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LYAPUNOV ANALYSIS AND INFORMATION FLOW IN COUPLED MAP LATTICES
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Lyapunov analysis for the coupled map lattices is presented. The co-moving Lyapunov exponent is calculated, which is
related with the propagation of the disturbance in space. The propagation speed agrees with the zero-crossing point of the
co-moving Lyapunov exponent. The co-moving mutual information flow is introduced, which shows the selective transmission
of the information at some speed. Lyapunov spectra and vectors are calculated. Spatial structures of the vectors are
investigated. Possible analogy with the Anderson localization problem is discussed.

1. Introduction and models

Phenomena with spatio-temporal complexity are
common in nature as are observed in the fluid,
chemical, optical, and solid-state turbulence, pat-
tern formation, neural networks, parallel compu-
tation problems and so on. Here, we use “coupled
map lattices” as dynamical system models for the
complexity.

A coupled map lattice is a dynamical system
with a discrete time, discrete space, and continu-
ous state [1-12]. Though there are various kinds of
the above models, we restrict ourselves only to the
following two cases here:

(1) Diffusive coupling [1-3]

X,31(1) = (1 =) f(x,(i))
+e/2{ f(x,(i + 1)) +/(x, (i =)},

(H1) One-way coupling [1, 5, 6)
(i) = (1 =€) f(x, (1)) + ef (x,(i = 1)),

where n is a discrete time step and ¢ 1s a lattice
point. The periodic boundary condition 1s adopted
for model (I), while the boundary condition is
fixed at i=0 (i.e, x,(0)=x*) for model (Il).
Here the mapping function f(x) is chosen to be

*Present and permanent address.

the logistic map (f(x) =1 — ax?) but the general
features hold for a wide class of mappings such as
the circle map (x + Asin(27x) + D).

Recent works have revealed the following
aspects: For model (1) [2], (a) period-doubling of
kink—antikink structures, (b) zigzag instability and
transition from torus to chaos, (c) spatio-temporal
intermittency and (d) the soliton turbulence; for
model (II) [5, 6], (e) spatial amplification of noise
and (f) flow of kink-antikinks.

Here we note that the spatial bifurcation can
occur even if the dynamics itself is uniform in
space. An example is a domain structure gener-
ated by the period-doubling in model (I) (see fig.
1). In the figure the motion is almost period-4 at
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Fig. 1. Patterns for model (I) with ¢ =142 and £ =0.6. x,(i)’s
arc plotted superposedly for n = 2000,2001,..., 3000. ¥ = 100.
Random initial condition (RIC).
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the region in a small domain, while it is almost
period-8 at a larger domain, and so on. Thus, the
state can differ by the lattice sites. Another exam-
ple of the spatial bifurcation can be seen in the
spatial period-doubling in open flow for model
(II) [51.

In the present paper, we try to quantify the flow
of disturbances and of the information in connec-
tion with the Lyapunov analysis.

2. Co-moving Lyapunov exponents

An important character in the spatially ex-
tended system is the growth of disturbance in
“space-time”. The growth of a small deviation in a
chaotic system is usually quantified by the
Lyapunov exponent. The conventional Lyapunov
exponent itself, however, cannot characterize the
propagation of a disturbance in space. Quite re-
cently, Deissler and the author have introduced
the “co-moving Lyapunov exponent” for the char-
acterization [6].

The co-moving Lyapunov exponent is defined in
the following way. First, we transform the frame
from the stationary to a moving one. In the cou-
pled map lattice system, this is performed by
i’ =i — [vn] for the velocity v with i = lattice and
n = time, where [#] is the integer part of *. The
co-moving Lyapunov exponent is calculated from
the largest eigenvalue of the product of Jacobi
matrices in the moving frame [6].

Let us explain the algorithm of the calculation
and results in more detail for model (II).

We take a system with a large number of lattice
points and choose a region i, + [vn] <i <i, + [vn],
where i, — i, is large enough for the average and v
is the chosen velocity and » is the time step. We
calculate the Jacobi matrix in that region for the
moving frame and take a long time average of the
product of the Jacobi matrices. The logarithm of
the largest eigenvalue of the product divided by
the time steps gives the co-moving Lyapunov ex-
ponent.

One important aspect of the open flow system is
the convective instability [4, 6, 13]. In flow sys-
tems, some state can be unstable only in some
moving frame. If model (II) is convectively unsta-
ble, the inclusion of a small noise is essential as
was noted by Deissler [4, 13]. In the following, we
consider model (IT) with a homogeneously distrib-
uted noise o, (i) added on every site and step.

2.1. Stability of a homogeneous state

First, we study the simplest case, ie., the
homogeneous state. Let us consider the evolu-
tion equation for the deviation &x,(i) from the
fixed point solution x(i)=x*, where x* is a
fixed point for the single logistic map (i.e., x* =
(V"(] +4a) — 1)/(2a)). The equation is given by
(see also [4])

8x,1 (i) = (1 —e) f'(x*)8x,(i)
+ef(x*)dx,(i—1). (2.1)

The growth of a disturbance in the moving frame
is obtained by the substitution of i =vn into the
solution of (2.1). The co-moving Lyapunov expo-
nent for the state is given from the logarithm of
the growth rate:

Alv) =Ag+log{(1-¢)/(1-v)}
+log {(e/v) /(1 -&)/(1-0v))}°, (22)

where A, = log |f(x*)|. The co-moving Lyapunov
exponent for a spatially homogeneous and tem-
porally periodic or chaotic state is obtained in the
same way, and the result is represented simply by
the substitution of the Lyapunov exponent for the
one-dimensional map x’ = f(x) into A, in (2.2).
Even if the conventional Lyapunov exponent is
negative (A(0) < 0), the maximum of the co-mov-
ing Lyapunov exponent (A(e)) can be positive,
which shows that the homogeneous state is con-
vectively unstable. If the co-moving Lyapunov
exponent is positive at some velocity, the homoge-
neous state loses its stability. For an inhomoge-
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Fig. 2. The co-moving Lyapunov exponent A(¢) as a function
of ¢, for model (II) with ¢=1.5 and #=0.6 and the noise
strength ¢ is 1073, 4 = 1000, i, = 1100, and calculation from
the average through 15000 iterations after 1000 transients.
N =16000; v=0/30,1/30,...,30/30 (RIC).

neous state we have to resort to the numerical
calculation to obtain the exponent.

2.2. Flow of kink-antikinks

At the parameter region where the one-dimen-
sional map x’=f(x) shows the period-doubling
bifurcation, model (II) shows the transmission of
kink-antikinks to downflow [5]. An example of
the calculation of the co-moving Lyapunov expo-
nent is given in fig. 2. We note that the exponent
has a maximum A(v)=0 at v = ¢. This vanishing
exponent corresponds to the “Goldstone mode”
and the velocity v=¢ corresponds to the kink
velocity.

2.3. Turbulent case

An example of the calculation of the co-moving
Lyapunov exponent is shown in fig. 3, where the
conventional exponent A(0) is negative even il the
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Fig. 3. The co-moving Lyapunov exponent A(v) as a function
of v, for model (II) with a=1.6 and £¢=0.4, and the noisc
strength o is 107* The same size, i;, i,, and numbers of
iterations as for fig. 2. ¢ =0/30.1/30....,30/30 (RIC).

pattern and motion are chaotic. The exponent is
positive only within the velocity band v, < v <v,.

3. Propagation of disturbance and co-moving
Lyapunov exponent

Let us perturb the lattice system x,(i) at one
lattice site i=1i, at the time step n=m. The
perturbed system is denoted as y,(i). The motion
of y,(i) obeys the same equation as x, (/) with

ylrx(i)=xna(i) fori*io
and
ym(i()) = X,"(i()) +A’

where A represents the pulse input at n=m and
i=1i, We plot the spatio-temporal region (n.i)
where the difference between y, (i) and x,(i) ex-
ceeds some threshold 6. Examples of such patterns
(which we call as difference patterns) are shown in
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Fig. 4. The diffcrence pattern for model (II) with the parame-
ters corresponding to fig. 3. The dots are plotted on the region
|x, (i) = y,(i)] > 0.001. The delta pulse with the strength A =
0.001 is applicd at the lattice site i = 100 at the time step 1000.
The horizontal line is a time step n’ = n — 1000 and the vertical
line is a lattice space. =15 and ¢=0.6 and o =10"* (RIC).

fig. 4 for model (II) and in fig. 5a,b,c for model
(0.

The velocity of the disturbance is defined as the
speed of the propagation of the dotted region in
the figures. The speed is essentially independent of
the choice of the threshold value § and is a
well-defined quantity to characterize the spatio-
temporal chaos.

3.1. Open flow case (model I1)

The velocity obtained from these difference pat-
terns can be calculated by the co-moving Lyapunov
exponents. In the difference pattern in fig. 4, the
existence of two velocities v, and v, is clearly
seen. The corresponding co-moving Lyapunov ex-
ponent shown in fig. 3 crosses the zero value at the
two velocities, which agree with the above two
velocities v, and v,. Since the co-moving
Lyapunov exponent gives the growth rate at a
given velocity, the propagation of disturbance is
possible only in the region where A(v) > 0. Thus,
the propagation speed of the disturbance can be
obtained from the velocity v which satisfies A(v)
= (0. This is a fundamental relation between the
quantifiers in the spatio-temporal chaos.

3.2. Diffusive coupling case (model I')

There are three classes for the difference pat-
terns for the chaotic motion in coupled map
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Fig. 5. The difference pattern for model (I). The dots arc
plotted on the region |x, (i) — y,(i)| > 0.001. The delta pulse
with the strength A =0.0001 is applied at the lattice site
i = 100 at the time step 500. The horizontal linc is a time step
n’ =n—500 and the vertical line is a lattice space. Initial
condition is x4(i) = cos(2wi/N) for (a) and (c), and random
for (b). (a) « =1.405 and &= 0.08, localization (per 8 steps):
(b) a=1.9 and ¢ = 0.6, unbounded spreading; (¢) a = 1.41 and
e = (.08, wunneling (per 8 steps).

lattices. One is the localization of the disturbance
(see fig. Sa). Even if the motion is chaotic, the
chaos is confined (at least for a long time interval)
in a domain separated by kinks which are gener-
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ated by period-doublings. Thus, the velocity of the
propagation of disturbance is zero. This class of
motion typically appears in the parameter region
where the single logistic map shows the band-
merging and at a small coupling. Another case is
an unbounded spreading, in which the disturbed
region spreads with almost a constant speed (of
course with some fluctuations) (see fig. 5b). At the
parameter region between these two classes of
difference patterns, there appears a tunneling-like
phenomenon (fig. 5¢). The disturbance spreads till
it reaches some kink positions where it stays a
long time and then it starts to spread again to the
next domain region. Thus, the propagation occurs
in a stepwise manner.

If the disturbance propagates smoothly in space
(i.e.. the unbounded spreading), the propagation
speed can be a well-defined quantity. The co-mov-
ing Lyapunov exponent is calculated in the same
way as in the open flow case. An example is
shown in fig. 6. The exponent is positive only in
the region v <wv,. Again, the speed of the dis-
turbance propagation in the difference pattern
agrees with the above velocity v.
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Fig. 6. The co-moving Lyapunov exponent A(v) as a function
of v, for model (I) with the same parameters as in fig. 5b.
iy =1, i,=100. Calculation from the average of 15000
iterations after 1000 transicnts. N = 32000: v = 0/30,
1/30.....29/30 (RIC).

4. Co-moving mutual information flow (COMIF)

One aspect of the chaotic system lies in the
creation of information as was noted by Rob
Shaw [14, 15]. In the spatially extended system,
the information transmission is important. Here
we study the information flow in space for model
(.

The mutual information between the two lattice
points is calculated from the conditional probabil-
ity. In order to study the flow of information, we
define the mutual information between the values
of x at two lattice points with a different time
step. First, we calculate the conditional probabil-
ity P, (X.Y; 0)dXdY such that

x,(i) takes a value in (X, X+ d X) and
X, e is—ipye)(J) takes a value in (Y, Y +dY).

Denoting the probability that x(i) takes a value in
(x,x+dx) by p,(x)dx, we define the mutual
information flow from the lattice site / to the site j
with the velocity v as

1(i=jiv) = [p.(x)log p,(x)dx
+fpj(x)logpj(x)dx

—ffPi_,j(X.Y:v)
Xlog P, (X, Y;v)dXdY. (41)

The quantity shows the coherence between the
two sites at the different time given by the veloc-
ity v.

In fig. 7a, the COMIF is shown for various
distances, where the parameter is chosen to be the
case for the kink-antikink flow. We note the
following features:

(1)) COMIF has a sharp peak at v = ¢, that is, at
the velocity of kinks. The information is trans-
mitted by kinks, which are generated by the noise.
In other words, the information is created by the
small noise as the phase switching of kink-anti-
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Fig. 7. Co-moving mutual information flow as a function of the inverse velocity 1/v, for model (1T) with (a) a = 1.4, ¢ = 0.4 and the
noisc strength 0 =1071% and (b) a=1.6, ¢ = 0.4 and o =10""2, The calculation of the probability P is performed by using 64 bins

in the interval (—1,1) and through 100000 iterations. (a) i =140; ;j=160(a), 200(b). 320(c), 600(d)., and 1000(e). (b) i = 140;
J = 160(a), 180(b), 220(c), and 260(d).
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Fig. 8. Co-moving spatial Lorenz plot for model (IT) with ¢ =1.5, e=0.6, and ¢ = 10~ 10 (x, (), x,. 1tj-n+1())'s are plotted for
i=110, j=160 and n = 5000,5001,..., 15000 (RIC), (a) e=1/3,(b) =06 and (¢) & =1.

kinks, which is transmitted through the kink mo-
tion.

(ii) The height of a peak decays exponentially
with a rather slow rate, while the half-width of the
peak decays exponentially with a much faster rate:
Thus, the peak of COMIF is very sharp at distant
points. This suggests that the coupled map lattice
with period-doublings can be made use of as the
information transmission line, since it has 2¥ states

for the information storage (k is the number of
doublings) and it shows the sclective propagation
of information.

In fig. 7b the numerical result for the turbulent
case is shown. In this case, we need not add the
noise, since the information is created automati-
cally by the chaotic motion. Again, the COMIF
has a peak at the velocity v =g, at which the
co-moving Lyapunov exponent has a maximum.
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The peak, however, decays much faster. Espe-
cially, if the Lyapunov exponent is larger, it de-
cays much faster.

To visualize clearly the selective flow of the
information, we introduce the co-moving spatial
Lorenz plot. The spatial Lorenz plot is the two-
dimensional plot of (x,(i), x,(/)) for a fixed pair
of (i, j) for a long time series. This plot is useful
to detect the coherent motion in the turbulence,
local oscillatory behaviors, and motion of kinks.
The plot for a different time is powerful to detect
the information flow. In fig. 8, sets of (x,(i).
X, +1(j-iy/e1(J)) are plotted for various velocities.
We note that the pattern is essentially a direct
product of two independent chaotic motions for
the velocities v = 3.0 and 1.0, while it shows a
remarkable correlation effect for the velocity v = ¢.

5. Lyapunov analysis

In the present section, we investigate the
Lyapunov spectra and vectors in the conventional
sense, mainly focusing on the case of model (I).
The coupled map lattice with the size N is an
N-dimensional dynamical system. Through the
long-time average of the product of Jacobi
matrices, the N eigenvalues (Lyapunov exponents)
and their eigenvectors (Lyapunov vectors) are
calculated.

5.1. Lyapunov spectra

An example of the Lyapunov spectra is shown
in fig. 9. If the expansion rate of the local dy-
namics is uniform (B), it can be shown that the
spectra have the form of

A, =B +ecos(2ax/N)). (5.1)

If the expansion rate is not constant as is the case
for a usual mapping (e.g.. logistic or circle) and
the spatial structure is inhomogeneous, there ap-
pears a deviation from the above form. For the
initial few modes, the exponents roughly obey

L

b

Fig. 9. Lyapunov spectra for model (I). The exponents are
calculated from the average of 2500 steps after 1000 steps are
discarded. N =50. x4(i)=sin(2@i/N). (a) a=1.5 and e=
1/3;: (b) =19 and £¢=1/3.

A, =X’ — ax? Near the onset of chaos. X« a—
a., where a is the bifurcation parameter and a_ is
the onset parameter for chaos. From the above
arguments, the number of positive exponents and
the Lyapunov dimension are expected to increase
as (a — a,)!/?, which seems to roughly agree with
the numerical result [1, 2].

Another aspect of the spectra is the stepwise
strucure. If a kink separates the two neighboring
domains, the system is essentially decomposed
into the two subsystems. Then, the degeneracy of
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Fig. 10. Lyapunov vectors for model (I) after 2500 itcrations of the successive Jacobi matrices. xy(i) = sin(47i/N).

(a) a=145, e=0.1, and N =100

(1) v,(¥): the corresponding exponent = 0.106. The localized position is just at an antinode of a chaotic domain. (2) vss(7): the
corresponding exponent = —0.14. (3) vy (i); the corresponding exponent = —0.57. The localized position is just at a kink.

(b) a=18, e=04, and N=100

(1) »,(#); the corresponding cxponent = 0.304. (2) v, (i); the corresponding exponent = —0.127. (3) v;99(#); the corresponding

exponent = —0.162.

the spectra can occur. This is the origin of the
stepwise strucure seen in fig. 9a. As the nonlinear-
ity is increased, the band merging occurs, which
brings about the successive merging of domains.
The step strucure of the spectra, then, successively
disappears (sce fig. 9b).

5.2. Lyapunov vectors

Lyapunov vectors have more information on the
spatio-temporal strucure than the spectra. Some

vectors are localized in space, while some are
extended for the whole space. The following fea-
tures should be noted:
a) Weak-coupling case

If the coupling is smail, Lyapunov vectors are
localized in space. Some examples are shown in
fig. 10a. Generally speaking, the vectors corre-
sponding to the positive exponents are localized at
the antinodes of domains, while the vectors for the

large negative exponents are localized at the nodes
(i.e., kinks).
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Fig. 11. The localization index C,(p) for model (I) with a=1.8, ¢ =04, and N =50(a), N =100(b). and N =200(c). x4(i)=

sin(2mi/50).

B) Strong-coupling case

Some examples for the Lyapunov vectors are
shown in fig. 10b. For the positive first few modes,
the exponents are localized in space. As the expo-
nent gets smaller, the corresponding vector in-
cludes higher wave numbers. The last few modes
for the large negative exponents, again, are local-
ized at the kink positions. This type of behavior
can be commonly seen in the coupled map lattice
system with a fairly strong coupling region (0.3 <
£<2/3). -

“To characterize the localization of the Lyapunov
vector, we introduce the following quantity:

N
Cu(w) = X 0,()", (5.2)
i=1

where 4,(7) is the Lyapunov vector corresponding
to the uth exponent which satisfies the normaliza-
tion condition ZI,{‘th)m(i)2 = 1. If the mode is local-
ized, the quantity C,(p) is O(1), while it is @(1/N)

for the extended mode. An example of the behav-
ior of the quantity is shown in fig. 11, which
clearly shows the change ‘“localization — exten-
sion — localization” as the mode number [16].
Y) Quantum mechanical analogy

The equation of the Lyapunov vector con-
sists of the following two steps: (i) multiply the
matrix f’(x(¢))d,; to the vector y,(i) and (i) mul-
tiply the matrix (1 —¢)8,;+(e/2)(8; ;4 +8; ,_1)
(the discrete diffusion operator), where §;;
is the Kronecker delta. In the problem of the
Schrodinger equation, we encounter with a similar
problem. The diffusion operator corresponds to
the 3%2/3x? term, the f’(x(i)) term to the poten-
tial, Lyapunov spectra to the energy levels and the
Lyapunov vectors to the eigen-wavefunctions. O!
course, the correspondence is not so straightfor
ward and it may be dangerous to pursue it toc
much. One possible conjecture, however, is the
implication of Anderson localization [17]. In the
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Schrodinger equation problem, the wavefunction
is localized if the potential is random for one- and
two-dimensional systems. In our problem, the term
f'(x(i)) changes chaotically in space-time for the
turbulent region and may have some relations
with the two-dimensional system in a static ran-
dom potential. This suggests that the similar
mechanism with the Anderson localization makes
the Lyapunov vector for the positive exponent
localized. The numerical results seem to support
this conjecture, though the detailed argument will
be reported elsewhere.
8) Relation with the propagation of disturbances
Let us recall the three patterns of the prop-
agation of disturbance. First we expand the pulse
input by the Lyapunov vectors. The important
modes for the growth of a disturbance are the
vectors for positive exponents. If a vector for a
positive exponent localized at one domain does
not have an overlapping with a vector at the
neighboring domain, the disturbance cannot be
propagated into the next domain. Thus, the locali-
zation of the disturbance in section 3 is explained
by the nonoverlapping of the Lyapunov vectors
for positive exponents. If the vectors at the
neighboring domains have a very little overlap-
ping, it takes a long time for the transmission of
the disturbance by the overlapping term (v,|v,.).
Thus, the propagation shows the tunneling-like
phenomena as was shown in section 3. If the
Lyapunov vectors for positive exponents at differ-
ent domains have sufficient overlappings, the
propagation shows the unbounded spreading.

6. Summary and discussion

In the present paper, spatial chaos is analyzed
by the co-moving Lyapunov exponent, the prop-
agation of disturbance, co-moving mutual in-
formation flow, and the Lyapunov spectra and
vectors. Though these quantities are important for
the characterization of spatio-temporal chaos, we
have not yet fully understood their meaning and
the relations among the quantities. Especially the

following problems are important:

(1) Construction of the response theory of turbu-
lent state based on the Lyapunov spectra and
vectors.

(i1) In cellular automata problems, Wolfram and
Packard [18] have used the term **Lyapunov expo-
nents” in a different way from the conventional
one, which essentially corresponds to the prop-
agation speed in section 3. Thus, the co-moving
Lyapunov exponent can give a relation with the
two Lyapunov exponent terminologies in the dy-
namical system theory and in the cellular au-
tomata.

Another important aspect of turbulence is un-
predictability. To predict the state after 7 time
steps with the precision 8, we need the informa-
tion about the present state with the precision
dexp(—AT), where A is the maximum Lyapunov
exponent. In the lattice system, the precision
about the site j necessary for the prediction
about the site i can differ by the distance |j — i|.
For the prediction, we need the precision
exp(—A(|j—i|/T)T) about the present state
at the site j, for the sites j’s which satisfy
A(lj—=i/T)>0, where A(v) is the co-moving
Lyapunov exponent. This is another meaning for
the co-moving Lyapunov exponent. It is important
to construct the computation theory and to give
some relations among the various quantities such
as the spatio-temporal entropy and Lyapunov ex-
ponent.

(i) The co-moving mutual information intro-
duced in section 4 will be useful to analyze the
information processing in spatio-temporal chaos.
The quantity represents the degree of coherence of
the phases of the oscillations at different sites. The
sharp transmission of information by kinks may
have some practical applications.

Coupled map lattices (CML) are new ap-
proaches towards the spatial chaos. One ad-
vantage in another familiar approach, cellular
automaton (CA) is that it is closely connected
with the computation theory, which may be sum-
marized as the phrase “bit democracy” [19]. In
CML, bits are used hierarchically and may not be
so efficient as CA. The physical system (and the

A
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present computer system), however, does not obey
the bit democracy. The advantage in CML lies in
the fact that we can understand the complex be-
havior in nature on the basis of the knowledge and
methods of the (low-dimensional) dynamical sys-
tem theory.

The connection of CML with the real physical
system should be investigated in future. The open
flow model (Il) seems to have some features in
common with the pipe flow experiment [20]. The
algorithm to obtain the local dynamics and the
coupling must be constructed in future as an
extension of Takens’ construction [21] to the
spatio-temporal chaos.

Some extensions of CML will be of importance
in the future. One is the coupled map network
model with adaptive coupling, which will be useful
as a simple model of neural networks, since the
dynamics of a single neuron itself seems to be able
to show a chaotic behavior.

Another model is a Hamiltonian version of
CML. An example is a chain of the standard
mapping with the coupling which satisfies the
symplectic condition [22]. The model can show the
spatial Arnold diffusion and may be a key model
for the study of ergodicity.
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