the Poincaré map of a three-
torus, but we call it three-torus for simplicity in the present paper).

Map (3-1) is invertible for A<1/(2z). The attractor for A<1/(27) is'a torus or a
three-torus, which is understood as follows: First, we approximate C by Fu-1/F» using the
continued fraction expansion®” (for the case C=(v/5—1)/2, F, is a Fibonacci sequence).
Iterating map (3-1) F, times, we obtain a one-dimensional map, which is an invertible
circle map and its attractor is a cycle or torus.?? Taking a limit #— o, we can confirm
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the above statement.

The rotation number for ¢ is fixed at C and the rotation number o, for 8 is a
monotone (in a wide sense) function of D. We conjecture that for A<1/ 2z, the locking
from three-torus into torus occurs if and only if p, takes a value ¢/p+Cs/r (p, g and 7,
s are relatively prime integers respectively). The above conjecture is a natural extension
of the theorem on the locking of the torus®* and seems to hold in numerical results. In
our case, we note that ¢ or s can take a negative value even if o, is positive.

Examples of the attractors are given in Figs. 4(a)~(d) (¢é=1072). The locking with
ps=C occurs for D20.6054 (Fig. 4(b)). As is seen in Fig. 4(a), a kind of “intermittent”
behavior is seen for just a smaller value of D than 0.6054; which is typical for the tangent
bifurcation® (see also Fig. 3(b)).

Locking with os=5/11+3C/ 11 is given in Fig. 4(c), while the attractor of three-torus
is shown in Fig. 4(b). The values p, g, 7, s (where ps=q/p+ Cs/r) are given in Tables
I(a) (¢=1072), (b) and (c) (¢=10""). We note that the various lockings with ps=q/p
+Cs/» form rather complicated structures. The rotation number ps as a function of D
is given in Figs. 5(a) (e=1072), (b) (¢=1072) and (c) (¢=10"'). As is seen in Fig. 5 and

; 2/3 : 2/3
i /
5o A
/ R i
/ . 06 e r ~06
059 062 D 065 059 - 062 D 065
(a) (b)
2/3
) T
-C
Fig. 5. The rotation number p» as a function of D
.for the modulated circle map (3-1) with C=(/5
06 —1)/2 and A=0.15. The values of ¢ are 1073(a),
059 062 D 065 107%(b) and 10~*(c).

(c)
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- Fig. 6. The second Lyapunov exponent of the modulated circle map (3+1) with C =(v5—1)/2 and
A=0.15, while the first Lyapunov exponent is always zero (trivial). It is plotted as a function of
D for £=10"%(a) and e=10"%(b).
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onm

° . Fig. 7. The ratio of the locking (to torus) of

the modulated ciréle map (3-1) with

. - C=(v¥5—-1)/2. We calculated the second

. ’ i Lyapunov exponent by 5X10¢ iterations

0.5 - and if the exponent is less than —107%, we

’ . regarded that the attractor is torus. We

chose the value D=.D;=0.55+0.0005:(0

- ° _— <7<600) and calculated the ratio, defined

i i by (the number of D; at which the

o ' ‘  attractor is torus)/ 601, for given & and A.

s ‘ : The values of A are 0.9/ (2z)(M), 0.8

o T < [@2aXO), 06/ (21)(&), 0.2/ (22)(0)), and
15° 102 10* e 1 0.06/ (2r ) A).

Table I, the region of the lockings with ps=q/p~+ Cs/7(s%0) increases as ¢ is increased,
while the region of the locking with s=0(e.g., 0s=2/3) decreases. Since the number of
elements to construct the staircase in Fig. 5 is two (i.e,, C and 1), it may be called the
““double devil’s staircase”. The second Lyapunov exponent as a function of D is given in
. Fig. 6(a) and (b). ‘ :

As is seen in Figs. 5 and 6, the region of lockings increases as the coupling ¢ is
increased. This is typically shown in Fig. 7, where the ratio of the locking region is
plotted as a function of log . The above observation agrees well with the decrease of the
region of three-torus due to the coupling, found in the simulations in §2.

In summary, the various features of a three-torus in §2 can be explained through the
results of this section.

Before closing this sectlon we give some observations about the transition to chaos.

$ ' ks
B +095

095

= . 045 9

(a) (b)
Fig. 8. The attractor of the modulated circle map (3:1) with £=0.05, D=0.615 and C=(v/5—1)/ 2.
Only a part of the attractor is shown. The values of A are 0.178 (a) and 0.182 (b).
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In Figs. 3(a), (b), the instability of the torus with ps= C and the transition to chaos are
depicted. '
The oscillation of torus is remarkably seen in Fig. 8(a). This type of the oscillation
of torus is also observed in other two-dimensional mappings™® and in the doubling of
torus.”®® The oscillation is magnified as A is increased, which causes the transition to
chaos. ’

§4. Discussion

In the present paper, we have investigated the fates of three-tori in dissipative
mappings. There is a pioneering work on the structural instability on the three-torus by
Ruelle and Takens.” The structural stability however, is not necessary for the state to
be physically observed. In our simulations, the three-torus is observed as the direct
product state just like the torus. As the nonlinearity (or coupling) is increased, the region
of three-torus decreases. Direct transition from a three-torus to chaos, however, is not
observed. The transition to chaos occurs only via a locking into cycle from torus, which
also is a locking from a three-torus. Taking into account the recent observation'? that
the transition from torus to chaos occurs only via a locking, we may have a conjecture
that the transition from #-torus to chaos occurs only via a cycle, which appears via a
torus, which again appears via a three-torus, which again -, -**, via an (z—1)-torus.

- As the coupling is increased, the direct product state is destroyed and the three-torus
completely vanishes and is locked into torus for various models, which may be a reason
why the three-torus is not so frequently observed as the torus. - We have to note that the
appearance of strange attractor via the Hopf bifurcation of torus” has never been
observed in our simulations. :

The locking into torus from three-torus forms a “double devil’s staircase”. As for the
locking into cycle, a great effort has been performed to understand the devil’s staircase.®"®
We do not have, however, any theory on the “double devil’s staircase” , such as on the
width of the locking ot on the approach by a continued fraction or on the (in)completeness
of the staircase. These problems are left to future studies.

The oscillation of torus, which is similar to the one observed in a delayed logistic map
and is connected with the oscillation of an unstable manifold,'® is clearly seen at the
transition to chaos in a modulated circle map. This behavior of the oscillation is
essentially the same as the one observed in a doubling of torus'® and may be typical for
the modulated maps, though the detailed mechanism of it is not yet clear.

In the present paper, the properties of chaos are not treated. Global properties of
chaos after the collapse of tori, which are under investigation for a circle map,'? will be
an important problem. As the nonlinearity is increased further, the second and third
Lyapunov exponents take positive values, where the stability of a direct product state
(chaos ® chaos, etc) seems to be restored. This observation may be a useful step to
understand the “fully-developed chaos” in terms of a direct product state of a low
dimensional mapping.

*) We use this terminology in the sense that the chaos has a large number of positive Lyapunov exponents.
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Appendix

In this appendix, the feature of a delayed map is given. We consider a delay
differential equation?®~2®

V_Ix'(t):f(x(t—tn))—x(t), - (AD

which is investigated in nonlinear optics,” physiology®” and ecology®®,etc. The K-point
discretization of Eq. (A-1) gives a K-dimensional map,

X1 =W (Tn-gs1) (A= 7)2n . (A-2)
As a special case we consider the case K=2. The Jacobian of of this map is given by

(1—7 v (x )>’

1 0 (A-3)

the eigenvalues of which are {(1—y)+v/(1—y)+4rf (x)}/2. Thus, the fixed point

=f(x*) loses its stability via a Hopf bifurcation as ' (z*) gets less than —1/y and a
torus appears. ]

If we choose f(x) as a logistic model, a delayed logistic map (2-1) is obtained (see
Ref. 13) for 3- or 4- point delayed logistic model). For A= 0.4, the Hopf bifurcation
occurs at D=D.=3—2A=2.2 and torus appears for D>D.. The torus is collapsed and
the chaos appears for DX 2.59 via a locking into a cycle. The behavior and mechanism
of the collapse is given in Refs. 7) and 15).
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appeared in Phys. Rev. Lett. 51(1983),339, where the stability of 3-torus is also numerically investigated using the
coupled circle map. :

The oscillation of torus in modulated mappings (see: Fig. 8) has recently been investigated in some detail and
it is shown that the torus becomes fractal at the onset of chaos (K. Kaneko, to appear in Chaos and Statistical .
Mechanics (Springer; ed. Y. Kuramoto) and preprint (Oct. 1983); see also J. P. Sethna and E. D. Siggia, preprint).



