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Oscillation and Doubling of Torus
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Two features of the instability of torus along the amplitude direction are investigated, using various
two-dimensional mappings.” First, the oscillation of a torus in' a delayed logistic map is studied, which is
related with the oscillation of an unstable manifold of a periodic saddle. The oscillation is also analyzed
from another point of view, ie., the synergetic effect of the rotation, stretching and folding, which is
typically seen in the delayed piecewise-linear mapping. Critical phenomena after the onset of chaos are
also discussed. Second, the doubling of a torus is reinvestigated. A torus doubling occurs only a finite
number of times. The mechanism of the interruption of the doubling is discussed from three points of
view, ie., relevant perturbation in the RG framework, fractalization and the intermittent-like bursts
between the valleys of the multi-humped mapping.

§1. Introduction

The onset of chaos from a torus motion is an important problem which has been
intensively and extensively studied quite recently.”~*" The instability due to the phase
motion of a torus has been investigated by the use of a one-dimensional circle map.?~'?
In general problems of the transition from torus to chaos, however, the instability along
the amplitude direction is also important, which exhibits novel and interesting features in
nonlinear physics. In the present paper we study two problems of the instability of a torus
along the amplitude direction by resorting to various kinds of two-dimensional mappings.

An important feature of the amplitude behavior of a torus is the oscillation, which. s
been observed in a large class of two-dimensional mappings. In experiments on tae-
Bénard convection, the oscillation of a torus was observed by Bergé*® and Sano.?® In §2,
we investigate the two-point delayed logistic map, which shows typically the oscillation of
torus (and sometimes of chaos). The oscillation of a torus is understood in connection
with the damped oscillation of an unstable manifold of a periodic saddle. Since the
unstable manifold is along the amplitude direction, the oscillation of a torus can be
regarded as the representation of the instability along the amplitude direction. The
experiment by Bergé seems to be well explained by the results in §2.

In §3, we consider the oscillation from another point of view, i.e., a synergetic effect
of the rotation, stretching and folding. In order to elucidate this effect we introduce a
delayed piecewise-linear mapping, which is a simplified version of the map in §2.

In usual two-dimensional mappings (and the flow with three variables), however, the
oscillation is masked by a locking, from which chaos appears via period-doubling bifurca-
tions. In three-dimensional mappings, the doubling of a torus itself is also possible, which
has been found by Arnéodo et al.'® Franceschini (for a flow system),'* and by the
author.” In these examples the doubling occurs only a finite number of times before
chaos appears as is shown in Ref.15). In §4, we consider the mechanism of the interrup-
tion of the doubling cascade of tori using a coupled circle and logistic map. Its mecha-
nism is understood from three points of view, i.e., first, from a renormalization group
viewpoint, and second, from the fractalization of torus,'® and lastly by the intermittent-
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like burst between the valleys of a one-dimensional mapping with multiple humps.
Section 5 is devoted to discussions. :

§ 2. Oscillation of torus

In various two-dimensional mappings, the oscillation of torus appears before the
transition from torus to chaos undergoes. In the present section, we give numerical
results for a typical mapping and discuss the mechanism of the oscillation. The map we
investigate here is the following two-point delayed logistic map,*®

Vn+1=Xn .

The fixed point of the map x =y=(/1+4D —1)/(2D) loses its stability at D=1/(1—A)
via a Hopf bifurcation and a torus appears for D>1/(1—A). As D is increased further,
the transition to chaos occurs accompanied by various frequency lockings.®*?
- The attractors are given in Figs. 1(a)~(g). Thus, the transition proceeds as follows.

The oscillation of torus (Figs. 1 (a), (b))~ various kinds of lockings (Fig. 1 (¢c))~
chaos emerges via a locking (Fig. 1 (d))—the width of “belt-like” attractor along the
amplitude direction increases (the dimension becomes two) (Figs. 1 (e), (f))— the unstable
fixed point x =y =(+/1+4D—1)/(2D) becomes a snap-back repeller*?(Fig. 1 (g)).

Next, we study the oscillation of torus in more detail. For simplicity, we consider the
map (2-1) for smaller values of A, where the locking into a 4-cycle is dominant near the
region of the transition to.chaos. The oscillation of torus is typically seen near this
locking (see Fig. 2). The magnified figures of the attractors are given in Figs. 3(a)
(torus), 3(b) (locking) and 3(c) (chaos).

The mechanism of this oscillation is understood as follows: We consider a locking
(4-cycle) which appears at a different but close value of the bifurcation parameter. When
the locking occurs, periodic saddles (with period-4) also appear. If the unstable manifold
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Fig. 1. (continued)
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Fig. 1. Attractor of the delayed logistic map (‘2'1),
with 4=0.3. '
(a) D=1.75(torus) (b) D=1.86(torus)
() D=1.90(locking) (d) D=1.94(chaos)
(e) D=195(chaos) (f) D=2.09(chaos)
(g) D=2.16(chaos)
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Y of a periodic saddle crosses to a stable
! manifold of a stable cycle, it must cross
infinite times. We investigate the Jacobi
matrix ](xjs(u)’ yjs(u)) where (ij(U), yjs(u)) (]
=1, 2, 3, 4) are stable (unstable) periodic
points. The matrix J(x:°, »:°)J(x2%,
y2°)J (x3°, ¥5°)J (x4°, ¥.°) has the eigenvalues
/1sp (0</13p<1) and Asa (_1</13a<0), while
the matrix J(x:1%, v:1*)J(x2%, y2*)J(xs",
vs9)J (4%, v4¥) has the eigenvalues Aup (Aup
>1) and Aua (—1<24a<0) (“p” and “a” repre-
sent the “phase” and “amplitude” re-
spectively, while “s” and “#” denote “stable”
and “unstable”). The manifolds corre-
sponding to these eigenvalues are
schematically shown in Fig. 4. If the
manifolds M., and M, intersect transversal-
ly at P, they intersect also at the points T*(P), T¥P), -+, (T represents the operation of
the mapping (2-1)). Thus, the damped oscillation of the unstable manifold appears,
which reflects the fact that As. is negative. The oscillation is rather analogous to the
heteroclinic oscillation in area-preserving mappings, though the oscillation in our case is
a damped one. The unstable manifold of a periodic saddle is given in Fig. 5, which was
obtained numerically. ‘

When the bifurcation parameter is a little less than A4(A. is the value of A at which
the stable 4-cycle appears), the orbit points stay a long time near x,%, 12", 5%, x4*, where
(x:*)i=1, ---, 4) are the periodic points at A=A, Since the motion 7*(x, ¥) changes
continuously against the change of the bifurcation parameter A, the oscillation of the
unstable manifold at A> A, remains as an oscillation of the attractor for A<As Thus,

Ol

Fig. 2. Attractor of the map:(2-1) with A=0.12 and
D=13.

; __ =008
¥.-003 ¥:i-0.06 y

0.7

-023 L -0.26 -0.26
Fig. 3. A part of the attractor of the map (2-1) with A=0.12.

*) The two directions correspond to the eigenvectors of the Jacobi matrix. . When the torus exists, As» goes
to 1 (phase direction), while Aso' remains the value between —1 and 0 (amplitude direction).
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the oscillation of torus is explained from the
viewpoint of an unstable manifold.

Since the oscillation damps by the factor
Asae, it is remarkably seen if Asq is close to
—1. In this sense, the oscillatory behavior
reflects the instability about the amplitude
direction. In our map, the 4-cycle period-
doubles along the amplitude direction as 4 is
increased. Thus, the value As. is close to
—1 at A<A, which is the reason why the
oscillation of torus is clearly seen in our -
map. ' ‘
So far, we have illustrated the mecha-
nism of the oscillation of the attractor using
staPle manifolds. O' dt?notes a stable cycle, g}(l)ernfr?:fltWh’;;Z $:c111(;211::r1ng Itl(c))vfe\fe-:yiethl:
while X denotes a periodic saddle. See the text . : ’ T
for other notations, ' same even if a locking to a p-cycle is

Fig. 4. Schematic representation of stable and un-
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Fig. 5. Unstable manifolds of periodic saddles for the map (2-1) with A=0.12 and D= 1.37, which are
obtained numerically. (b) is the enlargement of (a).

dominant. The experiment by Bergé,® for example, corresponds to the case where the
locking to a 3-cycle is dominant. The oscillation of torus in his experlment seems to be
well explained by the above consideration.

§3. Rotation, stretching and Solding

In the present section we consider the oscillation of an attractor (torus or chaos) from
another point of view.. We note an unstable focus (x =y=1/(1+ D) for the map (2-1)),
from which an orbit spirals out. The stretching of an orbit stops if the orbit enters the
region y <0, where the folding occurs. By the iteration of the mapping, the folding is
rotated and stretched, which causes the oscillation of the attractor.

To see the above picture of the oscillation clearly, we 51mp11fy the map (2-1) and
introduce the following delayed piecewise-linear map, :

{xn+1=Axn+(1—A)(1—Dlynl>,
Vn+1=Zn.

(3-1)
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Fig. 6. Attractor of the delayed piecewise-linear map (2:-1). The value 4 is 0.1 for (a)~(c), where
the onset of chaos occurs at D=1/(1-A4)=10/9. (a) D=1.113 (b) D=1.1118 {only a part) (c)} D
=1.1115 (only a part) (d) D=1.0834---, and A=0.0766---, The values correspond to ¢=1.0008 and
8=10/41. The attractors are'splitted into 41 regions. :

The fixed point (x, y)=(1/(1+ D), 1/ (14 D)) becomes an unstable focus for D>1/(1—A4)
=D¢. Inthe map (3-1), chaos appears immediately for D>1/(1— A), which is typical in
piecewise-linear mappings. For y>0, the map is reduced to a linear transformation (i.e.,
rotation and stretching)

0 (R W @2

where x'=x—1/(1+D) and y’=y—1/(1+ D). For y<0, the folding occurs by the term
DI y|.¥  The attractors of the map (3:1) are shown in Fig. 6. The oscillatory behavior of

*) It means the .transfoﬁnation y~—y. Inthe region ¥ <0, the direction of the rotation is nearly parallel to
the x-axis. Thus, the folding occurs nearly parallel to the amplitude direction in §2.
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the attractor is clearly seen, which can be explained by the above mechanism, i.e., rotation
(the eigenvalues of the matrix (3:2) are complex), stretching (the absolute values of them
are larger than 1) and folding.

The Jacobi matrix for the map (3-1) has the elgenvalues (A+¢ 4c—A?i)for y>0 and
(A+y/4c+ A?%) for y<0, where ¢ is given by (1—A)D. Since the measure for y<0 is
small near the onset of chaos, we can neglect the contribution from the points y <0 to the
lowest approximation. Then the Lyapunov exponents are given by (1/2) log ¢ (first and
second exponents are degenerate), which agree with the numerical results within 1073,
Within the above approx1mat10n the rotation number & is given by (1/ 27 )arccos(A
[(2V/¢)).

Thus, the Lyapunov exponents behave as L, LzOCe near the onset of chaos, where ¢
denotes D—D.. The measure of the points for y <0, which corresponds to the disorder-
ing ratio in the circle map,'” is estimated by a self-consistent argument,*® which gives
disordering ratiooce'’®, near the onset of chaos.

The oscillation near the onset of chaos (D>1/(1—A)) shows a small scale structure.
as is seen in Fig. 6 and it will be possible and interesting to study the critical behaviors
of the oscillations near the onset of chaos, using, for example, the continued fraction
expansion method for a given irrational rotation number.

When the rotation number is close to a simple rational value, a phenomenon similar
to the band splitting in a logistic map is also possible, as is illustrated in Fig. 6(d), where
the rotation number is close to 10/41. The linear map (3-1) has abundant new features
of chaos and oscillations which have to be illuminated in future.*®

§4. Mechanisms of the interruption of doubling cascades of tori

Recently doubling cascades of tori as the mechanism of the onset of chaos have been
found in a lot of systems, such as 3- or 4-dimensional mappings'®'® a flow system obtained
by a truncation of Navier-Stokes equation,'**? and Rayleigh-Bénard experiment.?® In
all examples, doubling occurs only a finite number of times before the onset of chaos.
This observation means the instability against a structural perturbation of the direct
product state of Feigenbaum’s fixed point function®® and a torus state. In the previous
letter the above conjecture was confirmed by the use of the coupled map

{Xn+1—1 AXn2+€g(Xn, Yn)

4-1
Yn+1—‘Yn+C+8h(Xn, Yn), . (mOd ].) ( )

where ¢ and % are structural perturbations, which are periodic functions of ¥ with period
1. We have studied the following two cases in detail

‘(I) g(Xn, Ya)=sin(27Y,) and h(X., Y.)=Xn, (4-2)

(II) g(Xn, Yn):Sin(ZHYn) and h(Xn, Yn):() , (4'3)

where the rotation number C is fixed at an irrational number, e.g., at (v5—1)/2, i.e., the
inverse of the golden mean. Model (II) can be regarded as the logistic model with an
incommensurate modulation, which may be relevant as a model for the chaos with
external periodic modulation or a system with a quasiperiodic modulation. If & vanishes,
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Fig. 7. Phase diagram -f:or‘ model | (I). The Fig. 8. Scaling relation between the strerigth of the

transyerse axis denotes - (A~—A), where coupling & and the number of doublings /. (See

As(=1.401151-+-) is the value of the onset of text for the definition of &:({).)

chaos for e=0. The longitudinal axis denotes ¢.
“C” and “nX T” represent chaos and #®torus
respectively.

the direct product state the “2*®torus” exists, which becomes unstable successively as the
coupling ¢ is increased. (See Fig. 7.) Thus, the doubling cascade of tori-occurs only a
finite times in general. : :
 As is seen from the phase diagram (Fig: 7), the number of deublings decreases as ¢ is
increased. The scaling relation between the number of the doublings / and the strength
of the coupling ¢ is-shown in Fig. 8, where &:(/) is the value of € at which the “tongue”
in the phase diagram (see Fig. 7) appears for the corresponding 2‘®torus-state. The
scaling relation is roughly given by 2‘cce, *(@~1/3), though, it seems to be impossible to
- obtain a quantitative result from this figure. ‘
The above result shows that Feigenbaum’s fixed point function®® is unstable against
an incommensurate modulation sin(2z( Yo+ #C)). If the incommensurate modulation is
a relevant perturbation in the renormalization group. framework and the eigenvalue for
this perturbation:in the RG framework is given by x, the scaling relation

log e: _ log2 - (4-4)

2= T02(2Y) ~ logx

is derlved

In the case of noisy period doubhngs 3 RG theories were constructed by Crutchfield
et al.*® and Schraiman et al.,*® which show that the relevant eigenvalue for the noisy
perturbation is given by Xaoise=1.88995--:. ~ Thus, the scaling relation for the noisy period-
doubling blfurcatlons is given by

log enoise . log2 — ... : .

log(2 ) IOg Xnoise 0.366754 ’ (4 5)
The numerical value for the exponent on the doubling of tori (@~1/3) seems to be close
to the above exponent; though it is beyond our numerical accuracy to confirm the
agreement or to detect the difference between the two values.
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Fig. 9. The orbits of x,’s (500 < #<1000) for model (II) with C=(+/5—1)/2. The longitudinal

axis denotes the bifurcation parameter A. (a) e=10"* (b) e=10"3.
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In the supercritical region, the band merging appears successively for the logistic
map. For models (I) and (II), the band merging occurs only a finite number of times just
as in the case of noisy period-doubling. Thus, the interruption of doubling of tori shows

a “bifurcation gap”, which was first observed in the noisy period-doubling bifurcation by
Crutchfield and Huberman.® In Fig. 9, x,»’s (500< %#<1000) are plotted as functions of the
bifurcation parameter A for model (II). The bifurcation gap can be also seen from these
figures. :

An RG theory (if it is constructed) cannot answer the mechanism of the stop of the
doubling cascade of tori by a finite number of times. At the rest of the present section we
consider the mechanism of the interruption using the map (4-1) from other viewpoints
than the renormalization group approach.

First, we consider the figures of the attractors when the torl are collapsed As can be
seen from Fig. 10, the oscillation of tori is enhanced at the onset of chaos. The torus
seems to be fractal at the onset of chaos. Thus, the fractalization of torus'® is a possible
cause of the interruption of the doubling and the emergence of chaos.

Second, the interruption of the doubling is studied from another point of view. We
consider the modulation map (II) and approximate the irrational value C by a rational
value using the continued fraction expansion method.*” Thus, the value C is replaced by
Cn=Fn_i/F, for C=(+/5—1)/2, where F, is a Fibonacci sequence. Then F), times itera-
tion of the map (4-1) is reduced to the following one-dimensional mapping :

x'=G(x)

=& sin(2rCa(Fr—1)+ f(e sin27(Fr—2)Cn+ f(-+ -+ f(& sin22Crn+ £(x))-) v
_ - (46)
fx)=1-Ax*
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Fig. 10. Attractor of the map (4-1) (model (I1)) with C=(+/5—1)/2 and ¢=0.001. (a) A=1.3961
(b) A=1.3969 (only a part) (c) A=1.3970 (only a part) (d) A=1.3980 (only a part).

for Yo=0. The map (4-6) satisfies the Schwarzian condition,*® but it is not a unimodal
mapping. Thus, the period-doubling bifurcations in the map (4-6) may not continue
infinitely.

As a matter of fact, we observed intermittent-like bursts between the valleys of G(X),

which cause the interruption of doublings and the transition to chaos [see Fig. 11) for some
- examples of time series by the map G(X)].
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Fig. 11. Time series of the map x»+1= G*(x») foer=55'/‘89. (See text for the definition of G(z).)

In (a) and (b), A and ¢ take the values at which 32&torus collapses (£=5), while they take the
values at which 64®torus collapses (£=6) in (c). (a) A=1.4006 and £=2X10"¢ (b) A=1.40065

and e=2X10"* (c¢) A=1.401102 and e=9x10"°.
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§5. Discussion

In the present paper, we have investigated the oscillation and doubling of tori, which
are typical instabilities of amplitude motion. First, we relate the oscillation of torus to
the oscillation of unstable manifolds. The oscillation canbe typically seen if the stability
along the amplitude direction is not strong. - Oscillations of tori in the Bénard experiment
will be ‘understood from this point of view.

In usual two-dimensional mappings, however, the oscillatory behavior is masked by
lockings, which appear as the instability in the phase dynamics. In order to extract only
the amplitude behavior, the modulation mapping is introduced, where the fractalization of
tori is discovered and analyzed.'®'® Fractalization of tori will be a new and typical route
to chaos in the amplitude behavior of tori. : o

We can see the process of the development of chaos to hyperchaos using a delayed-
logistic map in §2. ‘At the onset of hyperchaos, however, we could not observe any -
singular behaviors. Chaos develops in the folloWing way in our:model. “Appearance of
chaos through a locking” - “the dimension of the attractor grows until it becomes two
(formation of the belt-like attractor)” - “width of the belt-like attractor increases”— “the
unstable focus (from which the torus had appeared through Hopf bifurcation) becomes a
snap-back repeller”.*” This type of the “development of chaos” is seen in various two-
dimensional mappings and may be considered to be a rather universal scenario.

In §3, we considered the oscillation of attractor from another point of view, i.e., the
synergetic effect of the rotation, folding and stretching. Since the mapping which is
introduced in the section is rather simple, analytic treatment will be possible for the
critical phenomena of the oscillation at the onset of chaos.

When a torus is collapsed, the ordering of an orbit is lost,"*" as is shown in the circle
map. The disordering of an orbit is also seen in a delayed map. In the region y >0, the
mapping (xs, ¥»)=>(Ln+1, ¥a+1) consists of the rotation and stretching. Thus, the order of
an orbit does not change in the region y >0. If an orbit falls in the region ¥ <0, however,
the folding (v~ —») occurs, which causes the disordering property of a chaotic orbit. In
the delayed piecewise-linear mapping, the invariant measure in y<0 increases as the
bifurcation parameter D is increased. Details on the dlsordermg property in the map will
be given elsewhere.

In §4, doubling of tori is reinvestigated. The mechanism of the interruption of the
doubling cascade is discussed from three points of view, i.e., a relevant perturbation in an
RG transformation, fractalization of tori, and the intermittent-like transition between the
valleys of the multi-humped map. Quantitative study on the scaling exponent in the RG
framework and on the fractal dimension on the basis of a functional mapping remains as
future problems, while the relationship among the three V1eWp01nts also has to be inves-
tigated in future.

Doublings of tori have been found in a variety of systems recently It has been found
in a simulation of the truncated Navier-Stokes equation'¥ ‘and a system with an
incommensurate modulation.'® Sano and Sawada have observed the doubling of tori in
the Rayleigh-Bénard experiment.?® In these examples the doubling was observed only a
few times (once or twice in usual cases) before chaos appears. The oscillatory behaviors
of the torus are also seen in these examples. The map (4+1) will be an effective model to
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study these phenomena. :

The map (4-1) belongs to a coupled map, which is useful to study the stability of a
direct product state and of a bifurcation sequence. If wereplace Yy+1=Y,+C(mod 1) by
Ynr1=2Yn(mod 1), for example, we can treat the “doubling cascade of chaos to hyper-
chaos” and can show that the doubling of chaos occurs only a finite number of times. On
the other hand, we can treat the torus intermittency by replacing the latter of Eqgs. (4-1)
by the map which gives the intermittent transition,? which has been extensively inves-
tigated by Daido quite recently.'® The torus intermittency will be another important
mechanism of the instability of a torus along the amplitude direction.
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