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Supercritical behavior of the circle map ra«1=x.+A4 sin(27x.)+ D is investigated. The windows
show the similarity in the parameter space (4, D). The critical phenomena of the width of the windows
are characterized by the exponent v, which represents the speed of the collapse of a torus for a given
irrational rotation number. Its value is well explained by the RG theory which was originally invented by
Feigenbaum et al. and Rand et al. for the subcritical behavior. Next, the notion of “disordering” is
introduced to characterize chaotic orbits. The distribution of disordering times is calculated with the use
of the induced maps. The distribution shows an exponential decay. The ratio of the decay is related to
the instability of unstable cycles. - The scaling of the decay is also represented by the exponent v. A
conjecture is proposed that the golden mean torus is the first KAM to collapse. Lastly, the period-adding
sequence near the crisis and its scaling behavior are studied in the Appendix.

§1. Introduction

The mechanism of the transition from torus to chaos has been an important problem
in nonlinear studies in recent years. The typical model for the instability in a phase-
motion is given by a circle map '

Tnn1=f(22)=2n+Asin(212,)+D  (mod 1) (1-1)

which has been investigated extensively.?~'#"'9~2% Especially the critical phenomena

near A.—0 (Ac.=1/(2x)) have been studied intensively. The studies have made clear the

following aspects:

i) The lockings form a devil’'s staircase. The critical phenomena of lockings are

analyzed by continued fraction expansions, which show a remarkable change in the

convergence rate of the expansions at A=A

ii) The region of lockings to cycles increases as A approaches A. till the measure of

lockings becomes unity at A=A, (complete devil’s staircase).”

iii) The lockings occur via tangent bifurcations, which brings about the similarity of a

period-adding sequence. (The similarity holds both for A>A. and A< A..)®

iv) The windows for A>A. form a self-similar structure,®® which is studied by the

above period-adding analysis” and the locus of superstable periodic orbits (skeletons).”
In the present paper we focus our attention on the supercritical behavior (namely, for

A>A.) and study a disordering property of a chaotic orbit (which will be defined in §3).

Before going to the detailed study, we note-the following properties of the map (1-1) for

A>A..

i) As A is increased from Ae., chaos appears from the locking through usual scenarios

(period- doubhng‘” or intermitteney*® or crisis'®). The measure (in the parameter space)

of chaos increases for A> A, with the decrease of the measure of locklngs from 1 at A

=A. as is shown in Fig. 1. :

ii) "The map (1-1) can have two stable attractors for A>A.. The coexistence of two
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types of cycles or two types of chaos or a
Ratio” cycle and chaos is possible for several
16 ' Lt | paramebter regions. The multibasin
] .o phenomenon is due to the existence of two
critical points (i.e., the points where f'(x)

le o ¢ ¢ =0).
' iii) The notion of “ordered” orbits was
introduced by Kadanoff.!® The orbits are
10 107 A-Ac 1072 in exactly the same order as the orbits for
Fig. 1. The rétio of chaotic region in the parameter x,"“ —n +(rotat10n _number) and have a
space D as a function of A. Foreach(4, D), we simple _and beautiful property. The
have made iterations of the map with the initial ~ measure for such orbits, however, is zero
value 2o=05 and regarded the attractor as  and almost all orbits are disordered in the
chaotic if Znsioo00% Ziooseo for 1<2<50000  genge of §3. Thus, it will be of more

within the error of 107". For given A4, D is . ~ . o
: ’ nce t disordered orbits in
changed from 0 to 0.5 by 2Xx1072 (for 0.001<A 1mp01fta ce to study disorde orbit

11)
— A¢<0.01; 250 points of the D’s are chosen) or detail.

by 107° (for A—A,<0.001; 500 points) and we The construction of the paper is as
have counted the number of the D’s for which the follows:
attractor is chaotic. The ratio is defined by the In §2, the phase dlagram for the map

number of the D’s for chaos divided by 250 (for with A> A,

is given. Especially the
0.001<A—A.<0.01) or 500 (for A—A:<0.001). g P y

, similarity of the lockings is examined and
the cr1t1cal phenomena for A5 A:.+0 are studied by using the contlnued fraction
expansions for an irrational rotation number.

In §3, the notion of disordering is introduced. It is related to the loss of the ordering
of two nearby orbits. In connection with this notion, the distribution of disordering times
is defined and analyzed with the use of the induced maps.!®

In §4, the disordering properties of the orbits near A= A. are investigated. The slope
of the disofdering time distribution becomes gentler as A approaches A.. Its critical
phenomenon is studied, in connection with the similarity of chaos with bands with

_ Fibonacci-numbers.

From the arguments in §2 and $§4, we can predict the supercritical behavior (the
behavior (A—Ac)”) of various quantities such as the Lyapunov exponent and the
disordering ratio. ‘

-Discussions and future problems are given in §5, where multibasin phenomena, future .
problems on the supercritical phenomena, similarity of chaotic attractors, and noise effect
are considered. Especially, the dependence of the speed of the collapse of tori at A=A,
on the irrationality of the rotation number is discussed where a conjecture is made that the

“golden mean torus is the first to collapse in dissipative mappings.

The crisis frequently appears in the circle map with A> A, and plays an important
role in the change of the disordering property of the orbits in the circle map. In the
Appendix, the simplest case of the crisis, i.e., the map £»+1=1—ax.? with -2 is studied
using the induced maps. - The period-adding sequence of superstable orbits is chosen to
study the similarity of the orbits near the crisis.
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Fig. 2. Rough phase diagram for the circle map.

Numbers in the figure denote periods, while chaos

exists in the region without numbers. - Small

structures, such as cycles with periods larger than

26 are omitted. (Initial values of iterations are
1020.5.)

§ 2. Superecritical similarity
of the circle map

In Fig. 2, a part of the phase diagram of 107, — s N Ry
the map (1-1) for A>A. is given. Each N
basic cycle shows period-doublings by the
increase of A. The strange figure of each
locking (Arnold tongue) is understood from the viewpoint of the cusp bifurcarion.? Here
we consider the similarity and scaling among lockings in more detail. Each basic locking
has a shape like Fig. 3 in the parameter space. The values 8D and 84 which are defined
in Fig. 3, decrease as the period of the basic locking increases. Thus, the chaos appears
immediately after A crosses A, for a locking with a long enough period. However, the
measure of the locking with such a long period is small (i.e., D decreases rapidly as the
increase of the period). The measure of the chaos, therefore, grows up quite slowly, as
is seen in Fig. 1.

In order to study the similarity, we consider the sequence of lockings with periods
F». 2% Here F» is chosen to be the Fibonacci sequence (the rotation number is given by
Fr- I/Fn) which is used as an approximation of the collapse of the golden mean torus.

Fig. 4. Log 8A. and log 6D vs log F.
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Here we note that A is regarded as the index of the onset of chaos, since the chaos from
a basic window appears by period-doubling at the parameter about 8A(1+6 L8072 4)
o< §A, where & is Feigenbaum’s constant.'®

Let us study the scaling propeties of 8D and 64~ Wthh are the values of 8D and 6A
for the lockings with the period F.. As can be seen from Fig. 4, the relations

8AnOCFn_a (2'1)
and
8DnOCFn_b ’ (2'2)

are obtained with ¢=1.055(%0.01) and 5$=2.165(%0.01).  The value « is close to the
crossover exponent v, which has been obtained by Shenker®? and been explained by the RG
theory >

The above result is explained as follows: For A< A. the crossover exponent u is
defined by the postulate that the physical quantities are functions of the single quantity
(A—Ac)F,".? Thus the above result 84, F,™* with a=v shows that the crossover
exponent is the same for A>A. and A>A.. In generic cases, RG theories have a
symmetry for super- and sub-critical regions, which brings about the same value of the
exponents for both regions. The above result shows that this symmetry also holds at the
fixed point of the RG for the circle map at A=A.. ,

The exponent b takes the same value as v, where y is the exponent found by S.J.
Shenker as the convergence rate of the Fibonacci sequence at A=A..” He chooses cycles
which pass x =0.5 to determine the exponent y. The above calculation for the exponent
b does not use a special choice of a cycle. The agreement with ¥ and 4 shows that the
convergence rate is independent. of what orbit we choose (what value of x the cycle
passes). :
In sum, the Arnold tongues have a similarity also for A> A, i.e., Fig. 3 takes a similar
shape for arbitrary Fu, it it is scaled by Egs. (2-1) and (2-2). The scaling behavior is
characterized by the exponents a and b, the values of which are consistent with the ones
obtained by the RG theory for the subcritical ‘regidn.

§3. Disordering of the chaotic orbits

How are the chaotic trajectories characterized? The important difference between
chaotic and torus trajectories lies in the “ordering” of trajectories. We call a trajectory
“ordered”,'? if the nearby orbits do not change their order. - Thus, an “ordered” trajectory
cannot fall on the interval I={x|f’(x)<0}. The “disordering” means the loss of
ordering. That is, the “disordering” occurs when an orbit falls on the interval I, where
two nearby orbits change their order® (see Fig. 5). The disordering of a trajectory in this

*) Preliminary  results on the disordering property were reported at the [IUTAM conference at Kyoto (1983
September ).tV
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1 1 sense is characterized by the ratio that the
Y trajectory falls on the interval 1.

We define the disordering ratio d* by
the measure of the orbits in 7, i.e., by

nii

d:fxel,o(x)dx , (3-1)

where o(x) is the probability density,

which is defined through a long time

average for one orbit which starts with a
given initial value.

6 I — ] First, we consider how the chaotic

- ™ orbit with disordering appears. When the

Fig. 5. An illustration of “disordering” of the orbits period-doubling bifurcations, from a p-

for the circle map. Two nearby orbits (— and cycle to chaos proceed, the disordering
----- ) change their order when they fall on the ratio changes as
interval [.

SR, 1§ Py

N

0

1/p=2/(2p)ﬁ1/(Zp):2/(4p)+--gﬁﬁgg*zfﬁpzzggg.”
‘ ' 1

doubling doubling doubling

where v
a.=(2"—(—1)*)/3.

Chaos with the disordering ratio d~2/(3p) is born out of this cascade, which appears in
~ accordance with Feigenbaum’s theory.'® As the nonlinearity A is increased, the
disordering property becomes different from the case of a simple logistic map.,

In order to study the disordering property in more detail, we introduce here the
following induced map F(x) on the interval I: -

Fl)=fx), zeI, (3-2)

where % is the minimum integer such that f*(x)EI. Furthermore, we introduce the

distribution P(%) of this “disordering time” % for one orbit with a long time average.
Thus,

P(k)ec [ o(x)dx

holds, where I.(CI) is the region which satisfies f*(x )7 and f™(x )T for m<Ek.
The disordering ratio 4 is represented in terms of P(k) as

d=3P(k)/E. ' , (3-3)

Examples of the induced maps are given in Figs. 6(a)~ (¢), while the disordering time
distributions (abbreviated as DTD hereafter) are illustrated in Figs. 7(a)~(d). The

*) The disordering also occurs for a periodic orbit for 4> A4.. Thus, the disordering cannot be an index which
distinguishes chaos from a periodic’ orbit, though topological chaos exists and torus motion is impossible if the

disordering ratio is not zero. The disordering ratio is introduced to characterize a chaotic orbit, but it is not
related to the Lyapunov exponent.
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Fig. 7. . Distribution of disordering times P(#), which is obtained from 50000 iterations of the circle
map with D=0.6. ‘(Initial 10000 iterations are dropped.)

(a) A=0.204, (b) A=0.2058, (c) A=0.210, (d) A=0.254.

parameter values for these figures are shown in the phase diagram in Fig. 2.

Let us consider the change of disordering properties due to the increase of the
nonlinearity A. After the period-doubling bifurcations from a p-cycle are completed,
chaos with p-bands appears. As an example we consider the case p=5 (with D=0.6).
Just after the accumulation of doubling cascades, the support of the invariant measure is
restricted only in the region I5 (i.e, in the region f*(x )&7I and f™(x )41 for m<5). See
Fig. 6(a) for the induced map. Thus the DTD P(%) is nonzero only for £=5.
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As the nonlinearity A is increased, the support of the measure inceases into the
regions Is and [0 and P(k)*0 for =5 and 10 (see Figs. 6(b) and 7(a)). As the
nonlinearity A is increased further, the disordering time 5X# (=1, 2, 3, 4, ---) appears
successively (see Figs. 6(c) and 7(b) for example) and at some critical point all the
disordering times of the form 5X z exist, where the “crisis” of the chaos with 5-bands
occurs. The above mechanism of the evolution is independent of p (period of the band).
The essential mechanism of the evolution of DTD near the crisis is understood by the
logistic map x»+1=1—ax.” at a~2, which is shown in the Appendix.

After the crisis of a 5-chaos occurs, the orbit can go out of the region Us-ifs». When
the parameter A is increased and exceeds the region of the doubling cascade of m X 2" in
the phase diagram, a new disordering time m (and kXm (k=1, 2,3, ) successively)
appears. For example, at the point ‘4’ (see Fig. 2), the disordering time 8 appears (see
Figs. 6(d) and 7(c)). As A is'increased further, the disordering times 8n+3% appear
successively, till the disordering time 3 appears (see Figs. 6(e) and 7(d)). The disordering
property evolves in this way as the increase of the nonlinearity.

§4. Supercritical behavior of disordering property

Here, we consider DTD and induced maps in more detail, especially focusing on the
properties at A—> A.. v »
As is shown in the Appendix, the DTD behaves as

P(nk)ocy™" ' (4+1)

when the crisis of a 4-band chaos occurs. Here, the value 7 is given by the instability
exponent '

TREOES (7N N (4-2)

where x: is an unstable periodic point (with period ).

Let us take into account the similarity of windows in §2 and consider the case when
each Fi-band (F. is the Fibonacci sequence) chaos shows a crisis. The parameters A and
D are taken so that the similarity holds. Then at each value for the chaos with bands
with Fibonacci-numbers, '

P(nF.)~P(F)X7y™", o (4-3)

where 7 is given by the instability exponent of the unstable periodic point with period Fi
and 7 is expected to approach a constant value as Fx approaches infinity (according to the
similarity in §2). Equation (4:3) can be rewritten as

P(z)~y I | (4-4)

which shows that the slope of DTD approaches log 1=0, takmg the form of —(1/F%) log
7, as A goes to A.. Using the results in §2, Fr may be replaced by (A—A:)""%. Thus,
thc slope of DTD approaches 0 by taking the behavior :

—(A—Ac)logy ' . . (4+5)

when we decrease the value A, changing the value D so that the rotation number is the
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inverse of the golden mean.

The exponential decay of the DTD is due to the almost Markov character of the map.
At A=A.+0, the decay rate vanishes and the DTD is expected to show « power decay.
The change from “exponential” to “power” is widely seen in the phase transition. = For the
intermittent transition, Aizawa et al.'® have recently found the power distribution of the
residence time.

The above analysis is based on the 31m11ar1ty of chaos with Fi-bands. Though we

cannot make an accurate argument for an arbitrary point of the parameter space, the
following properties should be noted:
1) When the disordering times £ and / exist, other times mk+ %l (m n=1,2, ) are apt
to exist. If the instability exponents for the unstable 4- and /-cycles are given by a=11%
lf(x:)] and B=TLiilf(x;) ({x:} and {x;} are periodic points for % and I-cycles
respectively ), the DTD is given approx1mate1y be

, P(mk—l—nl)“'a””’ﬁ‘". | (4+6)

2)  For an arbitrary cycle with the period &, P(k) is roughly proportional to 7, '=|[T%,
f (x| ({x:} are periodic points).” Roughly speaking, 7.~<|f/|>% where <|f[> is some
average of |f"(x)l. Since {|f’D> is expected to grow as A is increased, the decay rate y
gets larger with the increase of A, as is typically seen in Figs. 7(c) and 7(d) and 8. (Note
the change of the scales between Figs. 8(a) and (b). As (A— A¢) is reduced almost to
109, the decay rate of the slope is also reduced about to 10%, as is seen from these two

10%

3 5 x10° 4 5 xI0

(a) : ‘ (b)
Fig. 8. Histogram of the distribution of dlsordermg times P(#), which is obtained from 107 iterations
of the circle map. (Initial 10* iterations are dropped.)
 (a) A=A+0.0008'and D=0.6065: Longitudinal axis is the summation of P(#) for the
interval (X 10%, (n+1)X102).
(b) A=A.+0.0001 and D=0.6066: - Longitudinal axis is the summation of P(#) for the
interval (X 10% (n+1)X10%). :

*) The idea to relate the instability exponent with the invariant measure was introduced by Kai and Tomita.'”




1098 : K. Kaneko

figures.) As A approaches A., {|f’]> is expected to approach 1. Thus, DTD for the chaos
near A=A, (with arbitrary rotation number) is expected to show the power decay. _
Of course, the decay of DTD is not monotonic. It has many peaks and is not simple
at all (see Figs. 7 and 8). We also note that smaller disordering tlmes are successively
inhibited as A approaches A. (see Figs. 8(a) and (b)).
3) It will be important to construct a symbolic dynamics I;— 1. From the transition
probability. between the states I; and ., we can understand the disordered property of
chaotic trajectories.'®

§5. Discussion and future problems

In the present paper we have investigated the supercritical behav1or of chaos after the
collapse of tori. To sum up the results: '
1) The Arnold tongues have similarity and scalings even for the region A>A.. The
scalings are well explained by the RG theory originaly invented for the region A< Ae..
2) . The chaotic orbits are characterized by the disordering, which is analyzed with the
use of the induced maps. As the nonlinearity A is increased, new disordering times
appear successively. ' , : :
3) As A approaches Ac, the smaller disordering times are successively inhibited.
Scaling behavior of the disordering time distribution (DTD). is characterized by the
crossover exponent v. i
4) The DTD shows almost the Markov character (exponentlal decay) for A >Ac.. The
decay rate is given by the instability exponent, which approaches 0 as A— A.. The above
‘exponential decay is well understood for the crisis of 4-band chaos in the Appendix.

In connection with the supercritical behavior of a circle map, the following problems
are left for future study.
1) The exponents for the subcritical regions depend on the structure of continued
fraction expansions of the irrational rotation number. Thus, it is expected that the speed
of the collapse of tori (it may be characterized by the exponent « in §2 where 84 ,oc F,=?)
depends on the irrationality of the torus. According to the results by Shenker,? ¢=1.0476

-+ for the torus with the rotation number 1/(2+4(1/2+(1/2+:+), since a=v is strongly

-suggested in §2 (note that the exponent is smaller than the one for the golden mean torus).
Thus, the golden mean torus collapses faster than the torus with 1/ (2+(1/2+(1/24---) in
the above sense, which is quite contrary to the well-established result for the area-
preserving mappings,'® where the golden mean torus is the last KAM to collapse. It will
be of importance to check the conjecture that the golden mean torus is the first to collapse
in the dissipative mappings (i.e., =y takes its maximum for the rotaion number with the
tail of 1/(1+/(1+/(14---)). In some sense, the conjecture is rather natural, since the
locking with a smaller period collapses at a larger value of A (by period-doublings) in the
circle map, while the stochasticity around the resonance with a smaller period plays a
more essential role for the collapse of tori in area-preserving systems.
2) Detailed study on the supercritical behavior: In the present paper, only a restricted
aspect of the critical phenomena is treated. More accurate study on the increase of the
measure of the chaotic regions in the parameter space gives the exponent 8, where the
- measure is given by (A—A:)?. In one sense, the exponent 3 corresponds to the exponent
for the order parameter (Magnetization (7 —7.)* for spin systems) and may be
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0. X ' . Xn .
003 : n 10, n 1

Fig. 9. ‘The orbits r, for 5000< n< 10000‘ for the circle map as 4A=A~ A, is changed from 0.03 to
0.05. The left figure is for the initial value xo=1/(27) arccos (—1/(27A)) with £,<0.5 and the
right one is for the branch z0>0.5. D is chosen to be 0.6.

independent of the exponents in the subcritical region. The increase of the disordering
ratio and the Lyapunov exponent for a given irrational rotation number is expected to
show the behavior (A— A:)"" according to the argument in §4, which has to be checked
numerically in the future. The detailed quantitative study on the critical behavior of
DTD will also be an important problem. ' :
3) Multibasin phenomena: Since there exist two critical points for the map f(x) for
A> A, two attractors can coexist in some parameter regions. We have already reported
an example of the coexistence of two windows in connection with the period-adding
sequence. The multibasins can be clearly seen in Fig. 9, where the initial points are given
by the two critical points of f(x). The fractal basin strucrure is expected?® since the
topological chaos exists for A>A.. The detailed study is left to the future.
4) Similarity of chaotic attractors: In the present paper only the similarity ambng,the
windows is investigated. It is, of course, expected that the similarity structure exists also
among chaotic bands. For the chaos between the period-adding windows, the scaling
behavior for the Lyapunov exponent has already been reported.!” In a piecewise-linear
mapping, the similarity of chaotic bands was found by Mori et al.? It will be of
importance to clarify the similarity of chaotic bands for the circle map. ‘
5) Noise effect: The smaller window structures disappear successively by the increase
of the noise. The scaling behavior of the visible limit of the windows and the strength of
the noise may be expected. In the chaos between the windows, the Lyapunov exponent
decreases by the addition of the noise, which will be due to the effect of the nearby
windows. '
6) Amplitude instability of the torus motion also brings about the collapse of tori, which
has recently been studied by many authors as the torus doubling,*? oscillation of tori,?®
fractalization of tori*” and torus intermittency.?® = Study of the supercritical behavior of
the chaotic orbits after the collapse of tori of these types is also left to the future, which
will be characterized by the disordering property, fractal dimension, the width of the
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attractor, and the integrated noise of the powerspectra and so on. ‘

Collapse of tori and the onset of chaos have many aspects and seem to be more
difficult than the period-doubling scenario for the onset of ‘chaos, which has become one of
the greatest success in nonlinear physics in our days.’® Future efforts will elucidate the
detailed mechanism of the collapse of tori and the onset of chaos.
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Appendix

In this appendix, we consider the change of the chaotic orbits near the crisis,'” using
the induced map and the period-adding sequence. The logistic map

Zni1=F(xn; a)=1—axnv2 : (A-1)

1 : 1

FR(x) 2

0 0

0 0.75 I, x Iy I

(b)

1

F(x)

2 ‘ ,
Fig.10. The induced map for the logistic map (A-1).

Oo s (a) @=1:9853, {b) a=1.98542 (only a part),

. 2

(¢) @=1.990 (only a part).
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k F(x)

Xo

%,
X3

o % 3L 567 8800
Fig. 11. An example of a superstable orbit at ¢=as Fig.12. log & 4~ vs n for n=3to 11. The slope of
=1.98542---. the line is —log4.

near ¢=2 is taken as the simplest and essential case. We construct the induced map for
(A-1) by choosing the interval (0, F(0)). In F igs. 10(a)~(c), some examples of the
induced maps are shown. At ¢=a,, a new number “»” appears (it corresponds to the
disordering time in §3). The orbits for ¢ > a, and for ¢< . differ in the following sense.

Let us construct the symbolic dynamics by assigning R for z >0 and L for x <0. For
a< an, the symbolic sequence of an orbit does not contain the sequence of LL---LL with

m
m>n. At a=an a superstable cycle xo=0, =1, xz=1—a;, x»+1=0 (see Fig. 11 for an
example) appears. For ¢>a, a symbolic sequence of the type RLL---LLR appears. In
n

this way, the symbolic sequence of the orbits for the map (A-1) approaches the sequence
of the coin tossing as # is increased (¢—2). At a=2, the symbolic sequence includes all
possible (R, L)-sequences (equivalent to the coin tossing), where the crisis occurs.

The superstable cycle at a=an is of the type (ORLL---LL), which cooresponds to the

n-1
cycle with the rotation number=1/# in the circle'map. (In the map (A:1), the rotation
-number corresponds to the ratio of the points at x >0.) Between ¢=a» and a@n.1, there
exists a superstable cycle with £z+ m(»+1) (£ and m are positive integers), which is quite
analogous to the construction of the devil’s staircase in the circle map. Taking this
correspondence into account, we can extract the structure of the devil’s staircase (Farey
series) from the bifurcation sequence of all unimodal mappings. The Fibonacci- and
period-adding sequences in the BZ-map?® can be regarded as an illustration of the above
correspondence. ‘

In the circle map, similarity and scalng of the period-adding sequence are studied in
some detail. The scaling property for the period-adding sequence near the crisis is shown
easily in the following manner: -

At a=a» and a¢=an+: the relations

F" Y (xr=0; a=an)=0 « ' (A-2)
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and
CFM(1=0; a=an+1)=0 (A-3)

hold. Assuming that 8a:=2—a». is small. we have (8an—8an+1)<(An+B»)™", where
Arn=0F"(x=1—an, a=a»)/0x and B,=0F™(x =1—ax, a=ax»)/da. Using the chain rules
and taking into account the fact that a large number of periodic points are located close
to the unstable fixed point x =—1 for a large =, we have

Anoc(F(x=1,a=2))", Bxx<(F(z=-1,a=2))" ' (A-4)
Thus we have
Sanx<(F'(x=—1, a=2))"=47", (A-5)

In Fig. 12, da» vs = is plotted for =34, ---, 11, which agrees with (A-5) quite well. In
general, the scaling relation da.oca™" holds, where « is the eigenvalue of the product of
Jacobi matrices for unstable periodic orbits which cause the crisis at da=0.

We also note that the width of the parametér region where the cycle with the period
% stably exists also obeys the scaling relation (F'(x=—1; ¢=2))"" '

The length of the interval I, in the induced maps for a— 2(see Figs. 10 (a)~(c)) is also
proportional to (F'(x=—1; 2=2))"", since the slope of F*(x) grows as (F'(x=—-1;
a=2))*. The DTD at a=2, thus, shows the behavior

P(n)oc(F(x=—1;a=2))", : (A-6)

where P (n) is the ratio of the symbolic sequence RLL - LL--LLR, which corresponds to the
DTD in §3. : N

The similarity and scaling of the period- addmg sequence are useful to characterlze
the property of chaotic orbits near the crisis.
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