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A class of coupled map lattices is investigated as a model for the spatiotemporal ¢
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haos. As the parameters are changed.

phase transitions among the patterns are observed. Pattern selection through the chaotic motion of domain is observed. Chaos

is suppressed by the selection. Selection of the zigzag pattern is studied, w
anti-phase domains are found. They change chaotically in time and move randoml
with its chaotic motion. Collapse of zigzag pattern and the defect turbulence are studied in
high-dimensional dynamical systems. Pattern sclection with longer wavclengths is found in t

here localized defects which separate the two
y in space. The diffusion of defect is related
connection with the crisis in
he stronger coupling fegime.

Transition from pattern selection phase 1o fully developed turbulence occurs via the intermittency. Selective flicker-like noise

and the Pareto distribution of Lifetime of pattem are observed at the intermittency

regime. For the quantitative characteriza-

tion of each phase, pattern distributions, pattern trapsition matrix, static and dynamical entropies, lifetime distribution of

pattern, spatiotemporal power spectra, and Lyapunov spectra are calculate

d. Phase transition from the pattern selection to

fully developed turbulence is investigated with the use of these quantifiers, where some order parameters and critical indices

are introduced.
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1. Introduction
Characterization of complex dynamics is on¢ of
the most challenging problems in the nonlinear
science of our age. Chaos with low degrees of
freedom has opened the study towards this direc-
tion. The study has shed some light on the under-
standing of the onset of turbulence and complex
dynamics with small degrees of relevant freedom.
Most complex dynamics, however, is not governed
by small numbers of degrees of freedom, as is seen
in the turbulence in a wide sense, observed not
only in fluids, but also in optics, solid-state physics,
chemistry, and in coupled dynamical systems in
biology and technology [1]. For the study of these
systems, we have to use a model with time and
‘space. ‘
There already exists many models and simula-
tions towards this approach, such as partial dif-
ferential equations, lattice differential equations,
cellular automata [2], and coupled map lattices
[3-5]. Here we use coupled map lattice models for
the study of spatiotemporal chaos. See [5] for the
discussion on the merit and demerit for each
model.
The reason we use a coupled map lattice model
(CML) here is as follows: (i) Some notions of
dynamical systems theory can be used in the study
of CML, and it may also be possible to extend the
dynamical systems theory to include the “space”.
~It is also possible to use the notions of informa-
tion theory, entropies, and Lyapunov analysis,
which are utilized in the study of chaos in low-di-
-mensional dynamical systems theory. (i) CML
gives the most convenient and fastest tool for
simulation on the computers with floating-point
processors, and is especially useful in the parallel
computers. By a suitable modelling it can afford a
faster tool for some physical simulations as is
verified by Oono and Puri [10] for the kinetic Ising
or TDGL model. (iii) The model includes continu-
ous parameters and the study of a change of
spatiotemporal patterns with the parameter change
becomes possible. Since the computation is fast,
we can check the global phase diagram. (iv) Statis-

tical mechanics of spin systems on a lattice has
made a large progress in the past forty years.
Wilson [6] has proposed the lattice gauge theory
on the basis of the renormalization group. Here
we introduce a lattice chaos model anticipating
the future appearance of “lattice chaos theory”.
We can use some notions, such as critical phenom-
ena, phase transitions, and order parameters cor-
responding to some patterns, which are developed
in the study of spin systems on a lattice.

A coupled map lattice is a dynamical system
with a discrete time, discrete space, and continu-
ous state [3, 5, 7, 8], see also [11-14]. Though there
are various kinds of the above models, we restrict
ourselves only to the following diffusive coupling
case here:

(i) = (1= ) (x,(1))

+¢/2[ f(x,(i + 1) + f(x, (i = D)},
(1)

where n is a discrete time step and i is a lattice
point (i=1,2,..., N =system size) with a peri-
odic boundary condition. Here the mapping func-
tion f(x) is chosen mainly to be the logistic map

f(x)=1-ax? (2)

but the phenomena to be shown later can be seen
in a wide class of mappings and in other types of
couplings. The logistic map (1.1) shows the accu-
mulation of period-doubling at a=1.40155...,
and the band merging from period-2 band to a
single band state at a=1.542....

Some results on the coupled map lattice have
already been published. In the present paper, we
focus on the pattern dynamics in the spatiotempo-
ral chaos.

2. Visualization of phases

In the present section, a “z00” of coupled map
lattice is shown. As methods for visualization, (1)
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space—ampliludc plots, (2) spatial return maps,
and (3) space-time diagram are used. See [5] for
the definition and merits of these visualization
techniques.

The global phase diagram is given in fig. 1,
which was obtained by the simulation from ran-
dom initial configurations. The meaning of each
phase in the figure is explained in the course of the
paper. Some examples of the space amplitude
plots are shown in figs. 2 and 3, where some
typical examples of the pattern of each phase are
seen. Also, examples of space-time diagrams are
given in figs 4 and 5.

Let us briefly survey the results of the model,
and explain the characteristic property of each
phase.

2.1. Frozen random pattern

As has already been reported, the coupled map
lattice model (1) shows the period-doubling of
kink-antikinks with the increase of the nonlinear-
ity a [8, 5). By the doublings, domains of various

sizes are formed. After some numbers of doub-
lings, the system exhibits a chaotic behavior at
some large domains. The domain boundary does :
not move in the space and the motion in a domain
can be chaotic.

As is seen in the phase diagram (fig. 1), the”
single logistic map is in the two-band region at the
parameter region for this phase. The domain sepa-
ration is assured by this band splitting.

At this phase, the distribution of domain size
depends on the choice of initial conditions. The
dynamical state in a domain largely depends on
the domain size, as are seen e.g., in figs. 2(a) and
3(a). In a large domain, the motion is quite chaotic,
while it is almost period-8 at smaller domain,
period-4 for much smaller domains, and period-2
for the smallest ones. '

The patterns are fixed in time. If we start from a
random initial condition, the pattern of attractor
is random in space and depends on the initial
condition. Examples of the coexistence of many
attractors of different patterns are shown in figs. 6,
where the attractors of randomly chosen 10 initial

Table 1

List of notations of quantifiers, parameters, and exponents.

Q(k) pattern distribution function

S, (static) pattern entropy

Sy pattern dynamical entropy

Wi (n) Lifetime distribution of pattern .
fy (average) lifetime of a pattern

T(j— k) pattern transition matrix

S(k) spatial power spectra

P(k,w) spatiotemporal power spectra (dynamical form factor) .

D diffusion coefficient of a defect
Ai) Lyapunov spectra

)

ceomW™RE T~ E T

KS entropy density

bifurcation parameter for the logistic map 1 — ax?
strength of coupling

system size

onset value of the collapse of pattern

P(k,, w) & ™% selective flicker-like noise®-

(1 - Q(p1))  (a - a)P; onset of the collapse of pattern®
S, & (a — a)*’; onset of the collapse of pattern

S« (a — a;)%; onsct of the collapse of pattern

W, (n) & n—¥; Pareto-Zipf law®

»k, and p, are wavelength(s) and domain size(s) of selected pattern(s).



4 K. Kaneko / Pattern dynamics in spatiotemporal chaos

conditions are depicted. The domain structures in
the figure are fixed in space. In the figure, initial
conditions are only arbitrarily chosen, but they all
are found to belong to basins of different attrac-
tors.

The independence of domains leads to the con-
clusion that the possible number of attractors
increases exponentially as system size.

These three features ((1) frozen pattern (2) spa-
tially random attractor for arbitrary chosen ran-
dom initial configuration, (3) the number of
attractors increase exponentially with a system
size) are common with the “glassy phase” ‘in
solid-state and statistical physics.

2.2. Pattern selection and suppression of chaos

As the nonlinearity is increased further, some
domain boundaries start to move. Thus the initial
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Fig. 1. Phase diagram of the coupled logistic lattice (1): The
phases are determined by the spatiotemporal patterns and the
distribution function of pattern Q(k) to be defined later.
Simulation has been carried out for (1) with random initial
configurations and N = 100. The parameters are changed from
a=1.5 to 2.0 by 0.01 and ¢=0.02 to 0.4 by 0.02. Here BD,
DT, PCI, and FDT are the abbreviations of Brownian motion
of Defect, Defect Turbulence, Pattern Competition Intermit-
tency, and Fully Developed Turbulence, respectively, which
are discussed in detail later. The numbers such as 1,2,3 repre-
sent the selected domain sizes. See text for details. The arrow
at the bottom line shows the band merging point for the single
logistic map, while the region with oblique lines correspond to
the period-3 window in the logistic map.

condition is not preserved anymore. Through the
motion of domain boundaries, domains of some
special sizes are selected. Some examples of the
selection of the patterns are shown in figs. 2(b,c)
and 3(b,c). As the nonlinearity is increased, the
number of possible patterns decreases and at
medium nonlinearity, only 1-3 patterns are se-
lected. The size of the selected domain depends on
the value of coupling. The selected size of domain
is such that the motion in the domain of the size is
less chaotic, i.e., the motion with shorter periods.
In the frozen pattern phase, chaos is suppressed
only in some domains (with small sizes). Here, the
ratio of such domains is increased by the selection.

For examples, compare fig. 2(a) or 3(a) with
2(b) or 3(b,c). In figs. 2(a) and 3(a), chaotic behav-
ior is clearly seen in large domains, while such
fully chaotic motion is suppressed in figs. 2(b) and
3(b,c). In fig. 2(b), the dominant structure is the
domain size = 1, or in other words, *zigzag struc-
ture”. Note that the temporal motion of this do-
main is almost period-2, a very simple temporal
motion. In fig. 3(b), the dominant selected pat-
terns are domain size = 2 or 3. In the domain of
size = 2, the temporal motion is almost period-2,
while in the domain size = 3, it is almost period-4.
The “almost” period-K here means the periodic
motion of period K with a chaotic modulation of
very small amplitude. We also note that the sup-
pression of chaos is stronger in fig. 2(c) than in
2(b). These give the examples for the above state-
ment that the selection occurs in favor of a simple
temporal motion.

A precise definition which distinguishes the
frozen random state from a pattern selection is
given by the following:

In a frozen random state there exists an arbi-
trary large domain if the system size goes infinity,
while there exists a critical size /., such that a
domain of the size larger than /_ cannot exist.

The phenomena here may be regarded as the
suppression of chaos by the diffusion process. The
diffusion term has the tendency to produce the
homogeneity in space, while the chaotic motion
makes the system inhomogeneous due to the sensi-
tive dependence on initial conditions. These two
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Fig. 2. Space-amplitude plot for the coupled logistic lattice (1). Amplitudes x,(i)'s are overlayed for 50 time steps after the 1000
iterations of transients for the model with ¢ = 0.1, N = 100, and random initial configurations. (a} a =1.44, (b) a=1.64 (c) a = 1.72:
In (a)—(c), domain structures do not move in space. (d) a = 1.80: The zigzag region is temporally guasiperiodic, while the defects
move around in space. After more iterations they will disappear by collisions. (¢) @ =1.90.

tendencies conflict with each other. The conflict
leads to the splitting of a larger domain. (One may
regard this as the splitting by the “chaos
pressure”.) On the other hand, there is no conflict
in the domains of almost periodic motion, where a

cancellation of the above two tendencies leads to a
simple pattern. In this sense, we may term the
present phase as “pattern selection through tran-
sient chaos and diffusion”. After the selection, the
pattern of domains is fixed and does not move in
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=156, (c) a=1.68:

x,(i)’s are overlayed for 50 time steps after the 1000

100, and random initial configurations. (a) a = 1.48, (b) a

=03, N=

Fig. 3. Space-amplitude plot for the coupled logistic lattice (1). Amplitudes

iterations of transients for the model witllx 3

(¢) a = 1.80.

domain structures do not move in space. (d) a =1.72,

()

In (a)~

there are two phe-

k

the strength of the couplings

space (see figs. 4(a) and 5(a) for the spatiotempo-

ral diagram).

nomena associated with the motion of patterns.

The first type is the diffusion of a chaotic defect

(18], while the other type is the intermittency

associated with the pattern competition [19].

2.3. Brownian motion of defect and defect turbulence

The first one occurs in the simplest case of
pattern selection, i.e., the selection of spatial mode

As the nonlinearity is increased further, the
domain boundaries start to move. Depending on
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Fig. 4. Space-time diagram for the coupled logistic lattice (1), with € =0.1, N =100 and starting with a random initial condition.
Every 8th or 64th time step is plotted from 0 to 200. If x,(i) is larger than x* (unstable fixed point of the logistic map), the
corresponding space-time pixel is painted as black, while it is left blank otherwise. (a) a=1.74, (b) a=1.80, () a=1.89,

(d) a=194.

of wavelength two. The remarkable point is the
existence of localized chaos as a defect which
separates two domains of different phases (see fig.
2(d)). The defect is localized in space and its shape
changes chaotically in time and moves around the
space like a Brownian particle (see fig. 4(b)). The
detailed quantitative study of the dynamics of
defect will be given in section 5.

At the “defect” phase, a single zigzag state is
expected to cover the whole space as time goes to
infinity, since the defects pair-annihilate and are
not created.

As the nonlinearity is increased further, the
zigzag pattern no longer remains stable and col-
lapses spontaneously (see figs. 2(¢) and 4(c)). At
the parameter close to the onset of the collapse,
the zigzag region still covers a large part of the
system and the state is represented as the pair-
creation, pair-annihilation or multiplication of de-

fects or generation of chaotic transients by the
collisions. We term the phase as “defect turbu-
lence”, since the global turbulent structure is cre-
ated by the interaction of defects.

2.4. Pattern competition intermittency

If the coupling is larger, the selected pattern is
not unique, as can be seen in figs. 3(b,c). With the
increase of nonlineanty, there appears the inter-
mittent bursts, which have a nonstationary nature
(see figs. 3(d)). The burst arises from the mis-
matching of phases and has much larger structures
than a chaotic defect. The phase transition via this
intermittency is investigated in section 6.

Strictly speaking, there are neither “defect tur-
bulence phase” nor “intermittency phase”, since
these “phases” are just transition regimes between
pattern selection and fully developed turbulence.
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Fig. 5. Space-time diagram for the coupled logistic lattice (1), with ¢ = 0.3. Every 32nd or 64th time step is plotted from 0 to 200.
See caption of fig. 4 for other conditions and the method of visualization. (a) a = 1.68, () a=1.72,(c) a=1.80,(d) ¢= 1.88.

The reason why we put names on these regimes is
that these critical regions are rather wide in a
parameter space and it is of importance to study
the critical behavior there in detail.

~

2.5. Fully developed turbulence

_As the nonlinearity is increased further, the
ordered structure in the space-time diagram can
hardly be observed (see figs. 3(¢) and 4(d)). The
collapse of pattern with the increase of a is seen
in the successive figs. S(b-d). We call this state
“fully developed turbulence” in our lattice system,
since this state can be well approximated by the
direct product state of local chaos with a rapid
decay of spatial correlation. The state can be
represented by smooth statistical and dynamical
quantifiers as will be seen in the following sec-
tions. As for the conflict between the two tenden-
cies (ordering by diffusion and inhomogenization

by local chaos), the chaotic part exceeds in the
ordering process in this phase.

2.6. Phase diagram

Let us look back at the rough phase diagram
(fig. 1). The phase diagram is obtained through the
simulation of the model for the parameters a = 1.5,
1.51,...,1.99 and € =0.02, 0.04, 0.06,...,0.4. The
check of the phase is carried out by the space-time
diagram, space amplitude plots, and the pattern
dynamical quantifiers to be introduced later. In
the diagram, “1,2” means the pattern selection of
domain size 1 or 2, and “1,2,3” for the pattern of
domain sizes 1,2,3 and so on. If the size of the
character “1” is larger than “2”, the selected pat-
tern consists mostly of the size 1 and has small
ratio of the domain size 2. The simulations were
carried out from random initial conditions.

e
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Fig. 6. Ten space-amplitude plots for the coupled logistic
lattice (1), with a=1.5, ¢= 0.3, and N = 25. Amplitudes x,,(i)’s
are overlayed for 50 time steps after the 1000 iterations of
transients. Attractors from randomly chosen 10 samples of
random initial configurations are depicted. Here, domain struc-
tures do not move in space.

We note the tongue structure of selected pat-
terns. This tongue-like structure reminds us of the
locking structure in a static pattern of spatially
modulated systems. The static pattern of such
spatial locking structure is observed in the prob-
lems of the static configuration of some solid-state
physics problems [16, 17). The tongue structure
appears as the resonance structure from the
quasiperiodic state. This is essentially obtained by
the replacement of time by space in the temporal
resonance problem in the quasiperiodic state. Our
tongue-like structure is obtained from a model
both with time and space, and without free-
energy-like quantities. The pattern selection in our
model corresponds to the resonance structure in
space. Our result shows that the spatial locking is
also seen in the problem of the pattern selection in
spatiotemporal chaos, if the selected pattern is
fixed in space.

We also note the dominance of zigzag structures
at small coupling regimes. At € = 0.13, we do not
encounter the fully-developed chaos and the zigzag
structure is preserved up to a=2, at which the
single logistic map gives the fully developed chaos.
In other words, in some weak coupling regimes,
the global chaos is completely suppressed.

The topics of the following sections is “how to
characterize these phase changes (Frozen Random
— Pattern Selection — (Defect State) — Pattern *
Competition Intermittency (Defect Turbulence)
— Fully Developed Turbulence). Some quantifiers
will be introduced to study the pattern dynamical *
process of our system. The characterization of
each phase by these quantifiers is summarized in
tables 11 and III, which will be explained in the
following sections.

We note that this type of phase change is rather
universal in the systems of local choas and diffu-
sion. It has been observed in a large class of
coupled map systems and is expected to be ob-
served in coupled differential equation systems
[20] and in partial differential equations [21]. Also,
some experiments show similar phase features, as
will be discussed at the end of the paper.

3. Characterization (1) (in Fourier space)

In the present and following sections, some
ways of quantitative characterization of pattern
dynamics of spatiotemporal chaos are briefly in-
troduced. The results applied to our phenomena
are shown along the paper.

3.1. Spatial power spectra

Most prevalent method for characterization of
the spatial complexity is the use of Fourier trans-,
formation. The spatial power spectra are defined
by

@

N

(/N X x, () ), (3)

Jj=1

S(k) =

where {{...)) shows the long time aQerage, al-
though the snapshot spectra

N 2

sa/(k) =|(1/N) X x,(j)e¥*i) (4)

J=1

are useful in some cases. Some examples of the
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Table II

Features of phases characterized by quantifiers (weak coupling case).

Quantifiers Pattern distribution Pattern entropy Dynamical entropy Spatial power Salient
Phase function Q (k) S, Sa spectra features
Frozen random O(k)#0 large 0 Many peaks many attractors
pattern for many k’s
Pattern (1), 0(2)#0 small 0 few prominent peaks suppression of chaos
selection Q(k) = 0 otherwise
Brownian as time — oo as lime — oo as time - oo as time — oo diffusion of defect
motion Q(k) =8, ;; for it goes to 0 it goes to 0 the peak at triggered by chaos
of defect adefect, Q(k) @ 1/2 grows

exp( - const. X k)

Defect (1-Q()«(a-a,)P Sa(a-a)? S a(a-a)t peak at 1,/2 selective flicker-like
turbulence and broad band noise

noise at k = 0

Fully developed Q(k) & exp(—const. X k) large large smooth decay random pattern
turbulence Sa=S8, form k=0
Table III

- Features of phases characterized by quantifiers (medium coupling case).

Quantifiers Pattern distribution Pattern entropy Dynamical enlropy Spatial power Salient
Phase function Q(k) Sp Sy - spectra features
Frozen random Q(k)+0 large 0 many peaks many attractors
pattern for many ks
Pattern (7). Q(p;)#0 small 0 few prominent peaks suppression of chaos
selection Q(k) = 0 otherwise
Pattern A =(Q(p)+ O(py) Sxla~a)? sa(a-a) few peaks and selective flicker-like
compelition (g~ q,) broad band noise
intermittency noise at k = 0
Fully developed Q(k) a exp( - const. X k) large large smooth decay random pattern
turbulence Sa=S, form k=0

spatial power-spectra are shown in figs. 7 (for
¢=0.1) and 8 (for ¢ =0.3).

We note the following change of spatial power
Spectra with the increase of nonlinearity.

i) Slowly decaying spectra (exp(—const.xk))
with peaks at the glassy phase: Since various sizes
of domains are allowed, the spatial power spectra
are composed of various possible peaks (figs. 7(a)
and 8(a)).

if) Few number of sharp peaks at % =k,, k=
k,2 and so on are prominent by the pattern
selection: The sharp Peaks are located at the
wavenumbers corresponding to the sizes of se-

lected domains. As are seen in figs. 7(b,c) and

8(b-d), the number of the sharp peaks gets fewer
as the selection proceeds. The peak at k=1 /2 s
promunent at 1.75 < 2 < 1.88 for €=0.1 (see figs.
7(b,c)), while the peaks at k= k,=2/11 and
k,2,=1/6 are shaper for € = 0.3, as can be seen in
figs. 8(b-d).

iii) Coexistence of the peak at k=1/2 and the
broad band noise at & =~ ( for the defect phase: As
time passes the amplitude of broad band noise
decrease, and finally only the peak at k=1/2
remains. The broad band noise is due to the
chaotic defect. ’

;
|
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Fig. 7. Spatial power spectra S(k) for the model (1), with € = 0.1, N = 512, and starting with a random initial condition. Calculated
from 1000 time step averages after discarding 10000 transients. (a) a =1.55, (b) a =17, (¢) a =18, (d) a=1.9.
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iv) Coexistence of the sharp peak(s) and the
broadband noise at k=0 for the defect turbu-
lence or the pattern competition intermittency: In
the defect turbulence, the peak at k = 1 /2 and the
broad band noise around k = 0 coexist (fig, 7(d)).
The latter part, corresponding to the chaotic de-
fect, increases as the nonlinearity is increased. In
the intermittency case also, the burst brings about

the broad band spectra at k=0 for S(k). The.

whole spectra are composed of the broad-band
and the sharp peaks at the wavenumbers corre-
sponding to the selected patterns. As the nonlin-
earity is increased, the portion of the broadband
noise increases (see figs. 8(e, £)).

v) Fully developed spectra: As a is increased
further, sharp peaks disappear completely (see figs.
8(g, h)). The spatial spectra decay monotonically
as k. They are roughly fitted by the form of
exp(—const. X k2). This Gaussian form arises
from the diffusion kernel of our model.

3.2. Spatiotemporal power spectra (dynamical form
factor)

Temporal power spectra have been a powerful
tool for the study of temporal complexity, espe-
cially for the low-dimensional dynamical systems.
In the case of spatially extended systems, power
spectra in time and space are more useful, which
are defined by

P(k,w)=<<

In the usual statistical mechanical problems, there
is a scaling correspondence between k2 and w [22]
for the diffusion problem. Although this scaling
relation is applied to the fully developed chaos
regime of our model, there also exist exceptional
regimes in our model. As is discussed later, it is
observed that P(k,w) is Lorentzian as a function
of w at k=0, while it gives the flicker-like noise
for k= k, (the mode of the selected pattern) in

2

N :
omsipemn={))

j=1
(5)

the pattern competition intermittency problem (see
[19] for the preliminary report). See fig. 18 in
section 5 for examples. Even if the temporal part
has a Lorentzian form, the half-width can largely
change by the wavenumber.

3.3. Window analysis

In the zigzag pattern case, the spatial power
spectra 5(0, r) and 5(1/2, n) may be regarded as
ferro and antiferro order parameters in spin sys-
tems. Some dynamical features can be described
by the motion of these order parameters. Here, the
scaling analysis for the dynamics of the order
parameter with the use of a window is discussed
[19, 32).

For a general pattern dynamics problem, the
following quantity is useful. Instead of taking the
summation over all lattice points in (3.3), we take
a partial summation only in a window, i.e.,

Plk,w)= <<
(6)

J=1...,M (M<N). Let us focus on the power
of some spectral mode P(k, w). The spectral
strength of such mode changes with the window
size M. If the oscillation has some finite spatial
correlation length ¢, the spectral strength decreases
with the window size for M < £, and approaches a
constant value for M > ¢, Near the critical point
of the pattern competition intermittency, the spa-
tial correlation length can be very large, and the
spectral strength changes as M? for M < M_ and
approaches constant for M > M._. If the oscillation
at w appears as a collective motion of the
wavenumber £, the exponent b can be positive as
will be seen in the intermittency and defect turbu-
lence. Through this analysis, we will see how the
modes may be classified into relevant and irrele-
vant ones, borrowing the terminology in the phase
transition studies [23).

2

M
(I/M) ¥ x,(j)ewitik=nw)
Jj=1
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4. Characterization(2) (in bit space and pattern
space)

4.1. Pattern distribution Q(j) and pattern entropy

Since the spacetime patch x,(i) has too much
information, it is sometimes of use to reduce the
information by a coarse-grained measurement of
the continuous variables into some discrete states.
Here we digitize a pattern as a symbol patch. We
first assign 0,(i)=0,1,2,...,K—1 to x,(i) ac-
cording to the following rule:

=0 if x,(i) < X,
1 if X, <x,(i) <X,

(7)

o (i)=K-1 if Xp_y <x,(i).

In the present paper we use the simplest digiti-
zation K = 2. The symbolization here is 0,(i) =0
for x,(i) < x* and ¢,(i) =1 for x,(i) > x*. In the
domain structure we study here, each domain is
separated by the separatrix of the unstable fixed
point of the logistic map (1.2). Thus the character-
ization of pattern is carried out by choosing x* as
the value, i.e.

x* = f(x*) = (V1 ¥ 4a - 1)/(2a). (8)

Thus a snapshot pattern can be represented by a

symbol sequence such as 0111...001, as is
schematically shown in fig. 9. Most common char-
acterization of the complexity of the symbol se-
quence is entropy, which will be briefly discussed
in the next section.

A7
R
[ L I I IR O B | l'i (T T O I B |

Fig. 9. Schematic representation of the coding from x,(i) to

a,(i).

Here we introduce a kind of order parameter
for the pattern selection from the symbol se-
quence. The domain in section 2 is represented by*
the condition x,(i) — x*) has the same sign in the
domain. Thus the probability distribution Q( ) of
the spatial length of the same symbol (11...11 or*
00...00) can be chosen as the order parameter(s)
for our pattern dynamics. Q(j) is defined by the
following procedure: Take a lattice point i at a
time step n: From the spatial sequence x,(i) at
the fixed time n, obtain the minimum length in
which o (k) takes the same symbol (k=i-4,
i—h+1,...,i,...i+m; thelength jis h+m+
1). The length j gives the domain size of the
lattice point i at the time step n. From the spa-
tiotemporal sampling through the entire lattice
and many iterations, we get the probability that a
lattice point belongs to the domain of size j. For
example, 0(1) =1 and Q(k)=0 for k # 1 for the
complete zigzag pattern. In the pattern selection
of two domain sizes, Q(p,)#0, Q(p,)# 0 and
Q(p)=0for p+#py, py.

As a measure of the static complexity of pat-
tern, we introduce the following static pattern
entropy, defined by

Sp=—20(j)10gQ(J)- (9)

4.2. Pattern transition matrix and pattern
dynamical entropy

To study the dynamics of pattern, the above
quantifiers are not sufficient. We are required to
construct the transition matrix of the pattern. The
procedure is as follows: Take one lattice point j
at a time step n and check what size of domain it
belongs to (let us assume that the size of domain is
m). After a given time step (we choose 8 time
steps throughout the paper, but the essential part
of the result is insensitive to the choice), we again
calculate the size of the domain to which the
lattice point belongs (let us assume it is k). This
gives an event of the transition m — k. By taking
the spatiotemporal samplings, we obtain the prob-
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ability of the transition

T(m — k) = transition from the domain with

size m to that with size k. (10)

Following the dynamical entropy introduced in
the study of attractors of CA by the author [24],
we define a dynamical entropy of the complexity
of the transition, given by

Sq= =2 Q(i)T(i—j)logT(i ). (11)

i J

The meaning of the quantity is as follows; As-
sume that we know that a lattice point belongs to
the domain of some size. After a given time step,
we again observe the size of domain to which the
lattice point belongs. The mutual information gain
through the observation is given by S

As is easily verified from the properties of the
logarithmic function and the probability function,
S, > S; holds. If the pattern is spatially complex
but temporally frozen, no transition among the
domain size occurs, which leads to a positive Sp
and vanishing S,. If the transition occurs without
the memory of the previous pattern (i.e., T(i =)
= p(j), independent of i), S, =S, holds, which
means that there is no dynamical ordering. The
quantity S, is especially useful in the study of the
transition from frozen pattern to floating patterns.

4.3. Lifetime distribution of pattern

The above dynamical quantity is only applica-
ble if the transition of patterns is represented by
the Markovian dynamics. If the system has a
long-time tail expressed by the f~“-type spectra,
for example, the transition of pattern is not ex-
pressed by the Markovian dynamics.

To study this aspect, lifetime distribution of
patterns will be calculated. The lifetime is defined
as the time steps during which a lattice point
remains to belong to the same domain. By taking
the spatiotemporal sampling again, we get the

lifetime distribution
W,(n) = the probability that a domain of
size p has a lifetime n. (12)

As is expected, W (n) x exp(—n/1,) for most
cases, where the dynamics is represented as
Markovian. The value 1, is the average lifetime of
the domain of the size p. If the power spectra for
some patterns have the flicker-like noise, the dis-
tribution function W,(n) obeys the Pareto-Zipf
form W, (n)a n~¥ for the corresponding domain
size k, as will be seen later.

4.4. Space-time information

Space-time patch is taken and the entropy of
possible symbol patch is calculated. See [26] for
details. Let us take the patch of space length L
and time interval 7. The space-time entropy is
defined as

S(L,T)=— L P(x)log P(*), (13)

where P(*) is the probability of the appearance of
the space-time symbol patch. Here again the
coarse-graining with two symbols is often used.
The data are fit by

S(L,T)=hLT +cL+rT+f (14)

for large T and L. The value 4 corresponds to the
local creation of information (KS entropy density)
while the terms ¢ and r represent the spatial and
temporal flow of information respectively. The
quantity represents the ratio of the abundance of

. the symbol patch in space-time and will charac-

terize the complex spatiotemporal patterns in the
transition sequence [26].

5. Selection of zigzag pattern and chaotic diffusion
of defects

5.1. Phenomena

Let us investigate in detail the simplest pattern
selection i.e., the selection of zigzag pattern (k =
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1/2). Although this case is the simplest, it cap-
tures the essential aspect of pattern dynamics in
spatiotemporal chaos. The zigzag pattern is easily
characterized by the condition

(x, (i +1) = x,())(x,(1) = x,(i-1)) <O (15)

or the condition (x,(i+1)—x*)(x,(i)—x*)<0
with x* = (Y1 +4a —1)/(2a), an unstable fixed
point of the logistic map x. As was shown in
section 2, the following change occurs as the in-
crease of nonlinearity.

1) The frozen pattern: The possible domain sizes
are only 1 and 2 (ie, Q(j)=0 for j>2). The
zigzag structure is fixed in space. The domain of
size = 2 lies in the boundary of two zigzag regions.
The temporal motion of the domain is chaotic
(has positive Lyapunov exponents), while the
zigzag region is temporally period-two.

) Diffusion of defect: The zigzag pattern is
modulated quasiperiodically in time. The chaos in
the domain boundary is still localized, but it can
move in space. The defect as a domain boundary
can change its size (i.e., Q(j) # 0 for ;> 2).

i) Diffusion of defect in chaotic media: The
zigzag pattern is modulated chaotically in time,
but the pattern itself is stable, i.e., the condition
(15) is satisfied in the region. As for the defect, it
is still localized, changes chaotically in time, and
moves in space. With the increase of nonlinearity
the average size of defect gradually increases.

In regions (i) and (iii), the defects pair-annihi-
late and the size of zigzag regions increases with
time. The system finally settles down to the com-
pletely zigzag state if the system size is even
(Q(1)=1, Q(j) =0 for j > 1), while only a single
defect moves around the space if N = odd.

iv) Defect turbulence: The zigzag region is no
longer stable and the spontaneous pair-creation of
defects in the zigzag region is seen. The turbulence
as a whole consists of the interaction of defects.

v) Fully developed chaos: Almost all possible
patterns are generated in a random way.

For € = 0.1, the phase change occurs at a = 1.74
(() = (ii), a=1.83 (i) > (iii)), and a =a, = 1.88
((iii) > (iv)) respectively.

The spatiotemporal patterns along these phase
changes can be seen in figs. 2 and 4. Another way,
to see the spatiotemporal dynamics is the spatial
return maps 8, 5], which are the two-dimensional
plots (x,(i), x,(i + 1)). Some examples are given,
in figs. 10.

In fig. 10(a), the zigzag region and the domain
of size 2 coexist and the patterns are frozen. The
plots at (x(i), x(i + 1)) = (0.8, =0.2) or (- 0.2,0.8)
correspond to the zigzag region, while the other
points close to the 4-separated curves give the
motion of the domain with size = 2.

In the region (ii)-(iii), the pattern changes
from the two-separated closed curves to the two-
separated belt-like attractors if there is no defect,
as is widely seen in the bifurcations in two-
dimensional mappings. In these regimes, typical
transition from torus to chaos is observed as the
nonlinearity is increased (fig. 10(b-d)), i.e., lock-
ings, and oscillation and crinkling of torus {3]. In
the presence of defects, some scattered points con-
nect the two-separated regions, which correspond
to the chaotic dynamics of defects (see fig. 10(f-g)
for the return maps in the presence of defects). In
the fully developed regime, the spatial return map
gives the folded-towel-like structures for any ini-
tial conditions, as are first found in the study of
two-coupled logistic map (see fig. 10(e)) [25].

5.2. Lyapunov spectra

The Lyapunov spectra are calculated from the
products of Jacobi matrices of the global maﬁ
acting on the entire lattice. In the frozen regime,
they show the stepwise structure, due to the de-
generacy by the existence of separated domains
[9]. In the region (ii), the initial ~ N/3 Lyapunov
exponents are close to zero in the absence of
defects (see fig. 11 (a~b)), while the spectra have
positive exponents proportional to the number of
defects, if there are some. In figs. 11(d-f), the
Lyapunov spectra for a single defect state are
shown, for N (system size) = odd. Compare fig.
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Fig. 10. Spatial return map for the model (1) with ¢ = 0.1, and starting with a zigzag plus random initial condition (see eq. (16)).
Points (x,(i), x,(i + 1)) are plotted for the entire lattice for 1000 < n < 2000. In figs. (a)-(e), N =100. For (a)-(d), no defects exist.

For figs. () and (g), N = 101 (odd) and a single defect exists. (a) a = 1.72, (b) a=1.76,(c) a=1.80, (d)

a=1.76,(g) a=1.84

11(d) with (a) or 11(e) with (b). The existence of
positive parts is clearly seen. This is a direct proof
that a temporal evolution of defect is chaotic. We
also note that the chaotic motion of defect de-
stroys the quasiperiodic motion of zigzag structure
as is seen in the spectra, which show that the

a=184,(e) a=1.92, and ()

exponents close to zero disappear and that they
are negative now. In the region (iii), there are
positive Lyapunov exponents (the number is
roughly N/2) even in the absence of defects (fig.
11(c)). In the presence of defects, however, there
are exponents which are much larger than the
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Fig. 11. Lyapunov spectra of our model with € = .1, starting with a zigzag initial condition (see cq'. (16)). The calculation was carried
out through the products of Jacobi matrices of the time steps 2000 to 5000. For (a)-(c), N =100, and no defect exists, while for
(d)~(f), N =101 and a single defect exists. (a) a=1.76, (b) a=1.8, (c) a=1.84(d), a=1.76, (¢) a=138, () a=184.
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above positive values. The number of them is
preportional to the number of defects (see fig.
11(f)) for a single defect case). Thus, the chaos
associated with the defect is of a different nature
frem the chaos in the motion of the zigzag pattern.
Here again, we note that the magnitude of the
other positive background exponents is decreased
by the existence of defect. In other words, the
- chaotic motion of the background is suppressed
by the existence of defect, or absorbed into the
chaos of defect. In the region (iv), the spectra
change smoothly as the index of exponent, which
is inherent in the fully developed spatiotemporal
chaos [9].

5.3. Diffusion coefficient of defects

An example of the locus of the defect is given in
fig. 12. It looks like the locus of Brownian particle.
Here, however, it is not evident if the motion is
really Brownian motion, since our system is com-
pletely deterministic. We check the property of the
motion of defect in a little more detail. Note that
the diffusion process here takes place not in the
phase space (as is often discussed in the study of
chaos), but in the real space [28].

In the regions (ii) and (iii), defects are not
created spontaneously and they pair-annihilate by
the collisions. If the motion of defect is a random
walk, their number is expected to decrease as
n"1/2, with the time step n, if we start from the
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Fig. 12. Position of a defect as a function of time plotted by
256 steps for the model (1) with a=1.78, ¢e=0.1, N =255,
and starting with a single defect initial condition (zigzag plus
random as in eq. (16)).

arbitrary chosen initial conditions. Examples of
the change of number with time steps are shown
in figs. 13. In the quasiperiodic regime, the decay
is initially slow and may be fitted by n~" with
b <1/2, with the time step n. This is thought to
be due to the long-range correlation in the
quasiperiodic zigzag region. After a larger number
of iterations, however, the decay approaches n~ 12,
In the chaotic regime, the decay is rather well
fitted by n~1/? after a few iterations.

To study the Brownian motion of the defects
quantitatively in more detail, we choose a single
defect initial state

x,(i)=x*+c(-1)"+md(b), (16)
2500 _Numboar af detecita

b
100Q
S00 L
1001
50 L

1 10 S0 100 n/256 500

Fig. 13. Number of defects as a function of time, plotted per 256 steps, for the model (1) with ¢=0.1, N = 16384 and starting with a

random initial condition. (a) a = 1.78, (b) a = 1.86.
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Fig. 14. (1, - I5)?) as a function of », plotted per 128 steps. Obtained from the sampling from 32 randomly chosen single d

states (eq. (16)), with N =255, and e=01.

where rnd(b) is a uniformly distributed random
number in (—b, b) and the constants ¢ and b are
chosen to generate a zigzag pattern and the system
size N is an odd number (255 here) so that a
single defect always exists. We calculate the posi-
tion of defect I, by the condition (15). The
numerical data are fitted by the following expres-
sion:

((1,- I,)*) =2Dn, (17)

from which the diffusion coefficient D is calcu-
lated. Here the brackets (...) represent the en-
semble average for a set of initial conditions (32
samples are chosen for our calculation). The effect
of periodic boundary condition is taken account
of for the calculation of distance I, — I,. As can
be seen in fig. 14, the fit is good both in chaotic
and quasiperiodic regions.

Here we note that the random walk arises not
from the randomness in the zigzag pattern, but
from the chaotic motion of defect. Even if we take
an almost regular zigzag initial condition (b — 0
in (16)) in a quasiperiodic regime for the zigzag
state, the diffusion coefficient D is the same.
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efect

The diffusion of a kink is observed in the cellu-
lar automaton problem [28], where the random-
ness comes from the initial random condition.
Here, the important difference is that the random-
ness is created by the defect itself.

Numerical results for the diffusion coefficient
are shown in fig. 15. We note that the logarithm of
diffusion coefficient increase linearly as a both in
the regions (i) and (iii), but the slope is clearly
different between the two regions.

Kolmogorov-Sinai (KS) entropy is calculated
from the sum of the positive Lyapunov exponents.
We take a single defect state again by taking odd
number of N. KS entropy of a defect is estimated
from the difference between the KS entropies of a
single defect state and complete zigzag state. The
logarithm of KS entropy increases linearly with a.
Furthermore, the increase rate of the logarithm of
KS entropy and diffusion coefficient agrees within
our numerical accuracy in the region of chaotic
motion of zigzag structure. This result is consis-
tent with our guess that the diffusion is triggered
by the chaotic motion of defect.

In the quasiperiodic regime, the diffusion of
defect is suppressed through the long range corre-
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Fig. 15. Diffusion coefficient (o), KS entropy (), and the
maximum Lyapunov exponent (X) of a defect for the model
(1) with € = 0.1. The diffusion coefficient is calculated from the
slope of the data like figs. 13, while the KS entropy is calcu-
lated from the difference of the two Lyapunov spectra with and
without a defect like fig. 11. See captions of figs. 11 and 13 for
detailed numerical conditions.

lation in the zigzag phase. We think that this is the
reason why the diffusion coefficient decreases much
faster than the KS entropy as the parameter a is
decreased.

We also note that the maximum Lyapunov ex-
ponent of the defect changes very little within
these parameter regions. The size of a defect in-
creases more rapidly with the increase of a, which
leads to the increase of the number of positive
Lyapunov exponents of a defect, and to the in-
crease of KS entropy.

Transient

In a lattice with a small size, we can check the
time necessary for the disappearance of defects.
This average transient time is calculated as a func-
tion of the parameter a. The result is given in fig.
16. We note the divergence at the onset of the
zigzag motion, where the diffusion constant of a
defect vanishes. This is not surprising, since the
diffusion coefficient goes to zero there. Also, we
note the divergent behavior from below the onset
of diffusion. At the point a = a_ — 0, the diver-
gent behavior is not observed.

3108 ——
transient
time steps
210
' :
|
|
i
- 1
. i
. i
e !
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Fig. 16. Length of transients before our map (1) with e=0.1
and N =40 scttles down into a frozen state, starting from a
random initial condition. Obtained from the average over 100
randomly chosen initial conditions.

The transient length increases exponentially with
a square root of the system size. Thus we can
expect the existence of defects in a large system
during a time interval for the usual experimental
situation.

5.4. Defect turbulence

At a>a,, the spontaneous collapse of zigzag
pattern is rare and the defect picture is still valid.
At these parameter regions, the dynamics is gov-
erned by the pair-creation of defects by the local
crisis mechanism, their Brownian motion, and the
collisions of defects, which may cause the pair-
annihilation or creation of defects, or complicated
transient patterns. The collision mechanism is
quite similar to the “soliton turbulence” observed
in coupled circle map lattices [15, 5] and some
cellular automata [24, 27]. An example of
space-time diagram is shown in fig. 4(c).



- ey

K. Kaneko / Pattern dynamics in spatiotemporal chaos 23

The phenomenon here can be understood as the
crisis in a high-dimensional space (for crisis, see
[29, 30); see also [31]). As a special case, let us
consider the model (1.1) with N =2, ie, a two-
coupled logistic map. The map would be derived
from our lattice model if the zigzag pattern were
regular, ie. x,(i)=x,(i+2) for all i. Actually,
the regular condition is not satisfied since the
dynamics is chaotic and small deviation from the
regular state is enhanced by the sensitive depen-
dence of chaos. The study of two-coupled map,
however, is of use as the first approximation.

The two-coupled logistic map exhibits the sud-
den broadening of attractor due to the crisis from
the zigzag pattern at a’ =1.92, which is slightly
larger than a_ (see figs. 17(a,b)). Toutch of the
strange attractor with the stable manifolds of sad-
dles which separate the two zigzag regions occurs
at a=a’. This is quite typical in the crisis in
low-dimensional dynamical systems. As the size of
the system N is increased, the critical value of the
collapse of the pattern decreases from a’ to a..
The value a, is the parameter for the transition
for N =100 but the onset value a (N) is con-
verged to this value for this “large” N.

The reason of the decrease of the onset of the
collapse is that the gate for the crisis is increased
as the size, since the possible configuration of the
deviation from the zigzag structure is enlarged. In
other words, the discrepancy between a. and a’
arises from the spatially chaotic modulation of the
zigzag pattern for our lattice system (1). The spa-

ok a

x{}}

tial coupling induces the propagation of the crisis
to other lattice sites.

5.5. Power spectra and window analysis

A characteristic dynamical feature in the defect<
turbulence is its long-time correlation. To study
this feature, we use spatiotemporal power spectra
which show the selective flicker-like noise as is
seen in the present section. We first discuss the
power spectrum for the whole lattice without us-
ing the window analysis. In order to remove the
period-2-band like structure every other time step
is taken here (x,,)-

In the parameter regions w1th defect turbulence,
our system exhibits the following flicker noise for
the modes with k = 1/2. In fig. 18, P(k, w)’s are
plotted for k=0, 2/8, 3/8, and 1/2. As k ap-
proaches 1/2, low-frequency parts grow and
P(k,w)=w"" is clearly seen for k= k(= 1/2).
Note that the flicker noise is selectively observed
only for the modes k =1/2.

At the onset of the collapse of zigzag pattern
(a=188), a is close to 2, which means that the
relaxation time diverges. As the nonlinearity pa-

‘rameter a is increased, the exponent a decreases

from 2. The ™% behavior is observed selectively
fork=1/2ata,=188<a<192= a’, although
there seems to exist a plateau at w =0 for a=a’. .
Collapse of the zigzag pattern occurs more fre-
quently for larger a, which leads to the faster
decay of correlation function and small a. Depen:- -

x(E) b

x(1)

Fig. 17. Attractor for the model (1) with ¢ =0.1, and N = 2 (2-coupled logistic map). Points (x, (1), x,(2)) are plotted for the entire

lattice for 5000 < n < 10000. (a) a =1.921, (b) a=1.923.
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Fig. 18. Log-log plot of space-time power spectra P(k,w) as a function of w for a=189, e=0.1: (a) k=0, (b) k=2/8, (c)
k = 3/8, (d) k = 4/8. These power spectra are calculated from the data of x,,(i) for the 512 X 2 time steps simulations of model (1),
after 10000 steps of transients, from 50 different randomly chosen initial conditions. The system size N is 256 and the window size M

is N.

dence of « on the parameter a is shown in fig. 19.
For a > a’, the spectra have a clear plateau and
the estimate of the exponent is impossible.

A possible explanation for this is that the zigzag
mode exists with a long range correlation, and it is
destroyed only through the long-ranged effect as is
seen in the above explanation by the high-dimen-
sional crisis in the region of a<a’. Thus the

dynamics of the mode of wavenumber 1/2 in-
cludes the motion of very long time scale. On the
other hand, the mode with k=0 corresponds to
the chaotic motion of defects, which has a short-
time memory.

A reason for this critical behavior in a wide
parameter regime may be attributed to the finite-
ness of system size. If we follow the common-sense
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of phase transition, it is expected that a singular
behavior is seen just at a critical point. The above
power-law-type behavior in a large parameter
space in a finite system, however, may be of
relevance in experiments, since most ‘“large”
nonequilibrium experimental systems is substan-
tially much smaller than those for equilibrium
systems. (For example, most Bénard convection of
“Jarge” aspect ratio includes only up to 107 rolls.)
Also, it is interesting to note that the critical
behavior is easily observed in a finite system in
temporal domain (not in spatial domain, like cor-
relation length).

Next, we consider the change as the wavenum-
ber k. As k is decreased from k =1/2, the power
decreases gradually, ie., the mode decays in a
shorter time scale. The exponent « with the change
of k is shown in fig. 20, where again, plateaus at
w =0 develop as k is decreased. For smaller %,
the plateaus at =0 appears and the spectra
approach the Lorentzian form.

The flicker-like noise has been observed in a
low-dimensional dynamical system at the onset of
chaos through the intermittency [33, 34]. The
flicker-like noise here should be noted for its selec-
tivity to the wavenumber,

Window analysis

What happens if we take only a portion of our
lattice system and calculate the spatiotemporal
power spectra?

The selective flicker-like is still observed, al-
though the value of the exponent a changes. As M
is decreased from N, the exponent a decreases.
For example, a for M =256 (=N), 128, 64 is
=17, =15 for M=16, =1.45 for M =28, and
=~ 1.4 for M =2 for a=190.

Numerical results for the low-frequency spectral
strength G are shown in fig. 21. Here the strength
G is estimated by L%, P(k, w = i/1024). We note
that G(k) decreases as M }(b(k) < 0) for k=0,
1/8, 2/8 and 3/8 with the increase of M (e.g.,
b(0)= —0.25, b(1/8)= —0.3, b(2/8) = —0.2 for
a =1.9). The decrease stops at M = M (= 64) and

200

Sz 18 @ 193

Fig. 19. Low-frequency exponent & as a function of bifurca-
tion parameter a: The exponent a for P(1/2,w)xw™® is
estimated from the calculation in the same manner as in fig. 18.
For a > 1.91, the spectra have a plateau at very low frequency
(0 <1/32) and the exponent « is estimated from the data at
1/32<w<1/4
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Fig. 20. Low-frequency exponent & as a function of wave-
number of k: The exponent « is estimated in the same way as
in fig. 19. The system size N = 256. a =1.90.

stays constant for M > M_. On the other hand, G
is increasing as M® (b>0) for k=1/2 up to
M=M, (eg., b(1/2)=03 for a=1.9). We note
that b(k) is positive only for k= 1/2, while it is_
negative for other modes.

The above scaling behavior is expected to hold
up to M — oo at the critical point, if we believe in
the knowledge of phase transition studies in spin
models. Our results near the transition show a
crossover from M?® to a constant at M = M_. If
we borrow the terminology in renormalization
group, the mode & =1/2 may be called as rele-
vant, while the other modes as irrelevant [23].

At a < 1.88, the chaotic burst corresponding to
k =0 is transient and a single zigzag pattern cov-
ers the whole space as n — co. If we perform the
window analysis at the transient time regime where

~
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Fig. 21. The low-frequency parts of P(k,w) with the change
of window size M. G(k) = P(k,1/256) + P(k,2/256)
+ ...+ P(k,10/256) are plotted as a function of the window
size M for the model (1) with a=1.895 and N =256.
o (k=0/8), X(k=1/8), a(k=2/8),0(k=3/8), and &(k =
4/8, scaled by 1/5). Arbitrary units. The power spectra are
calculated in the same way as figs. 19 and 20.

the chaotic bursts still exist, M5behavior is ob-
served without the crossover. For k=1/2, b is
positive, while it is negative for other modes. This
shows the nonstationary feature of the turbulence
and (ir)relevancy of modes clearly.

* 5.6. Quantitative analysis of pattern dynamics

_Pattern distribution function Q(k)’s are useful
* as order parameter(s) to distinguish the different
phases observed in our model. In fig. 22, Q(k) for
€=0.1 is shown for Xk <5. In the figure, only
Q(kYs # 0 are shown.

In the random frozen pattern, Q(k)#0 for
various k’s. Furthermore, the distribution can de-
pend on the choice of initial conditions. In the
pattern selection regime, Q(1) and Q(2) get larger
and the ratios for larger domains is suppressed
(a>1.58). In the region a>1.64, Q(k)=0 for
k #1,2. In these regions, the distribution can de-
pend on the initial conditions, but the dependence
is very small if we restrict to the random initial
conditions and take a large N (say, > 100). Espe-
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Fig. 22. Pattern distribution function Q(k) (k <5) for the
model (1) with ¢=0.1 for 1.5 <a <20, N =128 and starting
with random initial conditions. Q(k) is calculated from the
average for 30 000 time steps after 10 000 transients. ®(Q(1)),
°(Q(2)), a(Q(3)), T(Q(4)), and X(Q(5)). Only Q(k)'s greater

than 0 are shown.

cially, the selection to k=1 and 2 at a> 1.64 is
not affected by the change of initial conditions. At
the defect region, it is expected that Q(1) =1 and
Q(k)=0 for k+ 1 as time goes to infinity. How-
ever, the diffusion of defect is so slow (especially
in the quasiperiodic regime (ii)) that some defects
still remain within the iterations of 10% for N =
100. The defect gives the distribution of

Quclk) = (1 - CO“SLX(_l)k) exp(—k/Ly.)
(18)

as is shown in fig. 23. The calculation of fig. 23 is
performed with the use of a single defect initial
condition (5.2). The length L, gives the average
size of a defect. The difference by the parity of the
length & arises from the zigzag structure. The
exponential decay of Qg (k) clearly indicates the
localized structure of the defect. The total distri-
bution function Q(k) is given by the sum of the
zigzag part (1 — Ny (n)/N)8, , and the defect
part (Ndfc(n)/N)Qdfc(k)’ where Ndl'c(n) is the
number of defect at the time step n.

At a> a, the zigzag pattern collapses sponta-
neously. Thus Q(k) (k # 1) does not vanish even
in the long-time limit. The value (1 — Q(1)) gives a
measure of the destructed pattern.

Critical phenomena of the collapse of patterns
are investigated through the disorder parameter
1-Q(1). In fig. 24, they are shown as a function
of a bifurcation parameter a —a.. The data are
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Fig. 23. Pattern distribution function Q(k) for a defect for
the model (1) with a =186, ¢=0.1, N =33, and starting with
zigzag initial conditions (16). Calculated from the average
through 10% iterations after 109 transients. A single defect
exists.

fitted roughly by
1-0(1) = (a~-a))’, (19)

with 8=1.0. In the terminology of dynamical
systems, these critical phenomena are explained as
the crisis in a high-dimensional dynamical system.
For the exponents in the crisis in low-dimensional
dynamical systems, see [30], where the exponents
are related with the eigenvalues of saddles.

o ‘een A3 B ime &

TR TR

Fig. 24. Critical behavior of 1 — Q(1). Q(k) is calculated from
the average for 100000 time steps after 50 000 transients, for

the model (1) with ¥ =100, ¢ = 0.1 and random initial condi-
tions.

If we change the system size from 2 to 100, the
exponent 8 decreases from 1.6 to 1.0 (e.g., 8 =1.45
for N =38, 1.25 for N =16). (Here, however, the
determination of the onset value for the collapse is
not accurate, which gives the error bars about 0.1
for the estimate of B.) The reason that the expo-
nent decreases is that the possible pathway for the
collapse is enriched by the increase of phase space
of dynamical systems. The exponent at N =2 is
determined by the instability of the saddle, as is
studied in the low-dimensional crisis, while 8 for
N — oo can be a statistical mechanical quantity,
since the pathway in the phase space is infinite
(O(N)) dimensional. Thus the change of 8 with
size may be regarded as a path from the dynamical
systems theory to statistical mechanical phase transi-
tion problems.

In the fully developed regime, we note that
the change of Q(k)'s with the bifurcation param-
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Fig. 25. Pattern distribution function Q(k) for the fully devel-
oped turbulent state, calculated from the average for 30000
time steps after 50 000 transients, for our model with a = 1.98,
N =128, and ¢=0.1,
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eter is very smooth. Q(k) for large k can also

_exist and the distribution is well fitted by
exp(—const. X k), as is shown in fig. 25. This
means that the pattern dynamics is well approxi-
.mated as a Markov process of 1-0 sequence. This
is the reason why we call the phase as “fully
developed”.

A single quantity to characterize the pattern
complexity is an entropy defined in section 4. The
change of static pattern entropy is shown in fig.
26. The entropy is large in the frozen pattern
region, and decreases rapidly by the pattern selec-
tion to zigzag state. By the pattern collapse it
increases with

S, & (a—a)”. (20)

The exponent B’ coincides with 8 within the
numerical error as is expected, since Q(k)’s for
k > 1 contributes to the increase of entropy.

The dynamical aspect of patterns is character-
ized by the transition matrix of patterns or (more
simply) by the pattern dynamical entropy. In the
frozen pattern, there is no transition among pat-
terns, which leads to the vanishing pattern dynam-
ical entropy, even if the static entropy is large. In
the defect region, some transitions among patterns
are possible if some defects remain, which give
small contribution to S;. For n — oo, this contri-
bution decays out. At the onset of defect turbu-

, lence, the entropy increases with the form

Ssx (a-a.)’ A (21)

with § = B (see fig. 27). Since this exponent in-
cludes the dynamical aspect also, the equality is
not obvious. Here, all we can say is that the two
exponents are close numerically. At the fully de-
veloped region the difference between the dynami-
cal and static entropies is small, which means that
the transition among patterns is no more re-
stricted and occurs randomly (see fig. 26).

In the defect turbulence region, the transition
matrix cannot give a good information, since the
temporal correlation has a long-time-tail and is

k|

I Y

Fig. 26. Pattern (static) entropy (X) and pattern dynamical
entropy (®) for our model with ¢ = 0.1 and N = 128, calculated
from the average for 30 000 time steps after 10 000 transients.

not represented by a Markovian dynamics. The
lifetime distribution of zigzag pattern does not
show an exponential decay but has a Pareto—Zipf
form, that is,

Wy(n)=n""¥, (22)

where the exponent ¢ takes 1.6 for a=1.9 (see
fig. 28). The lifetime distribution for other pat-
terns has a normal exponential form W, (n)=
exp(—n/t), where 1 is the lifetime of the do-
main of size k. )

The Pareto-Zipf form is typical in the dynamics
with the flicker-like noise (see e.g., [33]). Since the
power spectra can be written as the sum of the

10ts,

128 183

Fig. 27. Critical behavior of pattern dynamical entropy Sy,
calculated from the average for 100 000 time steps after 50 000
transients, for our system N =100 with ¢=0.1 and random
initial condition.
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temporal Lorentzian form as
- P(k,w)~fdn W,(n)/(w*+1/n?) (23)

for the corresponding wavenumber k and the do-
main j, we can expect that the exponent ¢ for
domain size j and the low-frequency exponent a
for the power spectra of the corresponding
wavenumber (k = 1/(2j)) are related by

Yy+a=3. (24)

From our numerical data, ¢ + a = 3.3 holds. The
discrepancy is due to the fact that W,(n) is a local
quantity, while the exponent « is determined by
the global quantity P(k, ). Indeed, if we apply
the window analysis and take a small window size
for the calculation of P(k, w), the exponent a for
a small window is estimated to be 1.4 (section 5.5),
which gives a consistent result with eq. (5.10).

For other parameter regions, the distribution of
lifetime obeys the exponential form. The lifetime
1)y decreases rapidly as the increase of a in the
fully-developed chaos.

Another way to estimate the lifetime is the use
of transition matrix T(i —j). The lifetime for a
domain of size j is proportional to (1 - T(j -
/)L In the fully developed turbulence, the life-
time thus estimated decays exponentially with the
size of the domain j. This is another manifesta-
tion of the random collapse of the pattern at the
regime.

The main results of the section 5 are briefly
summarized in table II in section 2.

6. Pattern competition intermittency

6.1. Selection, competition, and intermittency

The important features here are the transition
sequence of (i) Frozen pattern (i) Selection of
patterns (iii) Pattern competition intermittency (iv)
Fully developed turbulence. Space-time diagrams
for each region are shown in fig. 5. Spatial return
maps are given in fig. 29. Here the typical struc-
ture with separated regions in the return map
shows the motion of selected pattern. The bursts
in the intermittency connect these separated re-
gions, as can be seen in the return maps in fig. 29.

The “ pattern competition intermittency” here is
characterized by the existence of more than one
stable patterns and intermittent transition among
patterns. Although each pattern remains to be
stable by itself, the mismatch of the phases be-
tween domains makes some bursts, which move
around in space-time and destroys the pattern
(see fig. 5(b)). The long-range correlation in this
phase is also remarkable, as will be discussed later.

The present intermittency has many aspects
common with the defect turbulence in section 5.
There are two different points: First, the number
of selected patterns is more than one here. Sec-

Fig. 29. Spatial return map for the model (1) with ¢ = 0.3, and starting with a random initial condition. Points (x,,(i), x,,(i + 1)) are
plotted for the entire lattice for 1000 < n < 2000. (a) a =1.60, (b) a = 1.68, (¢) a = 1.72.
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ondly. the burst has much larger structures than
the defect. This intermittency and defect turbu-
lence belong to the spatiotemporal intermittency
(STI), investigated extensively in recent years.

Here we briefly look back on STI. The STI was
first studied as the spatial extension [8, 35, 5] (see
also [37)) of Pomeau—Manneville’s intermittency
[36). The intermittency in the present model is
related with the crisis in high-dimensional systems
(see also [12]). What are common in these models
and the recent model by Chate and Manneville
[38] is that the local dynamics has a topological
chaos but non-chaotic attractor. We may conjec-
ture that STI is seen for some coupling regimes if
the local dynamics has a non-observable topologi-
cal choas. (As a “local” dynamics, we may have to
include the dynamics of not only one but a few
sites as in the present case.) '

Although STI seems to have many features
common with the directed percolation [41] as sug-
gested by Pomeau [40], the critical behavior seems
to belong to a different class according to the
recent investigation by Chate and Manneville [39].

The salient feature in the present intermittency
with a pattern lies in its selectivity to wavenum-
ber. This class of intermittency has first been
found by [12] and may be related with the inter-
mittency in 2-coupled logistic map [42].

One interesting feature in the intermittency
phase is the existence of long-time transients. If
the system size is small, the turbulent pattern can
disappear by many iterations and the system fi-
nally hits the globally non-frustrated structure (see
fig. 30). As the system size is increased the tran-
sient time increases rapidly (we have not yet

Fig. 30. Space~time diagram for the coupled logistic lattice
(l}.‘u'ith €=0.3, a=1.72, N = 40 and starting with a random
initial condition. Every 64th time step is plotied from 0 to 200.
_lf x,({) is larger than x*, the corresponding space-time pixel
1s painted as black, while it is left blank otherwise.

checked the system-size dependence in detail, but
it seems to increase exponentially with the system
size) and for a system with N > 100, turbulent
bursts exist at lcast up to within 10° iterations for
most initial conditions. |

In some examples it is pointed out that the
weak turbulence cannot be regarded as the attrac-
tor, but the long-time transients [45]. In cellular
automata, this corresponds to the class-4 rules if
we follow the classification by Wolfram [2]. An-
other example in cellular automata is the soliton
turbulence, which has been investigated by Aizawa,
Nishikawa and the author [24, 27], where the
turbulent phase is attributed to the transients with
the length proportional to exp(const.X N). The
relevance of such class-4 CA to the dynamical
system at the transition regime in the parameter
space has first been pointed out by Packard and
Crutchfield [43]. See also [45] for an argument on
the relevance of very long transients in spatially
extended systems. In the partial differential equa-
tion system, Shraiman [44] has pointed out the
similar long-time transients in the pattern selec-
tion regime of the Kuramoto-Sivashinsky equa-
tion.

6.2. Lyapunov analysis

In fig. 31, some examples of Lyapunov spectra
A(i) are shown. Through the Lyapunov spectra we
can calculate the KS entropy- density by

h= Z'A(i)/N, (25)

where ¥’ is the summation of positive A(i). The
change of h with a is shown in fig. 32. Here we
note the following points:

1) The stepwise structure in the spectra in the
region of frozen pattern, which reflects upon the
degeneracy by the existence of separated domains
(see fig. 31(c)). Localized chaotic motion exists
only in some large domains, which gives the posi-
tive Lyapunov exponents, the number of which is
proportional to the number of such domains. Here
the KS entropy increases with a.

i
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Fig. 31. Lyapunov spectra of our model with ¢=0.3 and N =100, starting with random initial condition. The calculation was
carried out through the products of Jacobi matrices of the time steps 2000 to 5000. (a) a=1.56, (b} a=1.64, (c) a=1.70,
(d) a=1.72, (¢) a=1.76, () a=1.80.

2) The values and number of positive Lyapunov by pattern selection clearly. The motion of se-
exponent decrease by the pattern selection, as is lected pattern is quasiperiodic in time, which leads
seen in fig. 31(b,c). Also, we can see that the KS to the exponents close to zero (see fig. 31(c)).
entropy density in fig. 32 shows a rapid decrease 3) In the intermittency region, there are some

at g = 1.56. These show the suppression of chaos positive exponents which are not very close to zero
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Fig. 32. KS entropy density as a function of a, calculated
from the Lyapunov spectra in the same way as in fig. 31.
e=03, N=64.

(fig. 31(d)). The stepwise structure disappears here
since the burst destroys the separated domain
structure. The spectra as a whole take a rather
smooth shape, which is different from the spa-
tiotemporal Pomeau-Manneville’s intermittency,
where the spectra are splitted to the positive and
negative parts, and have a gap between the two
(8).

4) In fig. 31(e), the system re-enters the region
of pattern selection with frozen domains of size = 2
and 3. In the domains of size =3, there is one
chaotic mode per domain, which gives the step
structure in the spectra. In the fully developed
region, the spectra are smooth in form, which are
close to the analytic expression for fully developed
chaos in coupled-piece-wise-linear maps {9, 13].

6.3. Power spectrum analysis

In the pattern competition region, we have found
that the flicker-like noise appears only within some
limited bands of wavenumbers. Since the results
are quite similar to the case of defect turbulence,
we just briefly sum up them.

For a = (1.72-1.76), the spectra near k=0 and
k=1/2 obey the normal Lorentzian form, while
the flicker-like noise is seen around k=1/6 to
k=1/3 which is fit by P(k, w)=w™* At these
parameter regions, we have seen the pattern com-
petition intermittency with the selection of do-
main sizes = 2 and 3. The exponent a is = 1.5, for
a=1.73. (The dependence of a on k is small
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Fig. 33. Pautern distribution function Q(k) for our model
with €=0.3 and N =128, for 1.5 < a <20, and starting with
random initial conditions. Q(k) is calculated from the average
for 3000 time steps after 5000 transients. @(Q(1)), *{(Q(2).

A(Q(3)). O(Q(4)), and X(Q(5)). Only Q(k)'s greater than 0 are
shown. ’

here.) The flicker-like noise is observed in rather
large parameter regions.

6.4. Quantifiers for pattern dynamics

In the pattern competition intermittency prob-
lem, various pattern dynamical quantifiers are
useful. Change of the distribution function of pat-
terns Q(k) (up to k =5) with the change of a is
shown in fig. 33, while the static and dynamical
entropies are shown in fig. 34.

In the frozen regime, there are various possible
patterns which give a large pattern entropy and a
vanishing dynamical entropy. For a>1.55, the
selection process occurs and leads to the decrease
of the pattern entropy. At 1.66 <a <1.76, the
selection of the domain with size =3 is clearly
seen in the diagram for Q(k). For a <17, the
main domain sizes are 2, 3, and 4 while for a >
1.72, the selection leads to the pattern only of the
domains of size =2 and 3. i

In the intermittency region, the distribution
Q(k) consists of the domain of selected pattern
(size = 2 and 3 here) and the distribution function
by the burst, which has the tail of exp (—const. X
k) just like the defect turbulence case. In this
region, the dynamical entropy is still very low (not
zero). Through the collapse of pattern, there is a
critical phenomenon similar to the case of the
zigzag pattern. We can see the critical behavior of
the disorder parameter (1 —(Q(2) + Q(3))) and
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the entropies, although detailed analysis of quanti-
Aative properties such as the determination of ex-
ponents are left for future.

In the fully developed regime, we again observe
the smooth change of Q(k) and entropies, and
exponential decay of Q(k) with k for large k.
Also, the static and dynamical entropies are going
closer as a is increased. .

In the intermittency region, the lifetime distri-
bution does not exhibit an exponential decay, but
shows the Pareto form for the domains of size = 2
and 3, as can be seen in figs. 35(a, b) where log-log
plots for W,(n) and Wy(n) are depicted. Both are
fitted by W(n)ax n=¥ with ¢ =1.75. The expo-
nents are the same for both domains within our
numerical errors. On the other hand, the lifetime
distribution obeys the usual exponential decay for
other domains (see fig. 35(c) for the semi-log plot
of W,(n)).

Here again, sum of the exponents ¢ and « gives
3.3, greater than the value required by eq. (24).
The reason for this is again the same as in the
defect turbulence case, and the calculation of
P(k,w) in a small window gives a smaller « and
the relation (24) is restored.

The main results of the section 6 are briefly
summarized in table III in section 2.

7. Summary and discussions

In the present paper, we have investigated the
pattern dynamics of spatiotemporal chaos, focus-
sing on the new phases in the spatiotemporal chaos.
The salient feature of each phase is as follows: (i)
Coexistence of many attractors of different pat-
terns in frozen random phase. (ii) Suppression of
chaos and the selection of a few number of pat-
terns: we also note that the self-organization pro-
cess through the transient chaos may give a
new viewpoint to the traditional problem of self-
organization. (iii) Brownian motion of defect trig-
gered by its chaotic motion (iv) Selective flicker-
like noise in the defect turbulence and in the
pattern competition intermittency (v) Fully devel-

oped turbulence represented as the random gener-
ation of patterns. See tables 1I and III for a brief
summary of the characterization of each phase.

We have used a synergetic approach to this
pattern dynamics problem, i.e., from the view-
points of dynamical systems theory, bifurcation
theory, critical phenomena, time-series analysis,
and pattern formation theory. As a dynamical
system approach, Lyapunov analysis is performed
and the relation with KS entropy and diffusion
coefficient of defect is suggested. The shape of the
Lyapunov spectra for each phase is classified. As a
bifurcation theory problem, it is suggested that a
collapse of pattern is due to the crisis in a high-
dimensional phase space.

As a critical phenomenon, a set of pattern order
parameters is introduced. Also, introduction and
rough calculation of some critical exponents are
carried out. Here, dynamical aspects also give us a
novel interesting problem, both for the critical
phenomena and time-series analysis as is seen in
the discovery of the selective flicker-like noise and
the window analysis for it.

Results of quantitative characterization of each
phase is summarized in tables II-1I1.

Since the main purpose of the present paper is
to illustrate a possible synthetic approach towards
a novel pattern dynamics phenomenon, some re-
maining associated problems are listed for the
future.
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Fig. 34. Pattern (static) entropy (X) and pattern dynamical
entropy (®) for our model with ¢ = 0.3 and N = 128, calculated
from the average for 30 000 time steps after 10 000 transients.
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7.1. Critical phenomena

= The present paper has shown an example that
the transition from weak turbulent state to fully
developed turbulence is treated as critical phe-
“nomena. Although some quantifiers are intro-
duced, we have neither scaling argument nor
renormalization group approach for them. Con-
struction of this approach will be a challenging
problem both for the theory of turbulence and of
critical phenomena. In the low-dimensional dy-
namical systems, the critical phenomena are re-
lated with the crisis and depend on the character
of the saddle [30]. With the increase of degrees of
freedom, possible paths in the phase space in-
crease. In the limit of high-dimensional dynamical
system, we may hope that the critical property is
obtained by some statistical mechanical argument
based on the replacement of high-dimensional dy-
namical systems by some stochastic motion. This,
if successful, gives an example of a pathway from
dynamical systems to statistical mechanics. Also, if
this is the case, the critical property may be inde-
pendent of the choice of the model within a do-
main of “universality class”.

As for the dynamical critical phenomena, the
observed selective flicker-like noise in the transi-
tion region will require a new theoretical frame-
work.

#7.2. Fully developed turbulence and synthesis of
Landau and Ruelle-Takens’ pictures

» There have been two wide-spreading explana-
tions on the turbulence. One is Landau’s picture
[46] which regards the turbulence as a quasiperi-
odic motion of infinite incommensurate frequen-
cies. One problem for this is that it is structurally
unstable and furthermore, the state seems to have
very small (possibly zero) measure in the phase
space. The other is Ruelle-Takens’ picture [47]
which regards the turbulence as a strange attrac-
tor. This has mostly been successful if the number
of relevant modes is small. The low-dimensional
stage attractor, however, is again structurally un-

stable. On the other hand, the observed fully de-
veloped turbulent state in our model (and also
possibly in the real fluid turbulence) seems to be
structurally stable. Indeed, in our model, windows
in the original logistic map are wiped out for most
initial conditions. Also, the quantifiers we have
investigated are approximated by a simple Markov
process, and their dependence on the bifurcation
parameter is smooth. The dynamics of our system
is approximated by x,,,(i)=f(x,(i)) + md,(i),
where rnd, (i) is a random noise with a short
memory in space and time. The noise term is
strong enough to destroy the windows in the origi-
nal map. These observations suggest that this state
is understood as a synthesis of Landau’s and
Ruelle-Takens’ pictures for turbulence, that is, as
a direct product state of low-dimensional chaos.
This picture may lead to the existence of a simple
and smooth measure based on the ergodic as-
sumption. Theoretical approach towards this di-
rection is essential in future.

Another viewpoint for this is the synthesis of
the approaches to complexity from chaos and CA.
The former gives an explanation for the creation
of information in the bit space [48)], while the
latter gives the information mixing in the real
space [2]. Statistical mechanics theory is proposed
for both of the systems [49~-51]. Synthesis of these
approaches will be required for the understanding
of the fully developed turbulence in our system.

1.3. Intermittency, defect, and transient turbulence

Another remaining problem is a theoretical
background for the transient turbulence. Some
examples show the existence of turbulence not as
an attractor but as a transient whose length di-
verges as a system size, as can be seen in the
defect phase and pattern competition intermit-
tency. Our examples and also some other numeri-
cal examples in spatially extended systems show
that this is rather general, although at the present
stage we have no theoretical approach towards the
transient turbulence.
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In connection with this problem, theoretical
frameworks on the selective flicker-like noise,
derivation of the Brownian motion of defect, de-
fect turbulence, patlern intermittency, and on
mechanism of the suppression of chaos by pattern
selection will be required.

7.4. Relation among the quantifiers

Here, we have introduced the following quanti-
fiers: Spatiotemporal power spectra, pattern distri-
butions, entropies, dynamical entropies, pattern
lifetime distribution, and Lyapunov exponents.
The relations among the quantifiers have not yet
been established, which have to be clarified in
future. Also the relationship among the exponents
in the quantifiers should be searched for, as is seen
in the study of phase transition problems.

7.5. Extensions

In the present paper we have discussed only the
pattern dynamics in the largest scale in a one-
dimensional nearest-neighbor coupled map lattice.
Some extensions are possible.

7.5.1. Higher scale pattern dynamics

In the present paper we have discussed a domain
separated by an unstable fixed point x*. This
corresponds to the period-2 band motion. In the
region near the onset of chaos (a=1.401...), we
can see a finer scale of domains such as period-4
band, period-8 band, and so on, each of which is
separated by period-2 unstable point, period-4
unstable point and so on, respectively. It 1is
expected that we can see similar pattern dynamics
of these smaller domains such as the pattern
selection and intermittency and collapse of
patterns. Actually, we have observed such behavior
near the onset of chaos (1.42<a<1.5). The
similar phenomenology to the present paper will
be applicable to this pattern dynamics.

7.5.2. Open flow
Another interesting version of the coupled map
lattices is the one-way coupling model, introduced

v (X =
e e
n ( per 32 time steos)

Fig. 36. Space-time diagram for the one-way coupled logistic
lattice (26), with e =0.1, @ =1.82, N =100 and starting with a
random initial condition. Every 32nd time step is plotted from
0 to 200. If x, (i) is larger than x* (unstable fixed point of the
logistic map), the corresponding space-time pixel is painted as
black; while it is left blank otherwise.

" as a model for the open fluid flow:

x,(1) = (1= (i) + e (x,(i= 1) (26)

As has already been reported [52-54], the model
exhibits the spatial period-doubling and selective
amplification of noise. Here we have also observed
the pattern selection with some spatial wavelength
and have obtained a phase diagram similar to fig.
1. We have found the defect turbulence and
transmission of defect to downflow with some
fluctuating velocity triggered by its chaotic motion
and interaction among defects. Also, we can see a
source of defect at the upper flow (see fig. 36 for '
an example of space-time diagram).

7.5.3. Model with a longer range

One might argue that the wavelength in our
pattern selection is too small and the range of its
change is small (as is seen in the phase diagram it
is up to 4 or 5), and the behavior in our model is
far from a continuous system represented by
partial differential equations. The connection to
the spatially smooth pattern is obtained by a
simple modification of our nearest-neighbor model.
First, note that our model is a repetition of the
two procedures: (1) nonlinear transformation x —
f(x) and (2) spatial average for a nearest-neighbor
sites with the weight (1 —¢),¢/2,¢/2. Here the
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two procedures are carried out alternately. Instead
of this, we can perform D times the procedure of
spatial average after every operation of the proce-
dure (1). As is expected, this leads’to a model with
spatial range D and with exponentially decaying
coupling strength. The result of this procedure
leads to the pattern selection of much longer
wavelength at the medium nonlinearity, and the
transition to fully developed turbulence via the
intermittency phase. Although we have not yet

" confirmed the quantitative details, we may hope
that the model belongs to the same universality
class as the present one, since in most statistical
mechanical problems, nearest-neighbor and short
ranged models belong to the same universality
class. This modification enables us to see the con-
nection to the continuum limit of the model in
space more explicitly.

7.5.4. Higher spatial dimension

Extensions to higher-spatial dimensions are also
of interest. We have not yet performed the detailed
study, but the following features have been
observed in a two-dimensional coupled map
lattice:

For weak nonlinearity, selection of checker-
board-like pattern is seen [S5, 15]. In our model
we have observed the Brownian motion of chaotic
string which separates the two antiphase
checkerboard regions. We have also observed the
" pattern selection of longer wavelength for a
stronger coupling. If the coupling is much larger,
we have not yet found the selection of a longer
‘Wavelength. The intermittent transition at the
collapse of pattern has also been observed.

7.6. Possible suggestions on experiments

To conclude the paper, we comment briefly on
the possible relation of our model with experi-
ments, First, we have to admit that the direct
relation with an experiment is not possible. We do
not have to be disappointed with this, however,
since no direct relation with the logistic map and

Rayleigh-Bénard convection is at hand in the
level of equation of motion, but the map explains
some aspects of the latter quite well. The key is
universality. If the universality class to which our
model belongs has large applicability in the spa-
tiotemporal chaos, which we believe (since our
model is so simple and general like Ising model or
logistic map), we might hope that the same phe-
nomena and quantitative aspects are observed in
experiments.

What we hope to be observed is (1) the transi-
tion sequence of frozen chaotic pattern, pattern
selection, intermittency (Brownian motion of de-
fect and defect turbulence), and fully developed
turbulence. If this kind of phenomena is found,
the search for (2) search for selective flicker-like
noise at the transition regime is recommended for
a quantitative check. Also, it is desirable to re-
investigate (3) the motion of defects in some pat-
terns, to check if the motion is chaotic, and if the
Brownian motion is associated with the chaos.

Another candidate for the quantitative check
will be the critical behavior of various pattern
dynamical quantifiers. For a qualitative compari-
son, some visualization techniques introduced in
the study of coupled map lattices, such as
space-time diagram, spatial return maps, co-mov-
ing return maps and so on [5] may be also of use.
For these qualitative and quantitative studies,
multiple-point observations will be essential.
Through these observations, we can get the graph-
ics and various quantifiers comparable with those
investigated in the present paper.

What are possible candidates of the experi-
ments? We have seen some examples of spatiotem-
poral chaos in recent experiments [1], such as,
chemical turbulence [56, 57] Bénard convection
with large aspect ratio [58-62] Taylor-Couette
flow with large aspect ratio [63], Faraday experi-
ment [64] electrical convection of liquid crystal
[65-67], solid state experiments such as Josephson
Jjunction array, electron-hole plasma [68], and
charge density wave [69). For open flow experi-
ments, we have seen a lot of examples in fluid flow
such as the pipefiow [70], boundary layer [71], and
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air jet [72], and also in dendritic growth of crystal
(73]

In these experiments, we can see some relations
with our observations in the present paper. Spatial
bifurcation by the frozen random state is observed
in Bénard convection experiments [62]. Brownian
motion of defects has been seen in the convection
of liquid crystals. Localized chaotic motion
(turbator) has been observed in Taylor-Couette
flow [63]). Pattern competition is observed in the
Faraday experiment and in liquid crystal experi-
ment [64, 66]. Flow of turbulent spots can be
frequently seen in open flow experiments and den-
dritic growth [73].

A remarkable experiment has recently been re-
ported by Ciliberto and Bigazzi [74] on the Bénard
convection on an annulus. The experiment ex-
hibits the spatiotemporal intermittency which has
a striking resemblance to our pattern competition
intermittency in its spatiotemporal pattern, power-
law distribution of laminar domains, and the exis-
tence of selected wavenumbers and of localized
chaos in a subcritical region (see also [75]).

One may wonder that in most of these experi-
ments, turbulence is induced not by local reaction
term but by the spatial gradient term, as is seen in
the nonlinear term of Navier-Stokes equation. In
some cases, however, we expect that this is just a
difference of description, and no essential differ-
ence exists. For example, let us compare the pat-
tern selection and collapse of our model with the
Bénard convection with a large aspect ratio. In
the pattern selection regime, we may regard that
the selected domain size corresponds to the size of
Bénard cell. The turbulence in the Bénard convec-
tion triggered by the spatial coupling term be-
tween the rolls is interpreted in our model as the
turbulence in the defect phase arisen from the
mismatch of the two zigzag region. Thus we hope,
at a level of “universality”, that our prediction on
the phases and the quantitative aspects is valid to
these experiments, if we do not compare the global
phase diagram but restrict ourselves only to each
phase change. Of course, further numerical and
theoretical studies are required. For these, some

simulations are being performed on a coupled
map models dual to the present model, i.e., trivial
local dynamics and nonlinear spatial coupling
terms. Some phenomena look similar, although
the details will be reported in future. ’
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