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Coupled logistic lattices with asymmetric coupling in space, with a fixed boundary condition at the left end, are investigated.
The system shows a period-doubling bifurcation to chaos as a lattice point goes downflow. In contrast with usual
period-doubling in low-dimensional systems, (i) no scaling behavior has been found, (ii) low noise is important for the
bifurcation structures. The system corresponds to a model for an open flow, which may be of use for the study of the onset of

turbulence in pipe flows.

1. Introduction and motivation. Recent studies of
chaos [1,2] have made clear some aspects of turbu-
lence, especially those in closed systems such as Bénard
convection or Taylor vortices. On the other hand,
studies of open flow systems from the viewpoint of
dynamical systems are rare [2,3]. One interesting fea-
ture for an open flow system lies in the change of a
structure of a flow as it goes downstream [4], such
as the growth of a disturbance or the development
of Karman eddies. In that sense, “space” can be con-
sidered as a kind of bifurcation parameter for an open
flow system. In the present letter a coupled map lat-
tice (CML) model is used to consider such flow sys-
tems,

A CML is a system in which a set of low-dimen-
sional mappings are coupled on a lattice ¥' [5,6].
Here, a coupled logistic lattice with an asymmetric
coupling is considered, i.e.,

X1 () = fx, () * e[ef(x,( + 1)
(1 =) (x, (0 — 1) = Flx, @], )

where i = 1,2, ..., N is a lattice site and f(x) = 1 —ax2.
In the present letter we present some results for the
case with one-way coupling (a = 0) and with the

' Present and permanent address.
*1 For other studies of CMLs see ref. [7].
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boundary condition x(1) = fixed at the unstable fix-
ed point of a single logistic map, x* = (/1 + 42 — 1)/
2a, though essential features do not change if the cou-
pling is asymmetric with the boundary condition x(1)
= fixed and x(NV) =x(N — 1).

2. Spatial period doubling. As the lattice site is in-
creased, spatial period doubling is observed for vari-
ous parameters. The pattern may be described as fol-
lows: At lattice sites i(1) <i <i(2),x,(i) isa period-
two cycle (values of the x(7) at that cycle can differ
by lattice sites), at i(2) <i <i(4),x,(i) is a period-
four cycle and so on. At some parameters (g, €), the
spatial period doubling stops at some order 2k and
the system settles down to a cycle with the period
2k for i >i(k — 1). For other parameters, the time
series of x,,(f) shows a chaotic behavior after a finite
number of spatial period doublings usually non-
linearity @ or a smaller coupling € gives a chaotic
behavior). Once chaos is attained at some lattice
points i, no periodic behavior reappears for i > i..
Some examples are shown in figs. 1a—d, where the
initial conditions are chosen to be x(i) = x* + small
disturbance, though the patterns do not depend on
the initial conditions so much. The following points
should be noted.

(a) The period doubling is not caused by the change
of a bifurcation parameter. The bifurcation occurs
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Fig. 1. Patterns by eq. (1). The X ,,(7) are plottes for n = 5001, 5002, ..., and 5020. Initial conditions are );:(z) =x*+0.01, though
the pattern does not change so much if different initial conditions are taken. The piecewise lines denote (7, X, M) = G+ 1, x,(
+ 1)). The system size N is 100 for (a)—(c) and 50 for (d). (a) 2 = 1.4 and e = 0.1. (b) 2 = 1.45 and ¢ = 0.5. (c)a=1.5and e =0.3.

(d)a =15 and e = 0.2 (for n = 5001, 5002, ..., and 5025).

automatically as a lattice site goes downflow. In that
sense, “space” plays the role of bifurcation parameter.

(b) No scaling relations are observed. For ex-
ample, let us consider a lattice point i(k), at which
the doubling from 241 to 2% occurs. The points i(k)
do not accumulate as ¥ becomes large. On the con-
trary, the distance between i(k + 1) and i(k) becomes
larger and larger as k increasss. Scaling in a param-
eter space 4 or € are not observed either, which is
quite different from the common sense in a low-
dimensional chaos theory [8]. A possible reason for
this is discussed in section 5.
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3. Mechanism. The mechanism of the above phe-
nomenon seems to be rather simple. Assume that
x () is a cycle with period 2%. Then the mapping at
the site / + 1 is a logistic map modulated by the period -
2k Then the amplitude of oscillation at the site i + |
can become larger than that at the site 7 or a pitch-
fork bifurcation from 2% to 2%*! cycle occurs. In
figs. 2a—c, x4, ({) versus x,,(?) are plotted fori =5,
6, and 10. At these parameters in the figures, transi-
tion to chaos from 16-cycle occurs at the site i = 6,
and the stochastic motion is propagated to the down-
stream.
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0.5} — In a system with a one-way coupling and the fixed
- ] boundary condition for the left end, the jacobian for
- N 1 the CML (1) is a triangular matrix. Thus an eigenvalue
: \*\\ of the product of jacobians is given by the product of
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r N\ lattice site. The Lyapunov exponent as a function of
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eters are same as for fig. 2. We note that the exponent
is positive only at the site 6 and it approaches to some
constant (negative) value for the downstream. The
stochastic motion at the downflow is essentially due
to the propagation of the turbulence of the upstream
and cannot be represented by the usual Lyapunov
exponents. The convergence of the exponent at the
downstream means that the flow approaches some
stationary state there.

In connection with the Lyapunov exponents, we
have to be careful in the difference between convec-
tive instability and absolute instability. If the pertur-
bation grows in a moving frame, it is called “convec-

Fig. 2. (x,, _, (D, x,(7) is plotted for n = 5001, 5002, ..., and
7000 from eq. (1) with the same initial condition as for fig. 1.
Lattice sites are { = § ((a); period-16), i =6 (b) and i = 10 (o).
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tive instability”, while, absolute instability means the
instability only in a stationary frame [9]. In many
cases our system shows a convective instability.

As the simplest case, let us consider the stability
of the homogeneous solution x(i) = x*. From the
calculation of the jacobian, it is stable if —1 <(1 — ¢€)
Xf'(x*)<1,ie.,(1 —€)(v/T+4a—1)<1. The solu-
tion, however, is unstable for some comoving frame
if-1<f '(x*) < 1. Thus, the fixed point is convec-
tively unstable if (/1 +4a — 1) > 1.

5. Importance of a small noise. As has been shown
by Deissler for the generalized time dependent Ginz-
burg—-Landau equation, a small noise plays a very im-
portant role for the system with convective (or spa-
tial in his terminology) instability [9]. This is also
true of our system. In a variety of cases, single and
double precision calculations give different results,
in the sense that the bifurcation from 2% to 2k+1 oc.
curs at different sites by precisions, if the 2¥cycle is
convectively unstable but not absolutely unstable
(i(k + 1) is larger for the double precision). One rea-
son that any scaling relations are not found lies in the
above sensitive dependence on a small error in our
system.

It is of importance to study the system (1) with a
small noise added on every site. Numerical simulations
of such systems show (see fig. 4) that (i) spatial period
doubling occurs in the same manner as in the deter-
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Fig. 4. x, (i) are plotted for n = 5001, 5002, ..., and 5020 for
eq. (1) with a noise homogeneously distributed in the inter-
val (=5 X 1071, 5 1071%).2 = 1.4 and ¢ = 0.5, with the
same initial condition as in fig. 1. Note the existence of kinks.
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ministic case, but (ii) kinks are generated at the up-
stream, which is due to the phase change of the os-
cillation at the sits where the bifurcation occurs and
(i) the kinks are propagated with a constant speed

to the downstream, where the speed is determined by
the difference of the phase by a kink while the densi-
ty of kinks increases as the strength of noise gets larger.

6. Discussion. In the present letter, we presented
the results for the one-way coupling and the bound-
ary condition fixed at the left end to x(0) = x*. The
main results, however, do not change if the coupling
is asymmetric and the boundary condition is fixed at
some value at the left and free at the right end. The
reason that we take the one-way coupling for the illu-
stration of the period doubling in space is that it is
the simplest model and the results are less compli-
cated.

Studies of open flow systems from the viewpoints
of dynamical systems have just been started and a lot
of problems are left for future, such as how the di-
mension changes as the flows go downstream, how
the information or perturbation propagates to down-
stream, and the statistical property of the turbulence
at the downstream,

1t is not sure whether our phenomenon can be ob-
served in open flow experiments or in a numerical
simulation of the partial differential equations which
include the term of first spatial derivatives. It will be
of interest to search for the spatial bifurcations in
open flow systems. Also, it is desirable to make ex-
periments in open fluid systems such as to take a
Poincaré map or to calculate the dimension of a time
series or to measure the power spectra at various
points of the flow.

The author would like to thank Robert Deissler,
J. Doyne Farmer, Norman Packard, and Gottfried
Mayer-Kress for useful discussions.
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